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Abstract

In this contribution, we present an introduction to the physical principles underlying the
quantum Hall effect. The field theoretic approach to the integral and fractional effect
is sketched, with some emphasis on the mechanism of electromagnetic gauge anomaly
cancellation by chiral degrees of freedom living on the edge of the sample. Applications
of this formalism to the design and theoretical interpretation of interference experiments
are outlined.
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1. Introduction

The work reviewed in this contribution has been carried out in various collaborations,
during the years 1989 - 2000 and 2008/2009 [1–13]. A useful classical reference on the
quantum Hall effect is [14].

The reason the quantum Hall effect (QHE) is relevant to the subject of this collo-
quium, metrology, lies in the circumstance that it yields a highly precise experimental
value for the von Klitzing constant

RK =
h

e2
. (1)

This constant plays a fundamental role in the QHE: The Hall conductance of a two-
dimensional incompressible electron gas (2DEG) exhibiting the QHE turns out to be an
integral or rational multiple of R−1

K . Its significance for metrology is clearly an important
aspect of the QHE. Apart from that, the QHE is a fascinating phenomenon, because its
theoretical description is related to quite fundamental and abstract concepts in mathe-
matics and theoretical physics, such as fractional- or braid statistics, tensor categories,
knot theory, 2D conformal field theory (CFT), and 3D topological field theory (TFT); see
Fig. 1. In these notes, we present a short introduction to some of the concepts underlying
the theory of the QHE. We also provide a list of important references, with emphasis on
our own contributions.
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Figure 1: The quantum Hall effect is related to metrology, as well as to various fundamental physical
and abstract mathematical concepts.

1.1. Remarks on history

An overview of the history of the quantum Hall effect can be found, e.g., in Ref. [15].
Here, we just list some important scientific milestones.
1879 Edwin Hall discovers what is now called the classical Hall effect. Later, this dis-
covery reveals that the electric current in some semi-conductors is carried by holes.
1966 Fowler et al. investigate, for the first time, a two-dimensional electron gas (2DEG)
at low temperature in a strong magnetic field in a Silicon heterostructure (MOSFET).
1975 Kawaji et al. observe a dissipationless state in a Si-MOSFET device.
1978 Hall plateaux are observed by Englert and von Klitzing.
1980 von Klitzing realizes that the heights of the plateaux in the Hall conductance are
quantized in integral multiples of the constant R−1

K [16].
1982 Tsui, Störmer, and Gossard discover the fractional quantum Hall effect in GaAs-
AlGaAs heterostructures [17].
≥ 1982 Laughlin and followers [18–22] propose theoretical explanations of the fractional
QHE.

2. What is the quantum Hall effect?

Modern quantum Hall devices are realized in Gallium-Arsenide heterostructures.
The electrons are confined to the two-dimensional interface between a layer of doped
AlxGa1−xAs and undoped GaAs. The doped layer is a semi-conductor, while the un-
doped one is an insulator. By applying a confining electric field perpendicular to the
interface (gate voltage), a 2DEG is formed at the interface. In order for an incompress-
ible (Hall) state of the 2DEG to emerge, the device is brought into a strong magnetic
field transversal to the interface. A voltage drop Vy may be applied inside the interface
so as to generate an electric current Iy. Due to the Lorentz force acting on the electrons
that carry the current, a voltage drop Vx in the direction perpendicular to the current is
then observed (see Fig. 2).
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Experimentally, one can measure the longitudinal resistance, RL, as well as the trans-
verse Hall resistance, RH :

RL =
Vy
Iy
, RH = −Vx

Iy
.

Figure 2: Schematic representation of a quantum Hall sample. A voltage drop Vx perpendicular to the
current Iy is observed.

Let n denote the density of electrons in the 2DEG, and let

Φ0 =
hc

e
(2)

be the quantum of magnetic flux. The dimensionless quantity

ν = n
Φ0

| ~B0⊥|
(3)

is called the filling factor. The filling factor corresponds to the number of filled Landau
levels for a gas of free spinless fermions of charge −e. In Eq. (3), ~B0⊥ is the component
of the external magnetic field perpendicular to the plane of the 2DEG.

