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1. Noncommutative Geometry: an Apology

1.1. Why Do We Need Noncommutative Geometry. Why do we need such a complicate
mathematical theory such as Noncommutative Geometry to describe the properties of electrons
and phonons in a solid ? Because

No Translation Symmetry ⇒ no Bloch Theory

Here is a discussion of the various aperiodic problems Physicists have dealt with in the past,
which eventually lead to the need of a better mathematical approach.

1.1.1. Periodic Media. In Condensed Matter Physics, the basic tool to describe models and to
perform calculations is Bloch’s Theory [13]. The main ingredient is to use the invariance of
the Hamiltonian under the action of the translation group and to diagonalize simultaneously
the Hamiltonian and the unitary group representing the translations. Since the translation
group (either Rd or Zd, with d = 1, 2, 3 in practice) is both Abelian and locally compact, the
diagonalization of the unitaries representing it can be done through its group of characters
(Pontryagin dual) known as the Brillouin zone [16] in Condensed Matter theory and it will be
denoted here by B. If the focus of attention is put on the one-electron motion, then for each
quasi-momentum k ∈ B, there is a self-adjoint Hamiltonian H(k) = H(k)† which is mostly
a matrix, either finite dimensional, when the energy is restricted to a neighborhood of the
Fermi level (in the so called tight-binding representation), or infinite dimensional, whenever
the continuum version of the Schrödinger operator is considered in full. In the latter case
though, H(k) is unbounded, but its spectrum is discrete with finite multiplicity, so that it has
a compact resolvent. The eigenvalues of H(k) are usually labeled by some index {Eb(k) ; b ∈ B}
representing the band index, or, equivalently, the label of the internal degrees of freedom, such
as spin or orbital in practice. The maps

k ∈ B 7→ Eb(k) ∈ R ,
are called band functions and it can be shown that the energy spectrum is given by the union of
the possible values of Eb(k) as both k and b vary. In most cases these functions are extremely
smooth, actually they are analytic, but they may be isolated points in the Brillouin zone, at
which two or more of these functions coincide, in which case they may exhibit some singularity.
An important example is the so-called Dirac cone, like in graphene or like in the dynamic of edge
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states of 3D-topological insulators. These local singularities have been the focus of attention
from the part of Condensed Matter Physicists since they are usually related to unusual behavior
of the conduction electrons and such effects can be observed experimentally.

If the focus is put on the many-body problem, in order to take interactions into account, then
H(k) is an operator built out of some Fock space representation defined only for finite volume,
with a kinetic and an interacting terms. To define rigorously its infinite volume limit it has to be
understood as acting on a local observable algebra as a derivation, namely the infinitesimal gen-
erator of a one-parameter automorphism group [15] (see [14] for the fundamental mathematical
tools used in the study of the N -body problem).

1.1.2. Disorder and Aperiodicity. However, if the system investigated has disorder or some ape-
riodic structure encoded in the distribution of atomic sites, the Hamiltonian describing the
electronic motion is no longer translation invariant. In addition, if the origin of the coordinates
is shifted, namely if the Hamiltonian is translated, while the new Hamiltonian describes exactly
the same physics as the old one, it does not even commute with the old one either !!

The main idea behind the Noncommutative formalism is to use a C∗-algebra the one generated
by the Hamiltonian and its translated.

Why a C∗-algebra ?
Because

C∗-algebras are nothing but Fourier transform without symmetries !

By comparing the algebraic operations required in the Bloch theory, such as integration over the
Brillouin zone or differentiation w.r.t. the quasi-momentum, with what happens in the aperiodic
case, it will be realized that the same Calculus Rules can be defined in real space, leading to
a natural way to write the formulae found in textbooks. It comes though with a twist: the
analysis of the behavior of physical quantities as functions of the physical parameters (such as
temperature, magnetic or electric fields) are strikingly different in the aperiodic case from the
periodic one.

1.1.3. Electrons in a Uniform Magnetic Field. The earliest example of such a situation is proba-
bly the problem of understanding the electronic motion in a perfectly periodic crystal, submitted
to a uniform magnetic field. After the original works of Landau [31] and Peierls [34], it has been
realized that the solution of the electronic motion in such a situation was notoriously difficult.
This problem has been studied by every serious Solid State Physicists since then, in particular
because the occurrence of magnetic oscillations has been a mystery for decades, until Onsager [33]
realized that the magnetic field was playing, for the various components of the quasi-momentum,
a role similar to the Planck constant in Quantum Physics, namely a semiclassical parameter that
makes the theory amenable to effective calculations. In particular, one of the outcome of On-
sager’s seminal paper is the measurement of the shape and the size of the Fermi surface. It is,
nowadays, a standard experimental method to get this kind of informations on whatever sample
of some unknown material. It explains why several laboratories have been built throughout the
world to create very high magnetic fields, such as in Grenoble, Tallahasse (permanent field) or
Toulouse (oscillating field). The famous contribution of Lifshitz and Kosevitch [32] on this topic
is considered as the fundamental result by expert of magnetic oscillations. The Peierls problem
has led to a series of mathematical results since the early eighties, in particular on the so-called
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Harper model. These highly non-trivial results explain why this problem was so difficult since
Bloch Theory simply fails and additional techniques of study are required.

1.1.4. Semiconductor at Very Low Temperature. Another important class of material exhibit-
ing disorder are semiconductors at very low temperature. After the discovery of transistors
by Bardeen and Brattain in 1948, semiconductors became the cornerstone of the expansion of
electronic, phone, radio-transmission, television, and eventually computers. The gigantic devel-
opment of this industry and the enormity of the financing coming out of it has led to remarkable
achievements. For example, semiconductors produced today are nearly perfect crystals: the
industry is able to offer 2m long and 25cm wide rods of silicon with a density of defects less
than one in 1010 atoms !

The need to develop further the performances of semiconductors led the Solid State Physics
community, helped by funds coming from the industry, to study them in extreme conditions,
in particular at very low temperature. Typically if T < 10K, the probability for the electrons
in the impurity band to jump into the conduction band is vanishingly small. Since the Fermi
level is located in the impurity band, it follows that the conduction electrons only see the
impurity sites in the semi-conductor. Consequently, these electrons are evolving in a perfectly
random environment, since the distribution of impurities is nearly Poissonian, as a consequence
of the thermodynamical equilibrium. If the concentration of impurities is the standard one for
semiconductors used in electronic and computer devices, namely one implanted impurity for
every 109-atomic sites, the distance between impurities is too large so that the electrons are
confined in the impurity sites. This is the so-called Anderson’s strong localization phase. If
however the density of impurities is 10−6, like in solar cells, for instance, the impurity electrons
can jump by tunneling effect form impurity to impurity leading to a kind of weak metallic
behavior, in which the electron motion is an interference enhanced diffusion (Anderson’s weak
localization regime).

The immediate lesson drawn from these predictions and observations is that the electron behavior
in such materials is qualitatively different from electrons in a perfect crystals. So, not only the
failure of Bloch Theory creates a problem for theoreticians, but the physics of electrons in such
a situation is completely different!

1.1.5. Amorphous Materials. The most important amorphous material for the purpose of the
electronic industry and technology is probably the silicon. Without the treatment used in the
industry to make it such a perfect crystal, the silicon is spontaneously obtained in an amorphous
phase. So many study have been made of the amorphous phase of silicon in order to figure out
whether it could be used efficiently.

