A users guide to K-theory

Spectral sequences

Alexander Kahle
alexander.kahle@rub.de

Mathematics Department, Ruhr-Universität Bochum

Bonn-Cologne Intensive Week: Tools of Topology for Quantum Matter, July 2014
In the last lecture we have learnt that there is a wonderful connection between topology and analysis on manifolds: K-theory. This begs the question: how does one calculate the K-groups?
From CW-complexes to K-theory

We saw that a CW-decomposition makes calculating cohomology easy(er). It’s natural to wonder whether one can somehow use a CW-decomposition to help calculate K-theory. We begin with a simple observation.

A simple observation

Let X have a CW-decomposition:

$$\emptyset \subseteq \Sigma_0 \subseteq \Sigma_1 \cdots \subseteq \Sigma_n = X.$$

Define

$$K_{\mathbb{Z}P_k}(X) = \ker i^* : K^\bullet(X) \to K^\bullet(\Sigma_k).$$

This gives a filtration of $K^\bullet(X)$:

$$K^\bullet(X) \supseteq K_{\mathbb{Z}P_0}(X) \supseteq \cdots \supseteq K_{\mathbb{Z}P_n}(X) = 0.$$
One might hope that one can calculate the K-theory of a space inductively, with each step moving up one stage in the filtration.

This is what the Atiyah-Hirzebruch spectral sequence does: it computes the groups

$$K_{ZP_{q/q+1}}^\bullet(X).$$

What then remains is to solve the extension problem: given that one knows $K_{ZP_{q/q+1}}^\bullet(X)$ and $K_{q+1}^\bullet(X)$, one must somehow determine $K_{ZP_{q}}^\bullet(X)$, which fits into

$$1 \to K_{ZP_{q/q+1}}^\bullet(X) \to K_{ZP_{q}}^\bullet(X) \to K_{ZP_{q+1}}^\bullet(X) \to 1.$$
A *spectral sequence* is made up of a collection of *pages*, each of which is a bi-graded collection of abelian groups. The k'th page, then, looks something like this:

\[
\begin{array}{ccc}
E_{k}^{p-1,q-1} & E_{k}^{p-1,q} & E_{k}^{p-1,q+1} \\
E_{k}^{p,q-1} & E_{k}^{p,q} & E_{k}^{p,q+1} \\
E_{k}^{p+1,q-1} & E_{k}^{p+1,q} & E_{k}^{p+1,q+1} \\
\end{array}
\]
Each page in a spectral sequence is a bi-graded complex, and subsequent pages are computed from the cohomology of this complex.

A spectral sequence is said to converge when there exists some n such that for all $n' > n$, $E_n^{p,q} \cong E_n^{p,q}$. One writes $E_*^{p,q} \Rightarrow E_\infty^{p,q}$.

The idea is that one finds a spectral sequence that starts somewhere that’s easy to compute, and converges to something related to what you want.
The Atiyah-Hirzebruch Spectral sequence

The Atiyah-Serre spectral sequence is a convergent spectral sequence

$$E_2^{p,q} = \left. H^p(X, K^q(\text{pt}) \right) \Rightarrow K_{\mathbb{Z}P_{p/p+1}}^{p+q}(X) = E_\infty^{p,q},$$ and differentials $d_r : E_2^{p,q} \rightarrow E_2^{p+r,q-r+1}$.

One can replace K with any extraordinary cohomology theory.

For K-theory the first non-zero differential is d_2. Exercise: show this!

The groups $K_{\mathbb{Z}P_q}^\bullet(X)$ may be more invariantly defined:

$x \in K_{\mathbb{Z}P_q}^\bullet(X) \subseteq K^\bullet(X)$ iff for any CW-complex A with dimension less than q and continuous map $i : A \rightarrow X$, $i^*x = 0$. In particular, $K_{\mathbb{Z}P_1}^\bullet(X) = \tilde{K}^\bullet(X)$.
Write down the E^2-page for S^n.
Show that all the differentials vanish.
Conclude that one has $K^0(S^{2k+1}) = K^1(S^{2k+1}) = \mathbb{Z}$.
What about the even case?
Write down the E^2-page for $\mathbb{C}P^n$.

