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Topological insulators and superconductors



Topological insulators and superconductors

Topological insulator is

I A material with a band gap in the bulk
(and a certain discrete symmetry)

I It has protected zero energy states at the edge

I Number of these states is a topological invariant Q[H(k)],
an integer which does not change under small perturbations.

I Q is a macroscopic quantity, defined for any insulator with
proper symmetry.



Classification

Three discrete symmetries (Altland&Zirnbauer):
T : H(k) = UT H

∗(−k)U†T , P : H(k) = −UPH∗(−k)U†P ,
C : H(k) = −UCH(k)U†C ,

give 10 symmetry classes and
a lot of topological insulators (Kitaev, Schnyder et al.):

Symmetry d
class 1 2 3 4 5 6 7 8

A Z Z Z Z
AIII Z Z Z Z
AI Z Z2 Z2 Z
BDI Z Z Z2 Z2

D Z2 Z Z Z2

DIII Z2 Z2 Z Z
AII Z2 Z2 Z Z
CII Z Z2 Z2 Z
C Z Z2 Z2 Z
CI Z Z2 Z2 Z
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Many descriptions

I surface Hamiltonian avoids fermion doubling

I K-theory (Kitaev)

I top.-term in σ-model (Schnyder, Ryu, Ludwig)

I . . . in field theory (Qi, Hughes, Zhang & Ryu, Moore, Ludwig)

I string theory (Ryu, Takayanagi)

I Green’s functions (Gurarie, Essin)

I c∗-algebra (Hastings, Loring)

I . . .



Part I



Scattering matrix

(
ψL

ψR

)
out

= S

(
ψL

ψR

)
in

I Describes scattering of free particles from the system at the
Fermi level.

I Is also constrained by symmetry.

I Easy to tell an insulator from a conductor.

What about Q(S)?



Simple case: Majorana fermions (1D superconductor)

Reflection matrix r has
Current conservation:

rr † = 1⇒ | det r | = 1
Particle-hole symmetry:

r =

(
ree rhe
reh rhh

)
=

(
ree rhe
r∗he r∗ee

)
⇒ Im det r = 0

Together:
det r = ±1



Simple case: Majorana fermions (1D superconductor)

det r = −1⇒ det(r − 1) = 0 ⇔ bound state at zero energy.
⇒ Superconductor is in topologically nontrivial phase.



Scattering invariant

Q = sign det r

Phase transition is accompanied by a single fully transmitted mode.



Scattering invariant

Q = sign det r

Phase transition is accompanied by a single fully transmitted mode.



Other TI’s in 1D

Idea:

1. Find all disconnected groups of fully reflecting r ’s.

2. Find what distinguishes them.

3. Check that this quantity is indeed Q(r).

It works!

Symmetry D DIII AIII BDI CII

Q(r) sign det r sign Pf r ν(r) ν(r) ν(r)
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Question

What about higher dimensions?



Higher dimensions: QHE

I Not insulating due to edge states?

Solution: roll it up.

I No difference from 1D?
Solution: thread flux, quantized charge pumping appears.

I Charge pumping is a winding number of det r(Φ):

Q(r) =
∫ 2π

0 dΦ d
dΦ Im log det r(φ)
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Dimensional reduction

1. Start from d-dimensional Hd(kd).

2. Close d − 1 dimensions with twisted boundary conditions.

3. Calculate r(kd−1).

4. Classify topologically disconnected families of r(k).

Q: Isn’t that a lot of work?
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Dimensional reduction II

Idea: reduce problem to a known one.

With chiral symmetry C, r(k) = r †(k), so define

Hd−1(k) = r(k)

Without chiral symmetry define

Hd−1(k) =

(
0 r(k)

r †(k) 0

)
This Hd−1(k) has the same topology as r(k),
(Symmetry of Hd−1 is shifted according to the Kitaev’s periodic table.)
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Algorithm to calculate Q(S)

1. Start from d-dimensional Hd(kd).

2. Close d − 1 dimensions with twisted boundary conditions.

3. Calculate r(kd−1) and Hd−1(k).

4. Look up in the table Q(Hd−1).



Summary I

1. Topology of S(k) coincides with that of H(k)

2. This provides a highly efficient method to calculate Q
systems of 2000× 2000 vs 60× 60 in 2D

and of 50× 50× 50 vs 12× 12× 12 in 3D

3. Any observable consequence of topology in transport must be
connected to Q(S)



Part II



Non-TI protected surface states

Systems with conducting surface, but without bulk top. invariant:

I 3D topological insulator with
random magnetic field (broken
time-reversal):
surface at the critical point of QHE
transition, finite conductivity
σ ≈ 0.5
(Nomura, Ryu, Koshito, Mudry, Furusaki)

I weak topological insulator
two randomly coupled Dirac cones,
always metallic
(Ringel, Kraus, Stern & Mong, Bardarson,

Moore)
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The general idea: undefined surface topological invariant

Statistical topological insulators:
Surface of a system can be a topological insulator,
but it cannot choose which kind of a TI.
Hence it cannot become an insulator.



Constructing a toy model

1. Make a layered system

2. Layers carry a staggered topological invariant.

3. Different staggering of couplings changes # of edge states
(of the surface).

4. If the ensemble is reflection symmetric, surface cannot be
localized.
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STIs and their bulk invariant (Z2 symmetry)

I Assume the surface is gapped and has definite topology.

I Consider a ‘domain wall’ between H and UHU−1:
it has to carry no protected edge states.

I Add Hs and UHsU−1 on the surface, such that the surface
will stay gapped.

I Remove disorder (without closing the bulk gap)
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STIs and their bulk invariant (continued)

I Number of states at the domain wall can be counted by
counting gap closings ∆Q in the path
Hclean + Hs → Hclean + UHsU−1.

I ∆Q 6= 0 if Hclean has odd # of Fermi surfaces at the surface
(odd mirror Chern number, one Majorana per unit cell, etc.)

Q ≡ (−1)∆Q = +1, trivial STI. Q ≡ (−1)∆Q = −1, nontrival STI.
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Really good things are good more than once

The construction can be repeated ad infinitum by adding extra
symmetries and dimensions.

Q = (−1)∆Q = (−1)∆(−1)∆Q



Applications I

Comparison an array of Kitaev chains (px -wave superconductor)
and a stack of Q = ±2 BDI wires.

For Kitaev chains G ∼ L−1/2; for BDI wires G ∼ e−cL
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Applications II

Triangular Majorana lattice (Laumann, Ludwig, Huse, Trebst & Kraus, Stern)

Always metallic if two statistical reflection symmetries are present:
dG/d log L > 0
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Summary II

Before:

Symmetry d =
AZ T P C 1 2 3 4 5 6 7 8

A 0 0 0 X X X X
AIII 0 0 1 X X X X
AI 1 0 0 X X X X

BDI 1 1 1 X X X X
D 0 1 0 X X X X

DIII −1 1 1 X X X X
AII −1 0 0 X X X X
CII −1 −1 1 X X X X
C 0 −1 0 X X X X
CI 1 −1 1 X X X X
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Summary II

1. There are many topological phases protected by a statistical
symmetry.

2. These have bulk-edge correspondence and a bulk invariant
protecting their surface from localization.

3. Statistical symmetry can be applied to prove the absence of
an insulating phase.



Conclusions

I Topology of a topological insulator manifests in one dimension
lower through its scattering matrix.

I Adding an ensemble symmetry allows to make a new
topological insulator in dimensions higher than the original
one.



Conclusions

Thank you all.
The end.


