Reducing and increasing dimensionality of topological insulators

Anton Akhmerov with Bernard van Heck, Cosma Fulga, Fabian Hassler, and Jonathan Edge PRB **85**, 165409 (2012), PRB **89**, 155424 (2014).

ESI, 1 September 2014

- 1. Intro: Topological insulators
- 2. Reducing dimension: Understanding a TI through scattering
- 3. Increasing dimension: TIs protected by a statistical symmetry

Topological insulators and superconductors

Topological insulator is

- A material with a band gap in the bulk (and a certain discrete symmetry)
- ► It has protected zero energy states at the edge
- ► Number of these states is a topological invariant Q[H(k)], an integer which does not change under small perturbations.
- ► Q is a macroscopic quantity, defined for any insulator with proper symmetry.

Classification

Three discrete symmetries (Altland&Zirnbauer): $\mathcal{T} : H(k) = U_{\mathcal{T}}H^*(-k)U_{\mathcal{T}}^{\dagger}, \mathcal{P} : H(k) = -U_{\mathcal{P}}H^*(-k)U_{\mathcal{P}}^{\dagger},$ $\mathcal{C} : H(k) = -U_{\mathcal{C}}H(k)U_{\mathcal{C}}^{\dagger},$

Classification

Three discrete symmetries (Altland&Zirnbauer): $\mathcal{T} : H(k) = U_{\mathcal{T}}H^*(-k)U_{\mathcal{T}}^{\dagger}, \mathcal{P} : H(k) = -U_{\mathcal{P}}H^*(-k)U_{\mathcal{P}}^{\dagger},$ $\mathcal{C} : H(k) = -U_{\mathcal{C}}H(k)U_{\mathcal{C}}^{\dagger},$ give 10 symmetry classes and

Classification

Three discrete symmetries (Altland&Zirnbauer): $\mathcal{T}: H(k) = U_{\mathcal{T}}H^*(-k)U_{\mathcal{T}}^{\dagger}, \mathcal{P}: H(k) = -U_{\mathcal{P}}H^*(-k)U_{\mathcal{P}}^{\dagger},$ $\mathcal{C}: H(k) = -U_{\mathcal{C}}H(k)U_{\mathcal{C}}^{\dagger},$ give 10 symmetry classes and

a lot of topological insulators (Kitaev, Schnyder et al.):

Symmetry				(d			
class	1	2	3	4	5	6	7	8
A		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}
AIII	\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	
AI				\mathbb{Z}		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	\mathbb{Z}				\mathbb{Z}		\mathbb{Z}_2	\mathbb{Z}_2
D	\mathbb{Z}_2	\mathbb{Z}				\mathbb{Z}		\mathbb{Z}_2
DIII	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				\mathbb{Z}	
All		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				\mathbb{Z}
CII	\mathbb{Z}		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}			
С		\mathbb{Z}		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		
CI			\mathbb{Z}		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	

- surface Hamiltonian avoids fermion doubling
- ► K-theory (Kitaev)
- ► top.-term in *σ*-model (Schnyder, Ryu, Ludwig)
- ► ... in field theory (Qi, Hughes, Zhang & Ryu, Moore, Ludwig)
- string theory (Ryu, Takayanagi)
- ► Green's functions (Gurarie, Essin)
- ► c*-algebra (Hastings, Loring)
- ▶ ...

Part I

Scattering matrix

$$\begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}_{\text{out}} = S \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}_{\text{in}}$$

- Describes scattering of free particles from the system at the Fermi level.
- ► Is also constrained by symmetry.
- Easy to tell an insulator from a conductor.

What about $\mathcal{Q}(S)$?

