A users guide to K-theory Spectral sequences

Alexander Kahle

#### Mathematics Department, Ruhr-Universtät Bochum

Bonn-Cologne Intensive Week: Tools of Topology for Quantum Matter, July 2014 In the last lecture we have learnt that there is a wonderful connection between topology and analysis on manifolds: *K*-theory. This begs the question: how does one calculate the *K*-groups?

## From CW-complexes to K-theory

We saw that a CW-decomposition makes calculating cohomology easy(er). It's natural to wonder whether one can somehow use a CW-decomposition to help calculate K-theory. We begin with a simple observation.

#### A simple observation

Let X have a CW-decomposition:

$$\emptyset \subseteq \Sigma_0 \subseteq \Sigma_1 \cdots \subseteq \Sigma_n = X.$$

Define

$$\mathcal{K}^{ullet}_{ZP_k}(X) = \ker i^* : \mathcal{K}^{ullet}(X) o \mathcal{K}^{ullet}(\Sigma_k).$$

This gives a filtration of  $K^{\bullet}(X)$ :

$$\mathcal{K}^{ullet}(X)\supseteq\mathcal{K}^{ullet}_{ZP_0}(X)\supseteq\cdots\supseteq\mathcal{K}^{ullet}_{ZP_n}(X)=0.$$

- One might hope that one can calculate the K-theory of a space inductively, with each step moving up one stage in the filtration.
- This is what the Atiyah-Hirzebruch spectral sequence does: it computes the groups

$$K^{\bullet}_{ZP_{q/q+1}}(X).$$

• What then remains is to solve the extension problem: given that one knows  $K^{\bullet}_{ZP_{q/q+1}}(X)$  and  $K^{\bullet}_{q+1}(X)$ , one must somehow determine  $K^{\bullet}_{ZP_{q}}(X)$ , which fits into

$$1 \to {\mathcal K}^{\bullet}_{{\mathbb Z}{P_{q/q+1}}}(X) \to {\mathcal K}^{\bullet}_{{\mathbb Z}{P_q}}(X) \to {\mathcal K}^{\bullet}_{{\mathbb Z}{P_{q+1}}}(X) \to 1.$$

### Spectral sequences, the setup

. . .

A spectral sequence is made up of a collection of pages, each of which is a bi-graded collection of abelian groups. The k'th page, then, looks something like this:

$$E_{k}^{p-1,q-1} \qquad E_{k}^{p-1,q} \qquad E_{k}^{p-1,q+1}$$

$$E_{k}^{p,q-1} \qquad E_{k}^{p,q} \qquad E_{k}^{p,q+1} \qquad \cdots$$

$$E_{k}^{p+1,q-1} \qquad E_{k}^{p+1,q} \qquad E_{k}^{p+1,q+1}$$

- Each page in a spectral sequence is a bi-graded complex, and subsequent pages are computed from the cohomology of this complex.
- A spectral sequence is said to converge when there exists some *n* such that for all n' > n,  $E_n^{p,q} \cong E_{n'}^{p,q}$ . One writes  $E_*^{p,q} \Rightarrow E_{\infty}^{p,q}$ .
- The idea is that one finds a spectral sequence that starts somewhere that's easy to compute, and converges to something related to what you want.

### The Atiyah-Hirzebruch Spectral sequence

- The Atiyah-Serre spectral sequence is a convergent spectral sequence  $E_2^{p,q} = H^p(X, K^q(\text{pt})) \Rightarrow K_{ZP_{p/p+1}}^{p+q}(X) = E_{\infty}^{p,q}$ , and differentials  $d_r : E_2^{p,q} \to E_2^{p+r,q-r+1}$ .
- One can replace K with any extraordinary cohomology theory.
- For *K*-theory the first non-zero differential is *d*<sub>2</sub>. Exercise: show this!
- The groups  $\mathcal{K}^{\bullet}_{ZP_q}(X)$  may be more invariantly defined:  $x \in \mathcal{K}^{\bullet}_{ZP_q}(X) \subseteq \mathcal{K}^{\bullet}(X)$  iff for any CW-complex A with dimension less than q and continuous map  $i : A \to X$ ,  $i^*x = 0$ . In particular,  $\mathcal{K}^{\bullet}_{ZP_1}(X) = \tilde{\mathcal{K}}^{\bullet}(X)$ .