2.1. Classical theory

We start by studying the classical mechanics of a 2DEG exhibiting the Hall effect. In
a steady state, where the electrons in the 2DEG have a constant velocity, the total force
on an electron must vanish. Hence

~Fe−‖ = −e[ ~E‖ +
~v

c
∧ ~B0⊥] = 0 . (4)

It follows that the velocity of the electrons, ~v, is perpendicular to the in-plane electric
field ~E‖, i.e.,

~E‖ · ~v = 0 . (5)

Using (4), the electric current density is given by

~j = −en~v = σH(~ez ∧ ~E) , (6)
3



and the Hall conductivity, σH , is apparently given by

σH = R−1
H =

enc

| ~B0⊥|
=
e2

h
ν . (7)

We observe that classical theory predicts a linear relation between the Hall conductivity
and the filling factor ν, with a factor of proportionality given by R−1

K = e2/h.

2.2. Experimental behavior of the Hall conductivity

Figure 3: Experimental behaviour of the Hall conductivity and the longitudinal resistance of a 2DEG
(illustration).

Interestingly, experiments with Hall samples at low temperature and in strong mag-
netic fields yield a behaviour of σH that deviates from the classical linear relation in (7).
Experimental data, sketched in Fig. 3, show plateaux where σH is very nearly constant.
Whenever (ν, σH) lies on a plateau, the longitudinal resistivity vanishes and σH only
takes certain values (see Fig. 4). There is ample experimental evidence for the following
claims.

(I) RL = 0 whenever (ν, σH) ∈ plateau [16, 17];

(II) plateau heights ∈ (e2/h)Q, [16, 17];

(III) the cleaner the sample,

• the more plateaux are observed, and

• the narrower are the plateaux.

(IV) If RKσH /∈ Z (fractional QHE), some of the quasi-particles observed in the sample
appear to carry fractional electric charges [25–27].
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Figure 4: Observed Hall plateaux in the range 0 < σ ≤ 1; with σ = RKσH = nH
dH

, where nH and dH
are co-prime integers.

The precision of the integral plateau heights is of the order of 10−9. Thus, systems ex-
hibiting the QHE allow for an extremely accurate determination of RK = h/e2. Together
with Josephson junction experiments measuring the fundamental quantity KJ = e/(hc)
and quantum pumps, which determine the elementary charge e, the metrological triangle

closes [15].

2.3. Tasks for theorists

Given these experimental findings, the following theoretical questions arise:

1. (a) For what values of ν is RL = 0 (existence of a mobility gap)?

(b) How do the plateau widths scale with disorder?

(c) Quantitative estimates on |σH(ν)− e2

h
ν| ?

(d) Nature of the phase transitions between neighboring incompressible Hall fluids?

(e) Existence of a Wigner crystal for ν . 1
7 ?

Answers to these questions would have to be based on a detailed understanding of
the quantum many-body problem in the presence of disorder and interactions. In
situations relevant for the fractional QHE, quantitative insights are primarily based
on large-scale computer simulations [22–24]; but see [18–21]. However, for a 2DEG
consisting of non-interacting electrons in a random external potential, one only
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observes the integral QHE, and the theory of this phenomenon is well understood
[49, 50].

2. Assuming that RL = 0 (i.e., the 2DEG forms an incompressible fluid), what can
we say about

(a) possible values of σH?

(b) spectrum and properties of quasi-particles?

(c) new experimental tests of theoretical predictions (e.g., interferometry)?

Questions of this sort can be studied and answered with the help of an elegant
effective field-theory approach. In the following, we outline this approach.

2.4. Applications

The QHE has many important (or potentially important) applications, such as:

• Metrology, determination of fundamental constants of nature, definition of a resis-
tance standard, [16].

• Novel computer memories.

• Q-bits for topological quantum computers (exploitation of quasi-particles with
braid statistics) [28–30].

3. Electrodynamics of an incompressible Hall fluid

Consider a 2DEG confined to a planar region Ω and subject to a strong, uniform
external magnetic field ~B0 transversal to Ω. In such a system, the vanishing of the
longitudinal resistance RL is a signal for the existence of a mobility gap in the bulk. One
then speaks of an incompressible Hall fluid. Let us consider the response of the system
to a small, slowly time-dependent perturbation of the electromagnetic (EM) fields, with

~Btotal = ~B0 + ~B(x) . (8)

The orbital dynamics of electrons in the region Ω (assumed to be contained in the x-y

plane) only depends on Btotal
3 = ( ~B0 + ~B(x)) · ~ez and ~E‖ = E(x) = (E1(x), E2(x)). We

set B = ~B · ~ez and introduce a vector potential,

(Aµ) := (A0, A1, A2) , (9)

for the electromagnetic field tensor in 2+1 dimensions,

(Fµν ) :=





0 E1 E2

−E1 0 −B
−E2 B 0



 . (10)