On the other hand, during the last two decades, some substantial progress have lead material
scientists to find a procedure to cast some alloy in a glassy phase [21, 22]. The most preferred
class of such materials is called vitalloy and is made mostly of copper and zirconium with a
variety of possible other atomic species. These materials are becoming the focus of attention of
a large crowd of people in material science, because their mechanical properties are so amazing !
They are used nowadays in various devices for surgery, sport or weapon parts. Their main
characteristic structure, at the atomic scale, is to exhibit an icosahedral symmetry in the atomic
arrangement at short distance, and a liquid like distribution of atoms at large distance. The
liquid-solid transition is mostly dynamical, rather than being an equilibrium discontinuity, in
that time scales for viscosity, suddenly become very large. This problem has become recently
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amenable to a rigorous mathematical treatment and the author of these notes is actively involved
in this effort, hoping to publish a first paper soon.

1.1.6. Quasicrystals. In 1984, Schechtman et al. published the famous paper announcing the
first observation of a quasicrystalline order [43]. Since then a long list of metallic alloys have been
found to share the same properties. Most of them, like Al72.5Cu25Fe12.5 or AlPdMn, are ternary
alloys. However, more recently some binary alloys were found to be nearly perfect quasicrystal
with an icosahedral symmetry like Y bCd5.7 [45]. The main property of these materials is to
exhibit a pointlike diffraction spectrum with an icosahedral symmetry that is incompatible with
translation invariance. Since the first discovery, these materials have attracted a lot of attention
in the Physics community. First because the structure came as a confirmation of a model
proposed by Penrose to built a five-fold symmetry tiling of the plane, hence incompatible with
translation invariance. Then, because the mechanical and electrical properties of these material
are very unusual. For instance, AlCuFe is an alloy made of the three most conducting metals.
In its icosahedral phase, this alloy becomes an insulator !! None of the standard
theory could account for the variety of strange properties found in those materials. At last,
because of their exceptional hardness, applied physicists working for aluminium companies were
expecting to use those quasicrystals to produce coating, like in motor of an automobile, with a
light material. So far this latter expectation has lead to disappointments. But for the purpose
of this lecture, these materials are striking media requiring a more serious approach from the
mathematical standpoint, in order to overcome the difficulty of not having the Bloch theory to
help.

1.1.7. A Summary of Achievements. The author of these notes initiated a program of research in
the Fall of 1979, centered around using the theory developed at that time by Alain Connes, which
became later known as Noncommutative Geometry [18]. Step by step, a coherent formalism was
developed to describe the properties of the electronic motion in aperiodic materials. Amazingly,
the frame offered by Alain Connes allowed to include the description of topological invariants.
In particular three important results were found

Gap Labeling Theorem: The so-called Gap Labeling Theorem [5, 6, 10, 23, 11, 12] that
explains how K-theory is entering into the game for any material in any dimension. It
might be considered as a substitute for diffraction spectra whenever it is blurred by the
absence of translation invariance.

IQHE: A first-principle derivation of a completely rigorous theory describing the Integer
Quantum Hall Effect [7], including the existence and the quantization of the plateaux
for the transverse conductivity, due to Anderson’s strong localization regime.

Bulk-Edge Correspondence: It has been realized that the bulk-edge correspondence
could be expressed through the crossed-product analog of the Bott maps, namely the
Pimsner-Voiculescu exact sequence [39, 26, 27, 28].

Besides, several other results contributed for a better understanding of the electronic properties
of aperiodic solid, such as

Kubo’s Formula: A noncommutative version of Kubo’s formula in the so-called Relax-
ation Time Approximation (RTA) [38, 8]. A consequence was the prediction of an
anomalous Drude formula relating the conductivity to the relaxation time, explaining
the difference between various types of conductivity. In particular it gives a solution
to the strange scaling laws observed in the conductivity of quasicrystal [8]. More re-
cently, a description of the variable range hopping transport in semiconductors at very
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low temperature, a regime in which the RTA fails, was provided in [4]. It involves a
many-body formalism to take into account the Fermi statistics of electrons and their
effective interaction through phonon emission.

Structure of Aperiodic Solids: Starting with the work of Kellendonk [24, 25], a relation
has been established between the previous formulation of the theory of aperiodic media
and the theory of tilings (in any dimension). The seminal paper by Anderson and Putnam
[3] has allowed to represent an aperiodic ordered system with Finite Local Complexity
in terms of a family of CW -complexes, leading to an explicit representation of its Hull,
a compact space on which the translation group acts by homeomorphisms, which plays
the role of the set of configurations of disorder. This was supplemented by an important
work of Lagarias [29, 30] who introduced the concept of Delone set [19] to describe the
distribution of the atomic nuclei positions in a solid.

Numerics: Emil Prodan is responsible for having developed an accurate and stable nu-
merical algorithm, based on the C∗-algebra-approach, allowing to compute the electric
conductivity in the presence of disorder and a uniform magnetic field [36, 47, 42].

Topological Insulators: The calculation of the magneto-electric response in presence of
disorder [40]. A proof of the stability of the topological part of the magneto-electric
response in 3D topological insulators [37]. Persistence of spin-edge current in presence
of disorder [41].

1.2. An Example of Aperiodic System. Let us consider a lattice system in dimension d
representing the electronic motion in a disordered medium. In the one-particle space a typical
tight-binding model can be described by

(1) Hψα(x) =
∑

x′;〈x′ x〉

t(x′)βα

(
ψβ(x′)− ψβ(x)

)
+ V (x)βαψβ(x) , ψα ∈ `2(Zd) , α, β ∈ B .

Here, 〈x′ x〉 means that x′ is nearest neighbor to x. Moreover, the indices α, β ∈ B is a labeling
of possible internal degrees of freedom on site, such as spin or orbitals. In such a model either the
hopping terms coefficients t(x) or the potential one V (x) or both will be identically distributed
independent random variables (i.i.d). However, for the purpose of this argument, the randomness
is not essential. It is essential though that both t(x) and V (x) be bounded. Hence the family
(t(x), V (x))x∈Zd belongs to a space Ω which has the property of being a topological space which
is compact. Compactness is a profound mathematical property leading to many outstanding
results. However, this concept might not be well understood by non mathematicians. Roughly
speaking:

A space is compact if it can be approximate to any accuracy by a finite subset.

Mathematically this can be expressed as follows: from any cover of the space by open sets, one
can extract a finite sub-cover.

As a consequence of the previous description of our model, the HamiltonianH depends effectively
on a choice ω of a point in Ω. For this reason H will rather be written as Hω to make this
dependence more explicit. Hence instead of one Hamiltonian, the system is represented by a
family H = (Hω)ω∈Ω of Hamiltonians, all of which are equally representing the same physical
system. This family is submitted to two important conditions
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Covariance: If U(a) denotes the Unitary operator translating the wave function by a ∈ Zd,
then

U(a)HωU(a)† = Htaω ,

where ta represents the configuration of the disorder after being translated by a. In par-
ticular Zd acts on Ω. In order to preserve the topology ta : Ω→ Ω must be continuous.
Moreover, translating by b first then by a should be equivalent to translating by a + b
so that ta ◦ tb = ta+b. In particular t0 should not change the configuration, namely
t0 = id while t−a ◦ ta = t0 = id, which shows that ta is invertible, with inverse map
t−a and therefore this inverse is continuous. Namely Zd acts by homeomorphisms.