- Write down the  $E^2$ -page for  $S^n$ .
- Show that all the differentials vanish.
- Conclude that one has  $K^0(S^{2k+1}) = K^1(S^{2k+1}) = \mathbb{Z}$ .
- What about the even case?



- Write down the  $E^2$ -page for  $\mathbb{CP}^n$ .
- Show that all the differentials vanish.
- Conclude that one has  $K^1(\mathbb{CP}^n) = 0$ ,

$$\mathcal{K}^{0}(\mathbb{C}\mathbb{P}^{n}) \xleftarrow{\mathbb{Z}} \mathcal{K}^{0}_{ZP_{1}}(\mathbb{C}\mathbb{P}^{n}) \xleftarrow{0} \mathcal{K}^{0}_{ZP_{2}}(\mathbb{C}\mathbb{P}^{n}) \xleftarrow{\mathbb{Z}} \cdots$$

• Argue that  $K^0(\mathbb{CP}^n) \cong \mathbb{Z}^{n+1}$ .

# A sketch of the working out of the exercise

- The cohomology of CP<sup>n</sup> is concentrated in even degrees, and is non-zero between degree zero and the dimension of CP<sup>n</sup>.
- The two-periodicity of complex means that the E<sub>2</sub>-page has "Z" s on points with even p and q (within the support of the cohomology) and zero elsewhere.
- We note that the differential  $d_2$  sends even q to odd q and vice-versa, so must vanish. Thus the  $E_2^{p,q} = E_3^{p,q}$ .
- Similar reasoning allows us to argue that the  $d_r$  vanish for all  $r \ge 2$ , so that  $E_2^{\bullet,\bullet} = E_{\infty}^{\bullet,\bullet}$ .
- Reading of the E<sub>∞</sub> page, we see that K<sup>0</sup>(ℂℙ<sup>n</sup>) is Z extended by Z n-times, and thus K<sup>0</sup>(ℂℙ<sup>n</sup>) = Z<sup>n+1</sup>.

- Write down the  $E^2$ -page for  $\Sigma_g$ , the surface of genus g.
- Show that all the differentials vanish.
- Compute the  $K^{\bullet}(\Sigma_g)$ .



We have by now seen that often, spectral sequence calculations come down to arguing that the differentials vanish (or are tractable), and doing an extension argument. The next examples are a little trickier.

- Write down the  $E^2$ -page for  $\mathbb{RP}^2$ .
- Show that all the differentials vanish.
- Compute the  $K^{\bullet}(\mathbb{RP}^2)$ . Be careful with extensions!

- Write down the  $E^2$ -page for  $SO(3) \cong \mathbb{RP}^3$ .
- Show that all the differentials vanish: hint, use the Chern character!
- Compute the  $K^{\bullet}(SO(3))$ .

For our next computations, we need the Künneth theorem in K-theory (Atiyah).

#### Theorem

Let X be such that  $K^{\bullet}(X)$  is finitely generated, and Y be cellular. Then there is a short exact sequence of  $\mathbb{Z}/2\mathbb{Z}$ -graded modules

$$0 \rightarrow {\mathcal K}^*(X) \otimes {\mathcal K}^*(Y) \rightarrow {\mathcal K}^*(X \times Y) \rightarrow {\mathcal T}{\it or}_1({\mathcal K}^*(X), {\mathcal K}^*(Y)) \rightarrow 0,$$

where the first map has degree 0, and the second degree 1.

We list some properties of the Tor functor. Here G is an abelian group.

• 
$$\operatorname{Tor}_1(\mathbb{Z}/n, G) = \{g \in G; ng = 0\},\$$

• Tor<sub>1</sub>(
$$\mathbb{Z}, G$$
) = 0,

•  $\operatorname{Tor}_1(\bigoplus_i G_i, \bigoplus_j G'_j) \cong \bigoplus_{i,j} \operatorname{Tor}_1(G_i, G'_j)$ , for finite sums.

#### Compute

- $K^{\bullet}(T^n)$ ,
- $\mathcal{K}^{\bullet}(SO(4))$ , (hint:  $SO(4) \cong SO(3) \times S^3$  as spaces),
- *K*<sup>•</sup>(*O*(4)).

Time permitting, use the Chern character to investigate the ring structure of  $K^{\bullet}(T^n)$ .

Dugger, Daniel, "A geometric introduction to K-theory", http://math.uoregon.edu/ ddugger/kgeom.pdf the original papers of Atiyah et al. the book "K-theory" by Atiyah. Hatcher: "K-theory"