The expectation value of operators in a (quasi-stationary) state of the 2DEG in an
external vector potential A is denoted by 〈(·)〉A. For example, the electric charge- and
current density is given by

jµ(x) := 〈J µ(x)〉A , (11)
6



with µ = 0, 1, 2, where J µ(x) is the quantum-mechanical current density.
From phenomenological and fundamental laws of physics the following equations can

be derived:

(i) Hall’s law (for RL = 0)
The electric current is perpendicular to the electric field, i.e.,

jk(x) = σHǫ
klEl(x) (12)

with k, l = 1, 2, where ǫkl is the sign of the permutation (kl) of (12), and

x = (xµ) = (t,x) ∈ Λ := R× Ω . (13)

(ii) Charge conservation

Charge- and current density in Λ satisfy the continuity equation

∂

∂t
ρ(x) +∇ · j(x) = 0 . (14)

(iii) Faraday’s induction law

∂

∂t
Btotal

3 (x) +∇ ∧E(x) = 0 . (15)

The laws (i) through (iii) imply that

∂

∂t
ρ

(ii)
= −∇ · j (i)

= −σH∇ ∧E
(iii)
= σH

∂

∂t
Btotal

3 . (16)

We integrate Eq. (16) in time, with integration constants chosen such that

j0(x) = ρ(x) + en ,

Btotal
3 (x) = B(x) +B0 ,

(17)

where −en is the charge density of a homogenous 2DEG in a constant magnetic field ~B0.
We then arrive at

(iv) “Chern-Simons Gauss law” [48]

j0(x) = σHB(x) . (18)

Next, we propose to show that the laws (i) through (iv) imply the existence of anoma-
lous chiral currents circulating at edges of the incompressible Hall fluid. Faraday’s in-
duction law (iii) says that

∂[µFνλ] = 0 , (19)

which (by Poincaré’s lemma) implies that the EM field tensor can be derived from a
vector potential,

Fµν = ∂[µAν] . (20)
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In compact notation, laws (i) and (iv) can be written as

jµ(x) =
σH
2
ǫµνλFνλ(x)

(20)
= σH ǫµνλ∂νAλ(x) . (21)

Whenever σH is constant, the current (21) satisfies the continuity equation (ii), i.e.,

∂µj
µ =

1

2
σHǫ

µνλ∂µFνλ
(19)
= 0 . (22)

However, wherever the value of σH jumps, e.g., at the boundary of the sample, the current
(21) is not conserved. Let

Σ := support(∇σH) . (23)

Then we have that

∂µj
µ(x) =

1

2
ǫµνλ(∂µσH)Fνλ 6= 0 , for x ∈ Σ , (24)

which violates the law (ii)!
The apparent contradiction between (24) and the continuity equation (ii) disappears

when one notices that the current (21) is not the total current. Apparently, there must
be an additional current supported on Σ that cancels the anomaly (24):

jµ = jµbulk 6= jµtotal = jµbulk + jµedge , (25)

with

∂µj
µ
total = 0 ,

support(jµedge) = Σ ,

jedge ·∇σH = 0 .

Equation (24) for the bulk current (21) then implies that, on the “edge” Σ,

∂µj
µ
edge = −∂µjµbulk = ∆σHE‖|Σ , (26)

where E‖|Σ denotes the electric field “parallel” to Σ (i.e., the component of E|Σ parallel
to the contour lines of σH) and ∆σH is the discontinuity of σH across Σ. This non-
conservation of the edge current is called chiral anomaly in 1 + 1 dimensions. The chiral
anomaly (in 3+1 dimensions) is a well-known phenomenon in gauge theories of elementary
particles. It plays an important role in various physical processes; see Refs. [9, 31].

In Fig. 5, an illustration of the edge current in a quantum Hall sample is given. The
velocity ~v of an electron at the edge can be calculated by equating the Lorentz force and
the confining force,

− e
~v

c
∧ ~B = −~∇Vedge . (27)

In classical physics, a phenomenon analogous to the chiral edge currents in an incom-
pressible Hall fluid are the hurricanes in the atmosphere of the earth! In this case, the
magnetic field ~B is replaced by the angular velocity of the earth, ~ωearth, and the role of
the Lorentz force is played by the Coriolis force. The confining force, −~∇Vedge, in a Hall

fluid is replaced by the gradient of the air pressure, −~∇P .
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Figure 5: Chiral edge current in a 2D electron gas.