Simple case: Majorana fermions (1D superconductor)

Topological superconductor 🗶

Reflection matrix *r* has Current conservation:

$$\mathit{rr}^{\dagger} = 1 \Rightarrow |\det r| = 1$$

Particle-hole symmetry:

$$r = \begin{pmatrix} r_{ee} & r_{he} \\ r_{eh} & r_{hh} \end{pmatrix} = \begin{pmatrix} r_{ee} & r_{he} \\ r_{he}^* & r_{ee}^* \end{pmatrix} \Rightarrow \operatorname{Im} \det r = 0$$

Together:

$$\det r = \pm 1$$

Simple case: Majorana fermions (1D superconductor)

det $r = -1 \Rightarrow \det(r - 1) = 0 \Leftrightarrow$ bound state at zero energy. \Rightarrow Superconductor is in topologically nontrivial phase.

Scattering invariant

$$Q = \operatorname{sign} \operatorname{det} r$$

 $\mathcal{Q} = \operatorname{sign} \operatorname{det} r$

Phase transition is accompanied by a single fully transmitted mode.

Idea:

- 1. Find all disconnected groups of fully reflecting r's.
- 2. Find what distinguishes them.
- 3. Check that this quantity is indeed Q(r).

Idea:

- 1. Find all disconnected groups of fully reflecting r's.
- 2. Find what distinguishes them.
- 3. Check that this quantity is indeed Q(r).

It works!

SymmetryDDIIIAIIIBDICIIQ(r)sign det rsign Pf r $\nu(r)$ $\nu(r)$ $\nu(r)$

What about higher dimensions?

► Not insulating due to edge states?

 Not insulating due to edge states? Solution: roll it up.

- Not insulating due to edge states? Solution: roll it up.
- ► No difference from 1D?

- Not insulating due to edge states? Solution: roll it up.
- No difference from 1D? Solution: thread flux, quantized charge pumping appears.

- Not insulating due to edge states? Solution: roll it up.
- No difference from 1D? Solution: thread flux, quantized charge pumping appears.
- ► Charge pumping is a winding number of det $r(\Phi)$: $Q(r) = \int_0^{2\pi} d\Phi \frac{d}{d\Phi} \operatorname{Im} \log \det r(\phi)$

1. Start from *d*-dimensional $H_d(\mathbf{k}_d)$.

- 1. Start from *d*-dimensional $H_d(\mathbf{k}_d)$.
- 2. Close d-1 dimensions with twisted boundary conditions.

- 1. Start from *d*-dimensional $H_d(\mathbf{k}_d)$.
- 2. Close d-1 dimensions with twisted boundary conditions.
- 3. Calculate $r(\mathbf{k}_{d-1})$.

- 1. Start from *d*-dimensional $H_d(\mathbf{k}_d)$.
- 2. Close d-1 dimensions with twisted boundary conditions.
- 3. Calculate $r(\mathbf{k}_{d-1})$.
- 4. Classify topologically disconnected families of $r(\mathbf{k})$.

- 1. Start from *d*-dimensional $H_d(\mathbf{k}_d)$.
- 2. Close d 1 dimensions with twisted boundary conditions.
- 3. Calculate $r(\mathbf{k}_{d-1})$.
- 4. Classify topologically disconnected families of $r(\mathbf{k})$.
- Q: Isn't that a lot of work?

Idea: reduce problem to a known one.

Idea: reduce problem to a known one. With chiral symmetry C, $r(\mathbf{k}) = r^{\dagger}(\mathbf{k})$, so define

$$H_{d-1}(\mathbf{k}) = r(\mathbf{k})$$

Idea: reduce problem to a known one. With chiral symmetry C, $r(\mathbf{k}) = r^{\dagger}(\mathbf{k})$, so define

$$H_{d-1}(\mathbf{k}) = r(\mathbf{k})$$

Without chiral symmetry define

$$H_{d-1}(\mathbf{k}) = egin{pmatrix} 0 & r(\mathbf{k}) \ r^{\dagger}(\mathbf{k}) & 0 \end{pmatrix}$$

Idea: reduce problem to a known one. With chiral symmetry C, $r(\mathbf{k}) = r^{\dagger}(\mathbf{k})$, so define

$$H_{d-1}(\mathbf{k}) = r(\mathbf{k})$$

Without chiral symmetry define

$$H_{d-1}(\mathbf{k}) = egin{pmatrix} 0 & r(\mathbf{k}) \ r^{\dagger}(\mathbf{k}) & 0 \end{pmatrix}$$

This $H_{d-1}(\mathbf{k})$ has the same topology as $r(\mathbf{k})$, (Symmetry of H_{d-1} is shifted according to the Kitaev's periodic table.)