Strong Continuity: The second property is more mathematical it says that the map
ω ∈ Ω 7→ Hω must be continuous in some sense. It means that the set of operators must
be endowed with a topology that will allow to make this statement precise. There are
two topologies that could be considered. The first is the norm topology. The norm of an
operator is defined by

‖H‖ = sup{‖Hψ‖ ; ψ ∈ H , ||ψ‖ ≤ 1} ,
where H denotes the Hilbert space of quantum states. However an intensive study
may show that such a continuity occurs only if the Hamiltonian H describes an almost
periodic system [5] ! The other topology is called the strong topology. It is defined by
demanding that, for any state ψ in the Hilbert space the following map

ω ∈ Ω 7→ Hωψ ∈ H ,
be continuous. Since any state ψ ∈ H is localized in some sense, this strong continuity
expresses the fact that the Hamiltonian is only locally continuous.

Before going forward, it is important to notice that any aperiodic medium admits a space Ω
of the previous type, namely compact, with an action of the translation group through homeo-
morphisms. Even if the system is not random, Ω can be constructed by considering all possible
translations of the system, looking at them locally through a fixed window (of any possible
size), and adding all possible limits as seen in all possible such windows. The result is called the
Hull. The Hull for aperiodic solids has been introduced in [5], but over time, more and more
details came out in order to describe the Hull and even to compute it. For instance the Hull
of an icosahedral quasicrystal looks like a torus in dimension 6, with a topology defined by an
irrational 3-space and with a Cantor like topology transversally to this 3-space [9].

1.3. Building the C∗-algebra. The set A of families A = (Aω)ω∈Ω of operator satisfying to
the properties of covariance and strong continuity, makes up a C∗-algebra ! For indeed the
following algebraic operations can be defined

Sum: If A and B are two such families then A + B is defined as the family A + B =
(Aω +Bω)ω∈Ω.

Scalar Multiplication: If λ ∈ C is a scalar then λA = (λAω)ω∈Ω.
Product: If A,B are two such families, then AB = (AωBω)ω∈Ω defines a product.

Adjoint: Similarly A† = (A†ω)ω∈Ω.

As can be seen these algebraic operation are exactly what it takes for A to be a ∗-algebra. Now,
there is a need of a norm, in order to be able to check whether an infinite series is convergent
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or not. For instance, the usual perturbation theory for, say the Green’s functions or for the
resolvent operator, requires indeed such an infinite series. The most obvious way to define such
a norm consists in choosing

‖A‖ = sup
ω∈Ω
‖Aω‖ .

This leads to the question addressed by the next Section.

2. What is a C∗-algebra ?

A mathematician would define dryly a C∗-algebra in those terms

Definition 1. (i) A ∗-algebra A is a complex vector space equipped with a product (a, b) ∈ A×
A 7→ ab ∈ A which is associative and distributive w.r.t. the addition and scalar multiplication.
It is also equipped with an adjoint map a ∈ A 7→ a† ∈ A which is antilinear and satisfies
(ab)† = b†a†.
(ii) A Banach ∗-algebra is a ∗-algebra equipped with a norm a ∈ A 7→ ‖a‖ ∈ [0,∞) satisfying
‖ab‖ ≤ ‖a‖‖b‖, ‖a†‖ = ‖a‖ and for which it is complete.
(iii) A C∗-algebra is a Banach ∗-algebra for which ‖a†a‖ = ‖a‖2.

A more intuitive answer to the question is more involved. Defining this concept has been a
challenge which took almost thirty years to be established. However a look at History might help
understanding why mathematicians ended up with this concept. It has been already advocated
earlier in this Lecture that C∗-algebras are Fourier transform without symmetry. We intend to
develop this idea more fully right now.

2.1. Fourier Transform. The story starts in 1807, with a seminal paper written by Joseph
Fourier [20], then the Préfet of the “Département de l’Isère”, the representative of the Napoleonic
state in Grenoble. He was a very busy man, an official in charge of distributing the money
provided by the nation taxes to the representatives of local governments. As such, he had
administrative duties, occupying most of his time during the day, and he had also mundane
duties, offering frequent dinners in the evening, during which deals were made between various
local power representatives. Nevertheless, Fourier managed to have several seminal contributions
to science, helping Champollion, a fellow living in Grenoble, in translating the “Rosetta Stone”
message, a key to translate the ancient hieroglyphs Egyptian writing. In his 1807 paper, Fourier
investigates primarily the propagation of heat in solids. He defines the concept of heat capacity
(unknown before) and derived the Heat Equation. It is worth mentioning in passing that the
heat equation is a cornerstone in several area today, such as the theory of Brownian motion
in modern Probability, and also its importance in analysis and the study of partial differential
equations (PDE). For example, one proof of the Atiyah-Singer Index Theorem was using the heat
equation as well. Then Fourier managed to solve this equation in some elementary situation,
such as an homogeneous rod with square section. In order to solve the heat equation, Fourier
claims that

Fourier (1807): all ”functions” can be expanded in trigonometric series

In other words, using a modern version of this claim, Fourier assumes that if f : [0, 1]→ C is a
complex valued function, then it can be expanded as
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f(x) =
+∞∑

n=−∞
f̂n e

2ıπnx ,

and he gives a formula to compute the Fourier coefficients

f̂n =

∫ 1

0
f(x) e−2ıπnx dx .

Of course this presentation is anachronistic. For indeed Fourier used sine and cosine instead.
In addition his parameter x was measuring the coordinates of points in the rod so it was not
rescaled. But my modern statement is equivalent to his. The only question he did not address,
in the true spirit of the Euler 18th-century point of view on computation, was the problem of
convergence of these series. And there are good reasons to explain why he did not consider this
point. Because he wanted to get a quick result: why bother, since the result can be summed up
easily ? But also because the convergence problem is so complex that it led to the development
of an entire new discipline in modern mathematics, called Analysis.

This first step led to many more steps afterwards. It is worth mentioning some of them. The
Bessel inequality was a first step towards understanding the convergence problem. Much later
came the Parseval identity stating the

∑
n∈Z
|f̂ |2 =

∫ 1

0
|f(x)|2 dx .

In the second half of the 19th century, mathematicians discovered many examples of other ways
to expand a function. The discovery of the Legendre, Laguerre, Hermite, Jacobi polynomials,
for instance, led to strong analogies with the Fourier transform, especially because the Parseval
identity seemed to be universal. This led to the definition of the concept of Hilbert space, a
rigorous algebraic framework giving a geometrical meaning to these various expansions.