3.1. Chiral anomaly in 1 + 1 dimensions

An anomalous current satisfying (26) is carried by charged, chiral, gapless “modes”,
i.e., by particles traveling with a certain velocity along the edge. Let us suppose that the
current jµedge is carried by N species of chiral modes. We denote their coupling constants

to the EM field by eQ1, . . . , eQN . The anomaly of jµedge is then described by (see our
discussion in Sect. 5)

∂µj
µ
edge =

e2

h
(

N
∑

i=1

Q2
i )E‖|Σ . (28)

Combining this equation with (26) (with ∆σH = σH) it follows that the (dimensionless)
Hall conductivity is given by

σ = RKσH =

N
∑

i=1

Q2
i . (29)

One can convince oneself that, in the integral QHE, each filled Landau level gives rise
to exactly one species of electrons circulating at the edge and thereby contributing to
the edge current jµedge. Therefore, RKσH = N is the number of filled Landau levels. For
an incompressible Hall fluid exhibiting the fractional QHE, with RKσH /∈ Z, it follows
that at least one of the “charges” eQi must be a fraction of the elementary charge e.
Arguments similar to the ones reported here can be found, e.g., in [3, 9, 32].

4. Effective action of an incompressible Hall fluid and topological field theory

In this section, we determine the effective action of an incompressible Hall fluid (IHF).
Here, and in the following section, we express the Hall conductivity in units of e2/h, i.e.,

σ := RKσH , (30)

where σ is dimensionless. The space-time of the sample is the cylinder Λ = R × Ω.
For simplicity, we assume that the support of ∇σ is Σ = ∂Ω; (of course, this is an
idealization of what one encounters in real samples). We denote the surface of the
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cylinder by ∂Λ = R × ∂Ω. The quantum-mechanical current operator is J µ(x), and
〈(·)〉A is the expectation value in a stationary state of the IHF in an external EM field
with vector potential A.

The effective action of an IHF, ΓΛ[A], is the generating functional of the current
Green functions. Hence it satisfies

jµtotal(x) = 〈J µ(x)〉A =
δΓΛ[A]

δAµ(x)
. (31)

The current in the bulk of the Hall sample, Eq. (21), is given by

jµtotal(x) = jµbulk(x) = σ ǫµνλ∂νAλ(x), for x /∈ ∂Λ . (32)

After integration, (31) and (32) then yield the following expression for the effective action.

ΓΛ[A] =
σ

2

∫

Λ

d3x ǫµνλAµ(x)∂νAλ(x) +
1

2
Γ[a] =

σ

2

∫

Λ

A ∧ dA+
1

2
Γ[a] , (33)

where a := A|∂Λ, and Γ[a] is the generating functional of the edge-current Green functions
(up to terms local in a).

The Chern-Simons action
∫

ΛA ∧ dA in (33) is not invariant under a gauge transfor-
mation, A 7→ A+ dα with α|∂Λ 6= 0. In fact, we find that

δ

∫

Λ

A ∧ dA =

∫

Λ

dα ∧ dA =

∫

∂Λ

α da , (34)

where we have used Stokes’ theorem. In our case of a time-independent sample Ω, we
have that da = ∂µaν dx

µ ∧ dxν = E‖ dt ∧ dξ, where ξ is a coordinate parametrizing ∂Ω,
and

E‖ = ǫµν∂µaν (35)

is the electric field parallel to the edge. The total action ΓΛ, however, must be gauge

invariant (conservation of electric charge). Therefore, the violation of gauge invariance
described in (34) must be cancelled by the edge action Γ[a], which is then found to be
given by

Γ[a] =
σ

2

∫

∂Λ

d2ξ {(E‖ − ∂µa
µ)�−1(E‖ − ∂νa

ν) + aµa
µ} (36)

(up to manifestly gauge-invariant terms), assuming that all chiral edge modes have the
same propagation speed and direction; (the general case will be discussed in Sect. 5). By
(31) and (33),

jµedge =
1

2
{σ ǫµνaν +

δΓ[a]

δaµ
} , (37)

where µ, ν ∈ {0, 1}, and, using (36),

∂µj
µ
edge = σ ǫµν∂µaν , (38)

in accordance with Eq. (26).
We would like to emphasize that, up to gauge invariant terms, the effective action

for the edge current, (36), is uniquely determined by the requirement of electric charge
10



conservation. The only possible generalization is to consider several independent edge
channels of charged quasi-particles. In contrast to the bulk contribution to the total
action (33), the edge action is not topological, i.e., it depends on the space-time metric of
the edge. Therefore, in general, each edge channel may couple to a different space-time
metric (i.e., exhibit a different propagation speed). We will discuss this point in more
detail in the next section.