Show that all the differentials vanish.

Conclude that one has $K^1(\mathbb{C}P^n) = 0$,

$$
\begin{array}{cccc}
K^0(\mathbb{C}P^n) & \xleftarrow{\mathbb{Z}} & K^0_{ZP_1}(\mathbb{C}P^n) & \xleftarrow{0} K^0_{ZP_2}(\mathbb{C}P^n) \\
& \xleftarrow{\mathbb{Z}} & & \xleftarrow{\mathbb{Z}} \\
\end{array}
\ldots
$$

Argue that $K^0(\mathbb{C}P^n) \cong \mathbb{Z}^{n+1}$.
The cohomology of \mathbb{CP}^n is concentrated in even degrees, and is non-zero between degree zero and the dimension of \mathbb{CP}^n.

The two-periodicity of complex means that the E_2-page has “\mathbb{Z}”s on points with even p and q (within the support of the cohomology) and zero elsewhere.

We note that the differential d_2 sends even q to odd q and vice-versa, so must vanish. Thus the $E_2^{p,q} = E_3^{p,q}$.

Similar reasoning allows us to argue that the d_r vanish for all $r \geq 2$, so that $E_2^{\bullet,\bullet} = E_\infty^{\bullet,\bullet}$.

Reading of the E_∞ page, we see that $K^0(\mathbb{CP}^n)$ is \mathbb{Z} extended by \mathbb{Z} n-times, and thus $K^0(\mathbb{CP}^n) = \mathbb{Z}^{n+1}$.
Write down the E^2-page for Σ_g, the surface of genus g.

Show that all the differentials vanish.

Compute the $K^\bullet(\Sigma_g)$.

A. Kahle
A users guide to K-theory
We have by now seen that often, spectral sequence calculations come down to arguing that the differentials vanish (or are tractable), and doing an extension argument. The next examples are a little trickier.

- Write down the E^2-page for \mathbb{RP}^2.
- Show that all the differentials vanish.
- Compute the $K^\bullet(\mathbb{RP}^2)$. Be careful with extensions!
Write down the E^2-page for $SO(3) \cong \mathbb{RP}^3$.

Show that all the differentials vanish: hint, use the Chern character!

Compute the $K^\bullet(SO(3))$.
For our next computations, we need the Künnett theorem in K-theory (Atiyah).

Theorem

Let X be such that $K^\bullet(X)$ is finitely generated, and Y be cellular. Then there is a short exact sequence of $\mathbb{Z}/2\mathbb{Z}$-graded modules

$$0 \to K^\ast(X) \otimes K^\ast(Y) \to K^\ast(X \times Y) \to \text{Tor}_1(K^\ast(X), K^\ast(Y)) \to 0,$$

where the first map has degree 0, and the second degree 1.
The Tor functor

We list some properties of the Tor functor. Here G is an abelian group.

- $\text{Tor}_1(\mathbb{Z}/n, G) = \{g \in G; ng = 0\}$,
- $\text{Tor}_1(\mathbb{Z}, G) = 0$,
- $\text{Tor}_1(\bigoplus_i G_i, \bigoplus_j G'_j) \cong \bigoplus_{i,j} \text{Tor}_1(G_i, G'_j)$, for finite sums.
Compute

- $\mathcal{K}\!\mathcal{T}(T^n)$,
- $\mathcal{K}\!\mathcal{T}(SO(4))$, (hint: $SO(4) \cong SO(3) \times S^3$ as spaces),
- $\mathcal{K}\!\mathcal{T}(O(4))$.

Time permitting, use the Chern character to investigate the ring structure of $\mathcal{K}\!\mathcal{T}(T^n)$.
References

the original papers of Atiyah et al.
the book “K-theory” by Atiyah.
Hatcher: “K-theory”