2.2. Pontryagin Duality and Brillouin Zone. The story could have stopped there. But in
1934, Pontryagin published a seminal paper that gave the story a completely different course.
Namely Pontryagin looked at Fourier transform from the point of view of symmetries. In
Fourier’s analysis there is an extra properties that had been overlooked, in particular in the
theory of orthogonal polynomials: translation invariance. Coming back to the previous ex-
ample, the functions investigated by Fourier have the property of being periodic. That is to
say

f(x+ 1) = f(x) , namely x ∼ x+ 1 ⇔ x ∈ R/Z .
In particular f is actually a function over the torus T = R/Z. The space R/Z is the set of
equivalence classes of real number under the identification of x and x + n whenever n is an
integer. Both R and Z are groups, with the law of addition. In addition Z is an invariant
subgroup of R. Consequently, their quotient T = R/Z is also a group. Moreover these three
groups are Abelian and topological. Thanks to the De Moivre-Euler formula, the trigonometric
map

x ∈ T 7→ e2ıπx = cos 2πx+ ı sin 2πx ∈ S1 = U(1)

is a group isomorphism between the torus T (which measures angles) and the unit circle, denoted
by S1 or by U(1) depending upon which mathematical sub-culture is preferred. Pontryagin
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realized that the unit circle play the role of a universal reference in the theory of Abelian
groups, analogous to the role of R or of C in the theory of vector spaces. Then he realized that
if G is an Abelian topological group, it is possible to define the concept of character, namely
maps χ : G→ U(1), that preserve group operations. Hence

χ(0) = 1 , χ(g + g′) = χ(g)χ(g′) , g, g′ ∈ G .
The set G∗ of characters is itself a topological Abelian group. The group law is just the pointwise
multiplication (χχ′)(g) = χ(g)χ′(g). The neutral element is the constant character χ(g) = 1 for
all g’s. The topology is called weak∗ is the pointwise convergence, namely a sequence (χn)n∈N
of characters converges to χ if and only if limn→∞ χn(g) = χ(g) for all g ∈ G. Then the limit is
automatically a character. Two important results are

(1) if G is locally compact, then so is G∗,
(2) if G is locally compact, the bi-dual (G∗)∗ coincides with G itself

In the case of T any character is given by an integer n ∈ Z by χn : x 7→ e2ıπnx. Hence Z = (T)∗.
This gives the Fourier theory a group theory basis. Analogously any character of Rd is defined
by a vector p ∈ Rd as χp : x ∈ Rd 7→ eıpx ∈ U(1). Hence Rd is isomorphic to its dual. In Physics,

a character of Rd can be identified with the representation of the translation group and therefore
p represents the generator of these translations. Consequently, thanks to Noether’s Theorem, p
can be identified with the momentum.

In Solid State Physics, the symmetry problem comes as follows. Let L denotes the set of the
positions in Rd of the atoms of a crystal. Thanks to the crystalline property, there is a translation
subgroup G ⊂ Rd which has the property of leaving L invariant. Then the quotient set L/G
is called the Bravais zone, and L is a Bravais lattice whenever the Bravais zone is reduce to
one point. To make sure that translations in G are in sufficient number, it is required that the
quotient Rd/G (which is a group) be compact: then G is said to be co-compact.
The dual group G∗ is nothing but the quasi-momentun space, called the Brillouin zone. Actually,
since G ⊂ Rd, any character on Rd, namely any momentum, restricts to G as a character of
G. Now two momenta p and p′ admits the same restriction to G if and only if eı(p−p

′)·x = 1
for all x ∈ G. That means p − p′ belong to the reciprocal lattice which, in group theory is
called the orthogonal to G and is denoted by G⊥. Then G∗ = Rd/G⊥. This explains the name
quasi-momentum given to a point in the Brillouin zone B = G∗. The original Brillouin zones, as
defined by Brillouin himself, are only the Voronoi cells of the dual lattice. But using periodic
boundary condition permits to identify them with the dual group G∗.

Like in Fourier’s theory, Pontryagin generalized the concept of Fourier transform as follows:
let f : G → C be a continuous function, vanishing at infinity fast enough (say with compact
support), then its Fourier transform is defined by

f̂(χ) =

∫
G
f(g) χ(g) dg , χ ∈ G∗ ,

where dg denotes the Haar measure on G, namely the unique positive measure (modulo nor-
malization) that is invariant by left translations on G. Then he manages to check that among
the Haar measures on G∗ there is one dχ such that the inverse Fourier formula and the Parseval
identity hold, namely

f(g) =

∫
G∗
f̂(χ) χ(g) dχ ,

∫
G
|f(g)|2 dg =

∫
G∗
|f̂(χ)|2 dχ .
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One important outcome of this theory is the Fourier transform on finite groups, with a seminal
application to computer science, through the algorithm called Fast Fourier Transform (FFT)
using the group Z/2nZ.

2.3. The work of Gelfand. In a series of papers published between 1940 and 1950, Gelfand,
with the help of several colleagues, like Neumark, Răıkov, Šilov, Năımark, investigated system-
atically the various classes of normed rings and their embedding into the space of operators on a
Hilbert space. Gelfand, a former PhD student of Kolmogorov, was part of the Moscow commu-
nity of Mathematics and was well aware of the work of Pontryagin. Ironically, Pontryagin was
an influential antisemite member of the Academy of Science, while Gelfand was of Jewish and
Ukrainian origin. Nevertheless, Gelfand found his way through the difficulties of the Stalinist
era and became one of the most prolific and profound mathematicians of the 20th century. He
died at the eage of 96 while he was still an active professor at the University of Rutgers in
New-Jersey.
One idea that came immediately was to extend the concept of character, defined in group theory,
to the case of algebras. In such a case, the unit circle U(1) is naturally replaced by the simplest
possible algebra containing it, namely the field C of complex numbers. Hence, if A is a complex
algebra, a character will be an algebraic homomorphism χ : A → C.

As its stand, such a study is too broad and some restriction are required in order to go further.
In view of the possibility for A to be infinite dimensional, the first restriction is to endow it with
a normed, namely a map a ∈ A 7→ ‖a‖ ∈ [0,∞) such that

(i) ‖a‖ > 0 for a 6= 0,
(ii) ‖λa‖ = |λ|‖a‖ if λ ∈ C is a scalar,
(iii) ‖a+ b‖ ≤ ‖a‖+ ‖b‖ (triangle inequality), for a, b ∈ A,
(iv) ‖ab‖ ≤ ‖a‖ ‖b‖ for a, b ∈ A,
(v) endowed with this norm, A is complete.

Then A is called a Banach algebra.

Motivated by the study of compact groups and their unitary representations, Gelfand added to
these axioms, following the ideas developed earlier by von Neumann, the existence of an adjoint,
and made A into a ∗-algebra. Namely any a ∈ A admits an adjoint a† satisfying the following
property: if a, b are elements of A and λ is a scalar,

(a) (a+ b)† = a† + b†,
(b) (λa)† = λa†,
(c) (ab)† = b†a†,
(d) the norm satisfies ‖a†‖ = ‖a‖.

In such a situation, whenever A is Abelian, namely if ab = ba for all a, b ∈ A, the set of
continuous characters X(A) such that χ(a†) = χ(a), can be endowed with a weak∗ topology
like in the case of Abelian group studied by Pontryagin. Then using general results on Banach
space, it follows immediately that X(A) is locally compact. Moreover, if a ∈ A, the map
Ga : χ ∈ X(A) 7→ χ(a) ∈ C is, by definition, a continuous function on X(A). In addition, it not
too hard to show that if X(A) is not compact, this function vanishes at infinity. The set of such
functions is usually denoted by C0(X(A)). The Gelfand Theorem asserts that if, in addition the
norm of A satisfies

(2) ‖a†a‖ = ‖a‖2 ,
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then the map a ∈ A 7→ Ga ∈ C0(X(A)), called the Gelfand Transform, is a ∗-algebraic isomor-
phism provided the norm on C0(X(A)) be the sup-norm, namely

‖f‖ = sup
X(A)

|f(χ)| .