Algorithm to calculate Q(S)

- 1. Start from *d*-dimensional $H_d(\mathbf{k}_d)$.
- 2. Close d-1 dimensions with twisted boundary conditions.
- 3. Calculate $r(\mathbf{k}_{d-1})$ and $H_{d-1}(\mathbf{k})$.
- 4. Look up in the table $\mathcal{Q}(H_{d-1})$.

Symmetry					d			
class	1	2	3	4	5	6	7	8
А		Z		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}
AIII	Z×		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	
AI	- ĸ	× _	-	\mathbb{Z}	-	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	Z				\mathbb{Z}		\mathbb{Z}_2	\mathbb{Z}_2
D	\mathbb{Z}_2	\mathbb{Z}				\mathbb{Z}		\mathbb{Z}_2
DIII	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				\mathbb{Z}	
AII		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				\mathbb{Z}
CII	Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}			
\mathbf{C}		\mathbb{Z}		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		
CI	- ×	-	\mathbb{Z}	-	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	-

Summary I

- 1. Topology of S(k) coincides with that of H(k)
- 2. This provides a highly efficient method to calculate ${\cal Q}$ $_{systems \mbox{ of } 2000 \ \times \ 2000 \ vs \ 60 \ \mbox{ in } 2D$

```
and of 50 \times 50 \times 50 vs 12 \times 12 \times 12 in 3D
```

3. Any observable consequence of topology in transport must be connected to $\mathcal{Q}(S)$

Part II

Systems with conducting surface, but without bulk top. invariant:

 3D topological insulator with random magnetic field (broken time-reversal): surface at the critical point of QHE transition, finite conductivity σ ≈ 0.5

(Nomura, Ryu, Koshito, Mudry, Furusaki)

Systems with conducting surface, but without bulk top. invariant:

 3D topological insulator with random magnetic field (broken time-reversal): surface at the critical point of QHE transition, finite conductivity σ ≈ 0.5

(Nomura, Ryu, Koshito, Mudry, Furusaki)

 weak topological insulator two randomly coupled Dirac cones, always metallic

(Ringel, Kraus, Stern & Mong, Bardarson, Moore)

Statistical topological insulators: Surface of a system *can* be a topological insulator, but it cannot choose which kind of a TI. Hence it cannot become an insulator.

1. Make a layered system

- 1. Make a layered system
- 2. Layers carry a staggered topological invariant.

- 1. Make a layered system
- 2. Layers carry a staggered topological invariant.

- 1. Make a layered system
- 2. Layers carry a staggered topological invariant.

- 1. Make a layered system
- 2. Layers carry a staggered topological invariant.
- 3. Different staggering of couplings changes # of edge states (of the surface).

- 1. Make a layered system
- 2. Layers carry a staggered topological invariant.
- 3. Different staggering of couplings changes # of edge states (of the surface).
- 4. If the ensemble is reflection symmetric, surface cannot be localized.

► Assume the surface is gapped and has definite topology.

- ► Assume the surface is gapped and has definite topology.
- Consider a 'domain wall' between H and UHU⁻¹: it has to carry no protected edge states.

- ► Assume the surface is gapped and has definite topology.
- Consider a 'domain wall' between H and UHU⁻¹: it has to carry no protected edge states.
- ► Add H_s and UH_sU⁻¹ on the surface, such that the surface will stay gapped.