The total electric current, J µ, is conserved,

∂µJ µ = 0 . (39)

By Poincaré’s lemma, it can therefore be derived from a vector potential, which we denote
by B,

J µ =
√
σ ǫµνλ ∂νBλ . (40)

The potential B in (40) gives rise to the gauge symmetry Bµ 7→ Bµ + ∂µβ: J µ does not
change under a gauge transformation of B. The action

SΛ[B,A] =
1

2

∫

Λ

B ∧ dB +

∫

Λ

d3xJ µAµ + S̃[B|∂Λ, a] (41)

describes the theory of the gauge potential B coupled to an EM vector potential A.
In (41), S̃ is the edge action that makes the total action gauge-invariant. With an
appropriate choice of S̃, the action (41) yields the effective action (33), after functional
integration over the field B.

SΛ[B,A] is the action of a topological U(1) Chern-Simons theory. The charge operator
associated with a region O of Ω is defined as

QO :=

∫

O
d2xJ 0(t,x) =

√
σ

∫

∂O
B . (42)

Thus, the exponential of QO,
eiQO = ei

√
σ
∫
∂O

B , (43)

is a Wilson loop operator for the field B associated with the contour ∂O. Wilson loops
and -networks furnish the “observables” in a 3D topological field theory (TFT). Static
sources of B inserted in the bulk at a point z ∈ Ω are described by vectors in a Hilbert
space,

|(q, λ), z〉 ∈ [(q, λ), z] (44)

with
QO|(q, λ), z〉 =

√
σ q |(q, λ), z〉 , (45)

whenever O contains the insertion point z. Here, q is the flux of the field B, and λ is some
additional “internal” quantum number needed to label the sectors of the TFT describing
the bulk of an IHF. The state vectors |(q, λ), z〉 are elements of a sector (subspace) of
the total state space denoted by

[(q, λ), z] . (46)

Sectors are thus labeled by (q, λ) and an insertion point z ∈ Ω. The fact that the
bulk theory has trivial dynamics (static sources, purely local current correlators) is a
consequence of the mobility gap in the bulk, after passing to the scaling limit.
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4.1. Fusion of sources

Next, we discuss properties of states in a TFT with several distinct sources. The
sources in a TFT constitute a fusion algebra. This means the following: Consider the
tensor product space corresponding to two sources located at z1 and z2, denoted by
[(q1, λ1), z1] ⊗ [(q2, λ2), z2]. As the locations z1 and z2 of the two sources approach the
same point z, the tensor product can be written as a direct sum,

[(q1, λ1), z1]⊗ [(q2, λ2), z2] ≃ ⊕
λ
[(q, λ), z]⊗ C

Nγ
γ1γ2 , (47)

where γi = (qi, λi) and q = q1 + q2. The non-negative integers Nγ
γ1γ2

are called fusion

rules; they are the multiplicities of the spaces [(q, λ), z] in the tensor product space. The
morphisms, F γ,a

γ1γ2
, from [γ1, z1]⊗ [γ2, z2] to the space [γ, z] are called fusion matrices,

F γ,a
γ1γ2

: [(q1, λ1), z1]⊗ [(q2, λ2), z2] → [(q, λ), z]a, (48)

with a = 1, . . . , Nγ
γ1γ2

; (see Fig. 6).
In a “physical” theory, i.e., for a quasi-rational TFT, all multiplicities in the “Clebsch-

Gordan series” (47) must be finite, more precisely,
∑

γ N
γ
γ1γ2

<∞, for all pairs {γ1, γ2}.
If Nγ

γ1γ2
> 0, then γ is called a fusion channel for γ1 and γ2. A TFT is abelian if

Figure 6: Fusion of two sources in a topological field theory; (“b.c.” stands for a boundary condition).

∑

γ N
γ
γ1γ2

= 1, for all pairs {γ1, γ2}. In Sect. 5, we will focus on edge theories dual to
abelian TFTs in the bulk.

4.2. Constraints on physical TFTs

The spin sq,λ of a state is determined by considering a rotation in the plane through
an angle of 2π. Let Urot(2π) represent the rotation by 2π around the origin. Then

Urot(2π)|(q, λ), z〉 = e2πisq,λ |(q, λ), z〉 , (49)

12



and the spin sq,λ is given by (see, e.g., [1, 11])

sq,λ =
q2

2
+ ∆λ , (50)

where, for a quasi-rational TFT, as defined above, Vafa’s theorem [33] implies that

∆λ ∈ Q . (51)