To summarize

Theorem 1 (Gelfand Theorem). Any Abelian C∗-algebra is isomorphic to the space C0(X) of
continuous function on a locally compact space X, vanishing at infinity. The space X is unique
modulo homeomorphisms and is called the spectrum of the algebra. If, in addition, the algebra
admits a unit, then X is compact.

In other word,

Abelian C∗-algebras are locally compact spaces

Gelfand’s transform extends Fourier’s Transform

No symmetry Group but an Algebra

2.4. Non-Abelian C∗-algebras. It remains to understand the case of non-Abelian algebras.
From 1943 on, the axiom given in eq. (2) is postulated in Gelfand’s work. However there was
some type of insecurity expressed in these early papers, since an additional condition with also
required, namely (1 + a†a) should be invertible. It took a long time to get rid of this extra
condition. For indeed, the set of elements of a C∗-algebra of the form a = b†b, is a convex cone
which is closed under the norm topology. This means that a norm limit of such elements is still
of this form, a non trivial fact. As a consequence, (1 + a†a) is automatically invertible. An
element of this cone is called positive and it is denoted by a ≥ 0.

What is so special about axiom (2) ? The answer was given to me by Alain Connes in the early
eighties:

The norm on a C∗-algebra has purely algebraic origin

Why ? There are two ways to see that. The first is to appeal to the concept of spectral radius.
Namely, assuming that A has a unit, the spectrum of an element a ∈ A is the set of complex
numbers z ∈ C such that (z − a) does not admit an inverse in A. Such a set is automatically
contained in the disk centered at the origin with radius ‖a‖. However, in general, there might
be a smaller such disk containing the spectrum. The spectral radius is the minimum radius of
such disks. Then it is possible to check that whenever a ≥ 0, the spectrum is contained in the
interval [0, ‖a‖] and ‖a‖ is exactly the spectral radius. Since the spectrum is about invertibility,
the spectral radius of an element is only an algebraic property, there is no topology in such a
concept. Hence for any a ∈ A a†a is positive, by definition so that its norm coincide with its
spectral radius, namely

The C∗-norm ‖a‖ is the square root of the spectral radius of a†a.

There is another way to understand Connes claim. Namely if A,B are two C∗-algebras, and
if φ : A → B is a ∗-homomorphism (which means that φ respect all the algebraic operations
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including the adjoint) then automatically ‖φ(a)‖ ≤ ‖a‖. In particular all algebraic homomor-
phism, because they respect the adjoint, are continuous. In addition, if φ is one-to-one, then
‖φ(a)‖ = ‖a‖, which means that it also preserves the norm ! This shows that transporting the
algebraic structure also transports the norm.

An important example of C∗-algebras is the set of all bounded operators in a Hilbert space. For
indeed if H is a Hilbert space and if T : H → H is linear and continuous, then ‖T‖ is defined as

‖T‖ = sup{‖Tψ‖ ; ψ ∈ H , ‖ψ‖ = 1}
It is a standard exercise to show that ‖T †T‖ = ‖T‖2 in this case. The set of such operators is
usually denoted by B(H). As a consequence the best way to define a C∗-norm on an algebra
is to represent it as a set of bounded operators on some Hilbert space. As a converse, the
Gelfand-Năımark-Segal (GNS) construction, shows that any C∗-algebra can be seen as a closed
sub-algebra of B(H) for some Hilbert space H.

2.5. Non-Abelian C∗-algebras and Fourier Analysis. Why should one consider non Abe-
lian C∗-algebras as a substitute for Fourier Theory when symmetries are absent ? Here are two
arguments in favor of seeing a C∗-algebra as the generalization of Fourier’s transform.

First, in view of the apology given previously for C∗-algebras, it is only natural to think of a
(non-commutative) C∗-algebra as the analog of the space of continuous function on some locally
compact space, vanishing at infinity. Such a locally compact space does not necessarily exists
as a set. But the usual operations made on topological space can be translated into algebraic
properties of continuous functions, that may be extended to non-Abelian C∗-algebras.

Another argument concerns the case of the C∗-algebra associated with a locally compact group.
If G is a locally compact group, then it supports a left-invariant (resp. a right-invariant) positive
Borel measure λ(dx) (resp. ρ(dx)), which is unique modulo a normalization factor. This measure
is called the Haar measure, where the normalization and the invariant type are kept implicit.
It is not true, in general, that the left-invariant and the right invariant Haar measure coincide.
However, it is known that they differ by a multiplicative factor ∆, called the modular function

ρ(dx) = ∆(x)λ(dx) , ∆(x) > 0 , ∆(xy) = ∆(x)∆(y) , x, y ∈ G .
In addition, the change of variable x ∈ G 7→ x−1 ∈ G leads to the exchange of the left and right
Haar measures. A group is called unimodular whenever its modular function is identically equal
to 1. Examples are Abelian groups, or compact groups. However the group generated by the
2× 2 matrices of the form

x =

[
a b
0 1

]
, a, b ∈ R , a 6= 0 ,

is not unimodular: its left-invariant Haar measure is dadb/a2 while its right-invariant one is
dadb/|a| as can be checked immediately.

In any case, it becomes possible to define the Hilbert space L2(G), namely the space of functions
defined on G, with complex values, which are square integrable w.r.t. the left Haar measure
(the same construction can be made for the right-invariant Haar measure). The inner product
is defined by

〈ψ|φ〉 =

∫
G
ψ(x)φ(x)λ(dx) .
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In addition, the space Cc(G) of complex valued continuous functions on G with compact support
becomes a ∗-algebra if endowed with the left convolution product and the adjoint defined by

fg(x) =

∫
G
f(y)g(y−1x) dy , f †(x) = ∆(x) f(x−1) .

This algebra is not Abelian whenever G is not Abelian. In addition this algebra is represented
in L2(G) by bounded operator as follows

πL(f)ψ(x) =

∫
G
f(y)ψ(y−1x)λ(dx) .

πL is called the left-regular representation. An elementary exercise shows that indeed πL pre-
serves the algebraic operations. Then a C∗-norm can be defined by setting

f ∈ Cc(G) ⇒ ‖f‖red = ‖πL(f)‖ .
The completion of Cc(G) w.r.t. this norm is called the reduced group-C∗-algebra of G and is
denoted by C∗red(G). This name comes from the fact that there might be other C∗-norms and
that the reduced norm is the smallest among them. This phenomenon happens whenever the
group is not amenable, which is the case for free groups or hyperbolic groups.

If the group G is abelian then C∗(G) is isomorphic to the space C0(G∗) of continuous functions
vanishing at infinity on the Pontryagin dual of G. Namely the spectrum of C∗(G) is G∗.

In addition, whenever G is compact, such as the finite dimensional orthogonal, unitary or sym-
plectic groups, then Cc(G) coincides with the space C(G) of all complex valued continuous func-
tion on G and there is a unique C∗-norm on C(G). In addition, the Peter-Weyl Theorem permits
to prove that

(i) any irreducible representation of C∗(G) is finite dimensional and is given by the corre-
sponding irreducible representation of G itself,

(ii) the left-regular representation can be decomposed into a direct sum of all irreducible rep-
resentations and each such representation occurs with a multiplicity equal to its dimension,

(iii) each function in C∗(G) can be decomposed into a Fourier series in which the Fourier
coefficients are matrices in one of the irreducible representation space,

(iv) an inverse Fourier formula and a Parseval identity can be established as well.