- ► Assume the surface is gapped and has definite topology.
- ➤ Consider a 'domain wall' between H and UHU⁻¹: it has to carry no protected edge states.
- Add H_s and UH_sU⁻¹ on the surface, such that the surface will stay gapped.
- Remove disorder (without closing the bulk gap)

STIs and their bulk invariant (continued)

Number of states at the domain wall can be counted by counting gap closings ΔQ in the path H_{clean} + H_s → H_{clean} + UH_sU⁻¹.

STIs and their bulk invariant (continued)

- Number of states at the domain wall can be counted by counting gap closings ΔQ in the path H_{clean} + H_s → H_{clean} + UH_sU⁻¹.
- ► ΔQ ≠ 0 if H_{clean} has odd # of Fermi surfaces at the surface (odd mirror Chern number, one Majorana per unit cell, etc.)

 $\mathcal{Q}\equiv (-1)^{\Delta Q}=+1$, trivial STI. $\mathcal{Q}\equiv (-1)^{\Delta Q}=-1$, nontrival STI.

The construction can be repeated *ad infinitum* by adding extra symmetries and dimensions.

$$\mathcal{Q} = (-1)^{\Delta \mathcal{Q}} = (-1)^{\Delta (-1)^{\Delta \mathcal{Q}}}$$

Applications I

Comparison an array of Kitaev chains (p_x -wave superconductor) and a stack of $Q = \pm 2$ BDI wires.

Applications I

Comparison an array of Kitaev chains (p_x -wave superconductor) and a stack of $Q = \pm 2$ BDI wires.

For Kitaev chains $G \sim L^{-1/2}$; for BDI wires $G \sim e^{-cL}$

Applications II

Triangular Majorana lattice (Laumann, Ludwig, Huse, Trebst & Kraus, Stern)

Applications II

Triangular Majorana lattice (Laumann, Ludwig, Huse, Trebst & Kraus, Stern)

Always metallic if two statistical reflection symmetries are present: $dG/d \log L > 0$

Summary II

Before:

Symmetry				d =							
AZ	\mathcal{T}	${\cal P}$	\mathcal{C}	1	2	3	4	5	6	7	8
A	0	0	0		\checkmark		\checkmark		\checkmark		\checkmark
AIII	0	0	1	\checkmark		\checkmark		\checkmark		\checkmark	
AI	1	0	0				\checkmark		\checkmark	\checkmark	\checkmark
BDI	1	1	1	\checkmark				\checkmark		\checkmark	\checkmark
D	0	1	0	\checkmark	\checkmark				\checkmark		\checkmark
DIII	-1	1	1	\checkmark	\checkmark	\checkmark				\checkmark	
All	-1	0	0		\checkmark	\checkmark	\checkmark				\checkmark
CII	-1	-1	1	\checkmark		\checkmark	\checkmark	\checkmark			
С	0	-1	0		\checkmark		\checkmark	\checkmark	\checkmark		
CI	1	-1	1			\checkmark		\checkmark	\checkmark	\checkmark	

Summary II

After:

Symmetry				d =							
AZ	${\mathcal T}$	${\cal P}$	\mathcal{C}	1	2	3	4	5	6	7	8
A	0	0	0		\checkmark						
AIII	0	0	1	\checkmark							
AI	1	0	0				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BDI	1	1	1	\checkmark							
D	0	1	0	\checkmark							
DIII	-1	1	1	\checkmark							
All	-1	0	0		\checkmark						
CII	-1	-1	1	\checkmark							
С	0	-1	0		\checkmark						
CI	1	-1	1			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

- 1. There are many topological phases protected by a statistical symmetry.
- 2. These have bulk-edge correspondence and a bulk invariant protecting their surface from localization.
- 3. Statistical symmetry can be applied to prove the absence of an insulating phase.

- Topology of a topological insulator manifests in one dimension lower through its scattering matrix.
- Adding an ensemble symmetry allows to make a new topological insulator in dimensions higher than the original one.

Conclusions

Thank you all. The end.