So, in general, sq,λ /∈ 1
2Z, and the theory may have quasi-particles in its spectrum, that

have fractional spin and are neither bosons nor fermions (so-called anyons).
In a theory describing a physical IHF, there must exist bulk states with the quantum

numbers and properties of one-electron states. Suppose that the state |(q∗, λ∗), z〉 is
obtained by adding a single electron at the point z ∈ Ω to the groundstate of the IHF.
Then we have the following constraints: The charge of this state, see (45), must be

√
σ q∗ = −1 . (52)

Furthermore, the spin, see (50), must be half-integer, i.e.,

sq∗,λ∗ =
(q∗)2

2
+ ∆λ∗ =

1

2σ
+∆λ∗ = l +

1

2
(53)

with l ∈ Z. From Vafa’s theorem we know that ∆λ∗ is rational. It thus follows that the

Hall conductivity, σ, is rational,

σ =
nH

dH
∈ Q . (54)

There is a third constraint on physical theories: the so-called relative locality of all
quasi-particle states with respect to electron insertions. We will not discuss it here; but
see Refs. [6, 11] for more information. Using these three constraints on a theory describing
a physical IHF, one can show that the smallest electric charge of a quasi-particle that
can appear in an IHF is given by

qmin =
e

f dH
, (55)

where f ∈ N is an integer (namely the order of the simple current corresponding to the
insertion of an electron); see, e.g., [11].

To conclude this section, we remark that one may view the spaces labeled by (q, λ)
as sectors of a chiral algebra describing some chiral conformal field theory (CFT) [34].
Abstractly, they can be understood as the “irreducible objects” of a braided tensor
category [35, 36].

4.3. Monodromy and braiding

Let us consider the transformation of a state describing two sources when the sources
are adiabatically carried around one another, as depicted in Fig. 7. This corresponds to
a rotation of the two sources through an angle 2π. After subtracting the contribution of
the spins of the sources, the monodromy matrix, M , is defined by

Urot(2π)|[(q1,λ1),z1]⊗[(q2,λ2),z2] = e2πi(sq1,λ1
+sq2,λ2

)M(q1,λ1)(q2,λ2) (56)
13



We may fuse the tensor product states on both sides. Using (48) and (49), we get

Urot(2π)|[(q1,λ1),z1]⊗[(q2,λ2),z2] = ⊕
λ
e2πisq,λF

(q,λ),a
(q1,λ1)(q2,λ2)

. (57)

This shows that the monodromy matrix M(q1,λ1)(q2,λ2) is block-diagonal in the decom-
position of the tensor product space into the subspaces [(q, λ), z], and its eigenvalues on
these subspaces are given by

e2πi(sq1+q2,λ
−sq1,λ1

−sq2,λ2
) = e2πi q1q2 e2πi(∆λ−∆λ1

−∆λ2
) . (58)

The factor e2πiq1q2 corresponds to the well-known Aharonov-Bohm phase for carrying a
charged particle around an insertion of magnetic flux. In general, it may happen that
M 6= 1, for some pairs of quasi-particles. The particles then exhibit braid statistics.

Braid statistics is an interesting phenomenon only encountered in two-dimensional
systems. In dimensions larger than two, quantum statistics is always described by repre-
sentations of the permutation group; see, e.g., [37] and refs. given there. The theoretical
possibility of braid statistics in 2D systems appears to be realized in IHFs at certain
fractional plateaux.

Figure 7: Monodromy operation for a pair of particles with quantum numbers (q1, λ1) and (q2, λ2).

5. The edge of an incompressible Hall fluid

Next, we propose to find an action, S, for matter fields located on the edge, ∂Λ, that
describe chiral modes coupled to the electromagnetic field. (In addition, there may be
neutral modes, which we omit here.) The main constraint on the edge action is its gauge
variation; i.e., under

a 7→ a+ dα|∂Λ , (59)
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we find [cf. Eq. (34)] that

δS = −σ
∫

∂Λ

d2ξ α ǫµν∂µaν . (60)

Furthermore, the edge current, Jµ
edge, must satisfy the anomaly equation [see (38)]

∂µJ
µ
edge = σ ǫµν∂µaν . (61)

Since the edge degrees of freedom of an IHF form a system in 1+1 dimensions, we can
make use of bosonization techniques. A current carried by gapless quasi-particles can be
decomposed into left- and right-moving currents with opposite propagation directions,
JL and JR. The vector current, J = JL + JR, is always conserved. This means that the
anomalous edge current, Jedge, must be chiral, i.e., there is an imbalance between left-
and right-moving modes.