This gives the connection with the Fourier transform: C∗(G) contains exactly all the ingredients
necessary to define and investigate the Fourier transform of functions on groups. Hence passing
from the a group-C∗-algebra to a general C∗-algebra allows to thing of a noncommutative C∗-
algebra as the “Fourier transform” of the virtual noncommutative locally compact space it
represents.

2.6. Noncommutative Geometry: Philosophy. In view of the apology given previously for
C∗-algebras, it is only natural to think of a (non-commutative) C∗-algebra as the analog of
the space of continuous function, vanishing at infinity, on some locally compact space. Such a
locally compact space does not necessarily exists as a set. But the philosophy of Noncommutative
Geometry is to work on a C∗-algebra as if it were coming from some locally compact space.

As far as the algebra is concerned, only the topology of the space is encoded. However it is
possible to encode both parts of Calculus: (i) Integration (ii) Differential Calculus

Measurability: A state on a C∗-algebra is a linear bounded map φ : A → C such that
Positivity: φ(a†a) ≥ 0 for all a ∈ A,
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Normalisation: ‖φ‖ = sup{|φ(a)| ; ‖a‖ ≤ 1} = 1
A state is the noncommutative analog of a probability distribution. A weight is the

unbounded version of a state and correspond to positive unbounded measures. Give a
state or a weight, the GNS-construction produces a Hilbert space which is the analog
of the L2-space defined by the state. The C∗-algebra acts on this Hilbert space through
the so-called GNS-representation. The weak-closure of the C∗-algebra in this space is a
von Neumann algebra, namely the noncommutative analog of the L∞-space. It is also
possible to generalize the concept of Lp-space.

Differential Structure: While noncommutative measurability is well understood today,
the situation with differentiability is still under scrutiny. A classical manifold is usually
defined through local coordinates charts and changes of coordinates. This has no analog
so far in noncommutative geometry. Actually localizing is impossible in general, because
of the mathematical analog of ”tunneling” which prevent quantum phase space to be
splits into pieces. In addition smooth manifolds have a “tangent space”, again a concept
that has no equivalent in non commutative geometry in general. However, vectors fields
can be seen as acting on functions and this can be defined. To summarize
∗-Derivations: The analog of vector fields are ∗-derivations. A differential structure

is defined by a family of ∗-derivations.
Vector Bundles: A noncommutative vector bundle can be defined either through

projection or through a projective module. The latter coincides with the analog of
sections of a bundle. The concept of connection can also be defined noncommuta-
tively. Complex Hermitian vector bundles can be described through the concept of
Hilbert-C∗-module.

Riemannian Geometry: The main tool to study noncommutative Riemannian Ge-
ometry is the concept of Spectral Triple. However the last decade of study have
shown that it describes rather metric spaces instead, including ultrametric Can-
tors sets, fractals. Nevertheless, this concept is helping proposing various ways to
built the analog of Laplace-Beltrami operators, a subject of extreme importance
in Metric Geometry today. The main difficulty with this formalism is that there
is no obvious candidate for the concept of curvature. Metric Geometry has found
such a concept for the class of Alexander spaces which may not be manifolds but
retain several aspects of Riemannian Geometry like the concept of geodesic of angle
between geodesics and even scalar curvature. So far several ways are investigated
by mathematician to extend the concept of curvature to noncommutative spaces,
but none of these proposal have reached the status of a consensus nor efficiency.

Differential Forms: Cyclic Cohomology, initiated by Connes and by Quillen, in dif-
ferent context has been a successful landmark to generalize usual cohomology theory
to the noncommutative world. In particular all topological invariants proposed by
condensed matter physicists, can, in principle be calculated through using cyclic co-
cycles. This is the case for Quantum Hall Effect or for the magneto-electric response
in topological insulators.

2.7. Why C∗-algebras ? Because... ... because as explained above, C∗-algebras are the
latest development in Fourier Theory. Because C∗-algebras were already in the seminal 1925
paper by Heisenberg that gave the foundation of Quantum Mechanics. Because the Schrödinger
point of view using wave functions to describe quantum states instead of observables, a point
of view much preferred in the Physics Community, has a lot of problems when used in Solid
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State Physics. For indeed, while the algebraic point of view can handle the infinite volume limit
pretty well, this is not always the case with the wave function theory. Famous results like the
orthogonality catastrophy have no equivalent in the algebraic theory.

On the other hand the lack of Bloch Theory for aperiodic system is a permanent problem
for physicists while the tools of Noncommutative Geometry can handle this problem carefully,
realistically and now also numerically, including the question of topological invariants.

3. Observable Algebra

After having indulged ourselves in a flight high in the sky to see the big picture behind Noncom-
mutative Geometry, it is time to return to the ground and to learn how to use this tool. As will
be seen the algebra of covariant and strongly continuous observable defined in Section 1.2 is not
yet in a state that makes calculations practical. In this section Calculus rules will be described
making the tool amenable to practical use.

3.1. Matrix Elements Formulation. Going back to the example described in Section 1.2,
the system under study lives on the lattice Zd. The Hilbert space of quantum states is H =
`2(Z)⊗CB where the the finite dimensional space CB accounts for the discrete indices describing
bands, orbitals and spin. In addition, the disorder configurations are encoded in the compact
space Ω, which is endowed with a Zd-action through homeomorphism, denoted by t. Let then
A = (Aω)ω∈Ω be an observable. Thanks to the covariance condition, its matrix elements satisfy

〈x, α|Aω |y, β〉 = 〈0, α|At−xω |y − x, β〉 = Aα,β(t−xω, y − x) .

In other words, in addition to the band indices, the matrix elements depend only upon two
variables, namely ω ∈ Ω and y − x which describes the labeling of the diagonals. For x = y
represents the main diagonal, but as y− x grows larger it labels diagonal farther form the main
one.
In addition, thanks to the strong-continuity of the family of operators A w.r.t. ω, the function
Aα,β(ω, x) = 〈0, α|Aω |x, β〉 is also continuous w.r.t. (ω, x) ∈ Ω× Zd. Consequently, to describe
the family of operators A = (Aω)ω∈Ω it is sufficient to give the matrix valued map A(ω, x).
What follows are the rules describing the algebraic operations on the observable algebra.

Function Space: Like for the Hamiltonian (1), it will be assumed that A(ω, x) = 0 for
|x| large enough. Namely A ∈ Cc(Ω× Zd)⊗MA(C) = A0 is a matrix valued continuous
function with compact support.

Vector Space: The addition and scalar multiplication in A0 are defined pointwise.
Product: The matrix elements formula for the product of two observables leads to the

following definition

(3) AB(ω, x) =
∑
y∈Zd

A(ω, y)B(t−yω, x− y) .

If a magnetic field is present, a term eıBx∧y should be added inside the sum. As can be
seen this is a convolution product, but twisted by disorder and by the magnetic field.

Adjoint: The formula for the matrix elements of the adjoint is

A†(ω, x) = A(t−xω,−x)† .
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A0 is ∗-algebra: Endowed with the previous operations, A0 becomes a ∗-algebra.
Representation: Let πω(A) denotes the operator previously called Aω, namely πω(A)

acts on a vector ψ ∈ H as follows

(πω(A)ψ)α (x) =
∑
β∈A

∑
y∈Zd

Aα,β(t−xω, y − x)ψβ(y) .

