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Mathematics meet Physics
Complete reducibility of finite dimensional representations of
semi-simple Lie groups.

Weyl had a proof, but it used analysis, and Casimir quotes Pauli in his letter:

Casimir: ‘But it’s unsatisfactory that one proves a purely algebraic theorem 
using a transcendental detour’

Quoting Pauli: ‘da sind the Mathematiker weinend umhergegangen’

Casimir & B.L. v.d. Waerden give an algebraic proof, using a Casimir operator 



Outline
★ Low-energy description of 2-d topological phases: anyon models

★ Topological phase transitions in 2-d:
• condensation
• modular invariance

★ Analogue on the level of spin chains: Ising examples

★ Beyond condensation: parafermions
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Braiding of particles
a b

c

a b

c
= Ra,b

c Ra,b
c = ±e⇡i(hc�ha�hb)
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Condensation in anyon models
Bais, Slingerland, 2009 

Condensation amounts to identifying a boson with the vacuum 

This has several consequences:
boson

b ⇠ 1

Anyons which ‘differ by a boson’ are identified a⇥ b = c =) a ⇠ c

Anyons with non-trivial monodromy with the boson ‘draw strings in the 
condensate’ and are therefore ‘confined’

Some of the remaning particles might ‘split’: a ⇠ a1 + a2

In CFT language, one condenses a boson by adding it to the chiral algebra, 
and in the end, one has constructed a new modular invariant partition function
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A conformal field theory splits in two pieces, a chiral and anti-chiral part.

To each chiral sector (primary field), one associates a ‘character’, describing 
the number of states in this sector

The constants aj are non-negative integers, and τ is the modular parameter, 
describing the shape of the torus (next slide). 

The full partition function is obtained by combining the chiral halves, and 
summing over the primary fields:

Zcft =
X

j

|��j |2
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X
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⇤
�j

ni,j 2 Z�0

Presence of the vacuum:

Invariance under T:

Invariance under S: the matrix (ni,j) commutes with the modular S-matrix, 
that diagonalizes the fusion rules.  

ni,j 6= 0 ) h�i � h�j = 0 mod 1

n1,1 = 1

The so-called ‘diagonal invariant’ always exist: Zcft =
X

j

|��j |2

Finding all invariants is, in general, a hard task, but progress has been made 
(minimal models, su(2)k, su(3)k, parafermions...)

Cappelli et al., Gepner et al., ...
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The Ising2 cft has nine sectors:
�(1,1) ,�(1,�) ,�(1, ) ,�(�,1) ,�(�,�) ,�(�, ) ,�( ,1) ,�( ,�) ,�( , )

Apart from the diagonal invariant, one also finds a block diagonal invariant:

Z = |�(1,1) + �( , )|2 + |�(1, ) + �( ,1)|2 + 2|�(�,�)|2

One sees identification of sectors: (1,1) ⇠ ( , ) (1, ) ⇠ ( ,1)

Confined sectors: (1,�) , ( ,�) , (�,1) , (�, )

Split sector: (�,�)

The resulting invariant describes the u(1)4 cft, and the construction amounts 
to the orbifold construction.

�1,��,� 
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Define fermionic levels (Jordan-Wigner):
|�⇤ = |0⇤ |⇥⇤ = |1⇤
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Lieb, Schultz, Mattis,  (1961)
Pfeuty, (1970)

Symmetry: P =
Y

i

�z
i



HTFI =
L�1X

i=0

�z

i

+ �x

i

�x

i+1

=
L�1X

j=0

(2c†
j

c
j

� 1)+

L�2X

j=0

(c
j

� c†
j

)(c
j+1 + c†

j+1)+

� (�1)F (c
L�1 � c†

L�1)(c0 + c†0)

Transverse field Ising model

0

1
2

L� 1

i

i+ 1



HTFI =
L�1X

i=0

�z

i

+ �x

i

�x

i+1

=
L�1X

j=0

(2c†
j

c
j

� 1)+

L�2X

j=0

(c
j

� c†
j

)(c
j+1 + c†

j+1)+

� (�1)F (c
L�1 � c†

L�1)(c0 + c†0)

Transverse field Ising model

0

1
2

L� 1

i

i+ 1

The parity of the number of fermions is conserved!
The fermion boundary conditions depend on the symmetry sector:

For F even: anti-periodic boundary conditions
For F odd: periodic boundary conditions 
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                            integer for odd F

Solution: go to k-space, and perform a 
diagonalize a 2x2 matrix (or, in 
general 2 L x 2 L if couplings are 
disordered).

Conformal field theory: spectrum is described in the following way: 

✏i = E0L+
2⇡v

L

�
� c

12
+ hl + hr + nl + nr

�
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CFT sectors, Ising case
Relation between symmetry sector, boundary conditions for the fermions and 
cft sectors (primaries):

sym. sector P = (�1)

F
boundary condition fields

1 A 1,  
�1 P �
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Spectrum is the ‘product’ of two 
spectra of the TFI model with L/2

H
(2)
TFI =

L�1X

i=0

�z
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i+2

Both the number of fermions on the even and the odd sites is conserved 
modulo two

P
e

=
Y

i,even

�z

i

= (�1)Fe P
o

=
Y

i,odd

�z

i

= (�1)FoSymmetries:



CFT sectors
Relation between symmetry sector, boundary conditions for the fermions and 
cft sectors (primaries):

HTFI

H
(2)
TFI

(P
e

,P
o

) (BC
e

,BC
o

) fields
(1, 1) (A,A) (1,1), (1, ), ( ,1), ( , )
(1,�1) (A,P ) (1,�), ( ,�)
(�1, 1) (P,A) (�,1), (�, )
(�1,�1) (P, P ) (�,�)

sym. sector P boundary condition fields

1 A 1,  
�1 P �



We now change our model, by adding a ‘boundary term’, that changes the 
boundary condition of one chain, depending on the symmetry sector of the 
other.
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CFT sectors
Relation between symmetry sector, boundary conditions for the fermions and 
cft sectors (primaries): H
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The new model has u(1)4 critical behaviour, i.e., the other modular invariant 
in the Ising2 theory. This is the critical behaviour of the XY chain! 
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One uses a modified version of the transformation for open chains (used, f.i., 
by D. Fisher, but dating back to the 70’s:

So, by changing boundary conditions, one can change spin chains, such that 
one realizes CFT that is a different modular invariant of the original one! 
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Generalization to arbitrary so(n)1 critical chains is straightforward
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Going beyond condensation
To go beyond condensation transitions, we consider the 3-state Potts chain 
(compare: Fendley & Qi’s talks). 
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Conclusions
We can construct interesting spin-chains in analogy with 2d topological 
condensation transitions as well as modular invariance

Construction works for Jordan-Wigner solvable models, ‘BA’ solvable 
models, and non-integrable models.

Latter category (non discussed here): S=1 Blume-Capel model, giving a N=1 
susy cft, (A,E) exceptional modular invariant. 

Open questions: 

Can we do this without coupling several chains together (4-state Potts?)
How general is this method?
Can we learn something about the modular invariant partition functions?

Study of the phase diagrams of the new models is underway
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