Conservation of the vector current, ∂µJ
µ = 0, allows us to introduce a (possibly

multi-valued) scalar potential φ, i.e.,

Jµ = ǫµν∂νφ . (62)

In the absence of an external electric field, let us write the chiral edge current in terms
of the scalar potential as

Jµ
edge =

√
σ

2
(∂µφ+ ǫµν∂νφ) . (63)

When the external field vanishes, the edge current is conserved,

∂µJ
µ
edge ∝ �φ = 0 , (64)

which is the equation of motion for a massless free Bose field, φ, with action

S[φ, a = 0] =

∫

√

|g| d2ξ 1
2
gµν∂µφ∂νφ . (65)

We choose a metric gµν on ∂Λ with g = det(gµν) = −1. More precisely,

(gµν) = diag(u−1,−u) , (66)

where u is the propagation speed of φ.
Next, we introduce the edge action, S[φ, a], for a non-zero vector potential aµ: S[φ, a]

is required to yield the effective edge action (36), after functional integration over the
matter field φ, i.e.,

∫

Dφe2πi S[φ,a] = e2πiΓ[a] . (67)

This uniquely fixes S[φ, a] (up to gauge-invariant terms). It is found to be given by

S[φ, a] =

∫

d2ξ {1
2
∂µφ∂µφ+

√
σ (∂µφ+ ǫµν∂νφ) aµ +

σ

2
aµaµ } , (68)

with ∂µφ = gµα∂αφ and aµ = gµαaα. The edge current in the presence of external fields
[see (37)] is

Jµ
edge =

1

2
{σ ǫµνaν +

δS

δaµ
} =

1

2
{√σ (∂µφ+ ǫµν∂νφ) + σ(aµ + ǫµνaν)} . (69)
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It exhibits the correct anomaly (61), on a solution to the equation of motion for φ.
To generalize our construction, N > 1 conserved vector currents can be introduced,

Jµ
i = ǫµν∂νφi . (70)

The action for the fields φ = (φ1, . . . , φN ) generalizing (68) is then given by

S[φ, a] =
∑

i

∫

d2ξ {1
2
∂µφi∂µφi +Qi (∂

µφi + χiǫ
µν∂νφi) aµ +

Q2
i

2
gµνi aµaν} , (71)

where χi ∈ {+,−} is the chirality of the edge current carried by the field φi, and
Qi ∈ R are some constants. The metrics, gi, may be different for each field, (gµνi ) =
diag(u−1

i ,−ui), where ui is the propagation speed of Ji. The action (71) has the correct
gauge variation, and the edge current,

Jµ
edge =

N
∑

i=1

Jµ
χi =

1

2

N
∑

i=1

Qi {∂µφi + χiǫ
µν∂νφi +Qi(a

µ + χiǫ
µνaν)} , (72)

exhibits the expected anomaly, provided that

∑

i

χiQ
2
i = σ . (73)

Using (71), the equation of motion for the field φi is given by

gµνi ∂µ(∂νφi +Qiaν) = χiQiE . (74)

By inspection, under a gauge transformation aµ 7→ aµ+∂µα, solutions to (74) transform
as

φi 7→ φi −Qiα . (75)

This shows that the edge currents in (72) [and, in particular, (69)] are gauge-invariant
objects.

Canonical quantization of the action (71) yields the equal-time commutators

[J0
χj(x, t), J

0
χk(y, t)] =

i

2π
χj Q

2
j δjk δ

′(x− y) . (76)

Hence, the currents Jχi generate N chiral U(1) Kac-Moody algebras [38]. Using (76) and
(73), the edge current (72) satisfies the commutation relation

[J0
edge(x, t), J

0
edge(y, t)] = i

σ

2π
δ′(x− y) . (77)

The cancellation of the gauge anomaly of the electromagnetic effective (Chern-Simons)
action in the bulk by appropriate massless chiral field theories on the edge of the Hall
sample is an example of the holographic principle (applied, here, to gapless quantum field
theories in two dimensions and three-dimensional TFTs). A more conventional version
of this principle tells us that there is a correspondence between certain 3D TFTs and 2D
chiral conformal field theories (CFTs). This formulation is somewhat misleading, though,
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since (as our example shows) the massless edge modes may have different propagation
speeds, i.e., the conformal symmetry may be broken. This is usually the case in realistic
IHFs.

For abelian IHFs with N conserved currents, (71), the family of physical theories
has been classified mathematically, [5–8]. For each fluid, it is possible to enumerate all
quasi-particle excitations. For a given Hall conductivity, σ, and a certain number, N , of
currents, the quasi-particles are labeled by vertices of a lattice, Γ∗, of dimension N , dual
to an odd integral lattice, Γ, of (multi-)electron excitations. This again implies that the
dimensionless Hall conductivity σ is a rational number. Steps towards a generalization
of this approach to non-abelian IHFs have been undertaken in [11, 12, 39, 40].