Consequently the map πω : A ∈ A0 7→ πω(A) ∈ B(H) is a ∗-homomorphism.
Norm: As suggested in Section 1.2, the C∗-norm is described by

‖A‖ = sup
ω∈Ω
‖πω(A)‖ .

Then A0 becomes a normed ∗-algebra. However A0 is not complete ! To understand this, let us
consider the following power series, corresponding to approximating the resolvent (z −H)−1,

RN (z) =
1

z
+
H

z2
+ · · ·+ HN

zN+1
.

If |z| > ‖H‖, a short calculation shows that, for any M > N

‖RN (z)−RM (z)‖ ≤
(
‖H‖
|z|

)N 1

|z| − ‖H‖
.

In particular the sequence (RN (z))N∈N is Cauchy. However, the matrix elements RN (z;ω, x)
gets more and more non zero diagonal as N → ∞, so that it is not true that the limit, which
exists, has a finite number of non vanishing diagonals. Consequently this limit is not in A0.
Therefore there is a need to complete the algebra A0 in order to include also the limit points.
The completion A is usually denoted by

A def
= A0

‖·‖ def
= C∗(Ω ot Zd)⊗MB(C) .

Here the definition of A corresponds to the reduced algebra, but since Zd is amenable, in the
present case all C∗-norms coincide.

3.2. The Noncommutative Brillouin Zone. What is the meaning of the C∗-algebra A ? As
advocated in Section 2.4, A should be seen a the set of continuous function on a non commutative
topological space. Actually, by analogy with the Gelfand Theorem, this topological space is
locally compact. In the present case, in addition, because the set of lattice sites is discrete, A
admits a unit given by

1α,β(ω, x) = δα,β δx,0 .

Consequently this locally compact space is actually compact. But because of the noncommuta-
tivity of the algebra, such a space is not really existing as an object that can be manipulated.
Nevertheless, by comparing with the periodic case, one can easily understand the physical mean-
ing of it. For indeed, if there is no disorder, then Ω is just trivial, namely it is reduce to a point,
on which the Zd action is also trivial. Hence in the eq. (3), ω can be forgotten, leading to

AB(x) =
∑
y∈Zd

A(y)B(x− y) ,

which is nothing but the convolution product over the Abelian group Zd !! In order to simplify
the formula, it becomes convenient to use the usual Fourier transform:
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Â(k)
def
=
∑
x∈Zd

A(x) e2ıπk·x .

This gives a continuous function defined on the Brillouin zone k ∈ B. Then, the product formula
becomes

ÂB(k) = Â(k)B̂(k) ,

namely this is the pointwise product over the Brillouin zone. Similarly

Â†(k) = (Â(k))† .

In view of the Gelfand Theorem, this is nothing but the algebra of matrix valued continuous
functions over the Brillouin zone !! Consequently, in general, even if the system becomes aperi-
odic, the C∗-algebra A will be interpreted as the set of continuous functions over the Brillouin
zone. However, now, because of the magnetic field and/or of the aperiodicity, this Brillouin
zone becomes noncommutative.

3.3. Dual Action. The dual group to Zd, which has been interpreted as the Brillouin zone
before, actually acts on the C∗-algebra A: this dual action was pointed out by Connes in his
PhD Thesis [17] and by Takesaki for von Neumann algebras [46]. The definition of this dual
action for C∗-algebras is due to Takai [44].

Given a quasi-momentum k ∈ B, let ηk be the map defined on A0 by

ηk(A)(ω, x) = eık·xA(ω, x) .

This operation is nothing but the translation by k in the Brillouin zone. It is elementary to
check that (i) ηk is linear, (ii) ηk(AB) = ηk(A) ηk(B), (iii) ηk(A)† = ηk(A

†), hence defining
a ∗-homomorphism from A0 into itself. In addition, ηk+k′ = ηk ◦ ηk′ and η0 = id, as can be
checked immediately. In particular ηk is actually an automorphism. In view of the properties
of the C∗-norm reported in Section 2.4, this implies that ηk is preserving the norm and as such
can be extended to the whole algebra. At last it can be checked that, given any A ∈ A, the map
k ∈ B 7→ ηk(A) ∈ A is norm continuous.

3.4. Calculus: Integration over the Brillouin Zone. As explained previously, since A is
supposed to represent the space of continuous function on the Noncommutative Brillouin zone,
it is legitimate to address the question of knowing whether such a function can be integrated.
The answer is yes ! To see this let us consider the average over the quasi-momentum∫

B
ηk(A)(ω, x) dk = A(ω, 0) δx,0 .

The result is not a scalar, but a matrix valued function over the space Ω describing the config-
urations of disorder. In order to get a scalar, the main idea is to average also over the disorder
and to take the trace over the band indices. How can we do that ! By choosing on Ω a probability
measure with the property of being translation invariant. Let P be such a probability. Then

TP(A)
def
=

∫
Ω

Tr (A(ω, 0)) dP(ω) .

The remarkable fact is that TP is a trace. Namely
(i) TP : A 7→ C is linear,
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(ii) for A ∈ A, then TP(A†A) ≥ 0 (Check it !),
(iii) TP(1) = 1 (Normalization)
(iii) for A,B ∈ A, then TP(AB) = TP(BA) (Trace property) ! This last property comes from

the translation invariance of P.

In general, there might be several possible choices for P. However, the space of such invariant
probabilities over Ω is a convex set, which generalizes the concept of simplex (segment, triangle,
tetrahedron,...) to infinite dimensional spaces. Any simplex has extremal points and it has
been shown in the past that extremal invariant probability measures are nothing but the ones
which are ergodic. Then, using the Birkhoff ergodic Theorem, it becomes possible to prove the
following

TP(A) = lim
Λ↑Zd

1

|Λ|
Tr (πω(A) �Λ) , for P almost every ω .

In other words, TP is nothing but a trace per unit volume provided P is Zd-invariant and ergodic.

Question: is there a natural choice for P ?
Answer: mathematically every ergodic invariant measure will do. However physics gives a
criterion to choose P. Indeed the lattice underlying our system is coming from the distribution
of atoms and the electrons under consideration are all coming from the bands crossing the Fermi
level. These atoms are crystallizing because they are in thermal equilibrium. If some disorder
occurs, it is also because of the thermal equilibrium, hence the space Ω represents the possible
atomic configurations at equilibrium. Therefore it is only natural to choose for P the Gibbs
measure representing mathematically such an equilibrium.

3.5. Calculus: Differentiating in the Brillouin zone. It was argued in Section 3.3 that
the dual action represents translating the observable in the quasi-momentum space. Hence
differentiating with respect to the quasi-momentum is just an infinitesimal translation, namely,
if {e1, · · · , ed} represents the standard basis in Rd (seen as the tangent space to B), then

∂iA = lim
ε↓0

ηεei(A)−A
ε

.

Written in matrix form gives, with xi = 〈ei|x〉

(∂iA)(ω, x) = ıxiA(ω, x) , ∇ = (∂1, · · · , ∂d) .
The remarkable fact is that, the representation of ∇A is given by the commutator by the position
operator (check it !)

πω(∇A) = −ı[X,πω(A)] , X = (X1, · · · , Xd) is the position operator .

By construction, ∇ is linear, is invariant by the adjoint and it satisfies the Leibniz formula

∇(A†) = (∇A)† , ∇(AB) = (∇A)B +A(∇B) .

In addition, it generates an automorphism group, namely, by construction it is the infinitesimal
generator of (ηk)k∈B

ek·∇(A) = ηk(A) .

This leads to the definition of differential one-forms as
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dA =
d∑
i=1

∂iA dki

Since ∂i∂j = ∂j∂i it follows that d2A = 0. One example of use consists in taking the Fermi
projection A = PF of the Hamiltonian. If the Fermi level is in a gap, PF belongs to A. Then

PFdPF dPF =
∑
i<j

PF [∂iPF , ∂jPF ] dki ∧ dkj .

3.6. Universality of the Hull Ω. In Section 1.2 the space Ω was introduced as a representative
of the disordered configurations. However, as soon as a system loose periodicity, there is a
compact metrizable space Ω with an action of the translation group (namely Rd in most cases,
but sometime Zd if there is an underlying crystal) by homeomorphisms. This space is usually
called the Hull. Relevant examples of aperiodic situations are, in increasing order of complexity
(i) isolated impurities, (ii) modulated crystals, (iii) quasicrystal, (iv) tiling with finite local
complexity, (v) amorphous and glassy materials, (vi) disordered materials.

In order to define the Hull, the procedure is always the same. One usually starts from a
reference configuration of atoms or from the coefficients of the Hamiltonian, depending of the
problem investigated. Then one considers the orbit of this reference object under the translation
group. The third step is to define a topology, which is “local”, namely the translated objects
are all considered in finite windows (for instance a bounded open set when looking at an atomic
configuration in Rd). Then a sequence of such translated is said to converges if in each window
the trace of these objects do converge. The Hull is the closure of the orbit under this topology.
In almost all cases known so far, the condition on the object are such that

Compactness: The orbit closure is compact. Practically, this means that, given any
window, and any error ε, the number of possible configurations seen in that window
modulo the error ε is finite.

Metrizability: The construction always leads to a metrizable space, namely the topology
can be defined by a metric, even if such a metric is neither unique nor canonical.

Translation Group: The translation group acts on the Hull by homeomorphisms.

The Hull has been computed in many situations. For a local impurity on a fixed crystal, the
Hull is a copy of Zd compactified by one point at infinity. For tiling having tiles touching face-
to-face, with a finite number of tiles modulo translation (finite local complexity), which is the
case for quasicrystals, the Hull is a compact space foliated by the translation group Rd with
transversal given by the Cantor set. For glassy materials, the Hull is the space of all Delone
sets with a given set of parameters. Conversely, given any compact metrizable set with an Rd
action, admitting at least one dense orbit (topological transitivity) it is always possible to built
an atomic configuration admitting this space as a Hull.

3.7. Textbook Formulae in Solid State Physics. Using the dictionary provided by the
Table 1 it becomes possible to transform every formula found in textbooks using the Bloch
theory into formulae in the Noncommutative formalism. The first example concerns the electron
density nel [7]

nel = TP (fβ,µ) , fβ,µ =
1

1 + eβ(H−µ)
.
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Periodic Media Aperiodic Media

Integration over Brillouin zone Trace per unit Volume on the NCBZ

Derivative w.r.t. quasimomentum ∇A(ω, x) = ıxA(ω, x)

Table 1. Analogy between Bloch Theory and NCG

Here, fβ,µ is the Fermi-Dirac density matrix, which belongs to A and

β =
1

kBT
(inverse temperature) , µ = chemical potential

Another example is the Kubo formula that can be written as follows in the relaxation time
approximation (RTA) [38, 8]. Namely if one assumes that all dissipative phenomena affecting
the electron are described by one time scale τrel then the electric conductivity tensor is given by

σij =
e2

~
TP
(
∂jfβ,µ

1

1/τrel + LH
∂iH

)
, LH =

ı

~
[H, ·] ,

Using the Noncommutative Geometry formalism, Prodan and his collaborators [36, 47, 42] have
been able to design a code allowing for the numerical computation of these quantities. The
result is numerically very stable and much more performant than previous numerical schemes.

3.8. Non Continuous Smooth Functions and Localization. One of the most fascinating
result of using Noncommutative Geometry concerns the localization theory [7]. Before explaining
this result, it is worth remembering that if a function f : [0, 1]→ C defined on the unit interval
of R admits almost everywhere a derivative which is square integrable, then a use of the Cauchy-
Schwarz inequality implies that

|f(t)− f(s)| =
∣∣∣∣∫ t

s
f ′(u) du

∣∣∣∣ ≤ |t− s|1/2 (∫ t

s
|f ′(u)2 du

)1/2

, 0 ≤ s ≤ t ≤ 1 .

In particular f is automatically continuous. A suitable generalization of this argument in higher
dimension shows that if a function f : U ⊂ Rd → C, defined on a bounded open set U in Rd,
admits enough square integrable derivatives, then it must be continuous.

Such a result needs not be true on noncommutative spaces. The Anderson localization is one
example of such a strange phenomenon. The first ingredient is the concept of density of states
(DoS), defined as the derivative of the integrated density of states (IDS). Namely the IDS is
a nondecreasing function of the energy E, counting the number of energy eigenstates per unit
volume available through the Hamiltonian, with energy less than E. Not surprisingly this
function can be expressed in the noncommutative formalism by using the trace per unit volume
[5]
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N (E) = TP (P (E)) , (Shubin’s Formula) ,

where P (E) is the projection onto the states of the Hamiltonian with energy at most E. This
formula, initially due to Shubin, in the context of differential operators with almost periodic
coefficients, can be re-expressed as∫

R
f(E) dN (E) = TP (f(H)) , f ∈ Cc(R) .

One of the important result in the non-commutative theory of localization is that if ∆ ⊂ R is
an interval of energy in which all states are localized, then the localization length can be defined
in ∆ as a function E ∈ ∆ 7→ `(E) which is square integrable w.r.t. the DoS and such that

TP
(
|∇P (E1)−∇P (E0)|2

)
≤
∫ E1

E0

`(E)2 dN (E) , E0, E1 ∈ ∆ .

The definition of the localization length can be done in several ways, either through the dynam-
ics or through the Green’s functions, using the current-current correlation function (see [7] for
a long discussion of this definition). As it turns out both definitions coincide. Using various
approach proposed between 1979 and the end of the nineties, in particular the techniques devel-
oped by Aizenman and Mochanov [2] in the version of [1], it is possible to prove that a random
perturbation of the Landau Hamiltonian admits such intervals ∆ between two consecutive Lan-
dau levels, and using these results, it is possible to prove that the localization length is actually
well defined and square integrable w.r.t. the DoS. As a consequence, the projections P (E) are
differentiable in the sense of Sobolev. Actually, using those techniques, it is even possible to
prove that for any power n

TP
(
|∇nP (E)|2

)
<∞ ,

In other words, P (E) is infinitely differentiable in the sense that all of its derivatives are square
integrable over the Brillouin zone. However, the same technique show that if the disorder is
large enough, there is no gap in the energy spectrum. One of the consequence is that P (E) does
not belong to the observable algebra A. In other words

In the localization regime, the Fermi projection is infinitely smooth without being continuous !

This is a property of noncommutative spaces: they can support infinitely differentiable func-
tions which are not continuous. And the physicists equivalent is precisely the Anderson strong
localization regime !
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