5.1. Chiral vertex operators

So far, we have introduced an algebra of chiral currents, {Jµ
χj}, generating U(1) Kac-

Moody algebras; Eq. (76). The next step is to construct quasi-particle creation- and
annihilation operators as chiral vertex operators. For simplicity, let us discuss the case
of an abelian IHF with only a single edge degree of freedom. The operator

ψq(ξ) = N exp[2πi
q√
σ

∫ ξ

dyµ {ǫµνJν
edge − σaµ}] , (78)

creates a charged quasi-particle at a point ξ = (ξµ) ∈ ∂Λ of the edge. N denotes
normal ordering, and Jµ

edge is given in (69). The starting point of the line integral in (78)
is some reference point, usually taken to be an ohmic contact. Note that a continuous
deformation of the path in the line integral in (78) leaves ψq(ξ) invariant. In other words,
the vertex operators only depend on the homotopy class of the path. This is because the
curl of the integrated vector field vanishes,

ǫαµ∂α(ǫµνJ
ν
edge − σaµ) = 0 . (79)

The electric charge is measured by the operator

Q̂ =

∫

∂Ω

dxJ0
edge(x, t) . (80)

The charge of the quasi-particle created by ψq is obtained from the commutator

[Q̂, ψq(ξ)] =
√
σ q ψq(ξ) . (81)

Hence, the electric charge deposited by (78) is equal to
√
σ q. This suggests that the

vertex operators ψq(ξ) are in one-to-one correspondence with bulk states |(q, λ), z〉 intro-
duced in the previous section.

Commuting two vertex operators yields the “statistical phase”,

ψq1(ξ1)ψq2(ξ2) = ψq2(ξ2)ψq1(ξ1) e
±iπq1q2 . (82)

The sign of the phase depends on the relative positions of ξ1, ξ2, and the starting point
of the line integral (and on the homotopy classes of the paths). The conformal spin of
the vertex operator (78) is given by

sq =
q2

2
. (83)
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These results are in accordance with the properties of the states |(q, λ), z〉 of the bulk
TFT discussed in Sect. 4, for ∆λ = 0. In fact, the statistical phase appearing in (82)
corresponds to “half-monodromies” in the bulk, see Eq. (58). The conformal spin (83)
coincides with the spin of the bulk state, Eq. (50).

We note that, under a transformation a 7→ a + dα, the vertex operator transforms
like

ψq(ξ) 7→ ψq(ξ) e
−2πi

√
σ q α(ξ) , (84)

as expected of an operator creating a particle with electric charge
√
σ q.

5.2. Inter-edge tunneling and interference experiments

Figure 8: Mach-Zehnder (left) and Fabry-Pérot (right) interference experiments with chiral edge currents
of an IHF on a Corbino-disk geometry. At two constrictions, the modes tunnel between the two edges
of the sample. This plays the role of beam splitters in the optical versions of the interferometers.
Properties of the quasi-particles and the magnetic flux, Φ, enclosed by the loop of chiral currents lead
to characteristic interference effects. Data obtained from such experiments help to constrain the set of
possible effective theories describing a given IHF.

The quantum field theory for the edge of an IHF can be used to predict observable
effects that can be tested in beam-splitting interference experiments using electronic ver-
sions of Mach-Zehnder or Fabry-Pérot interferometers (Fig. 8) [10, 41]. For interference
effects to appear, excitations need to be allowed to tunnel between different edges of the
sample. This may be modeled by adding tunneling terms of the form

Vq(x; y) ∝
∫

dt ψ†
q(x, t) e

2πi
∫

y

x
a1(ξ,t) dξ ψq(y, t) (85)

to the edge action.
Important phenomena are:

• The tunneling current from one component of the Hall edge to another one through
a quantum point contact is related to the electric charge of the particles transmitted
through the contact and to the scaling dimension of the tunneling operator (exp.
[42]; theory [12]).
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• Aharonov-Bohm oscillations in the tunneling current are studied in [13, 41, 43].
Remarkably, they have the electronic period, Φ0, if external flux tubes are added
(topological screening), but may have quasi-particle period, Φ0/qmin, if edges are
deformed by a modulation gate; (qmin is the smallest fractional charge observed in
the fluid).

• The “visibility” of the Aharonov-Bohm oscillations as a function of bias voltage
is related to the propagation speeds, ui, of different channels (exp. [44]; theory
[45–47]).
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[1] J. Fröhlich and C. King, The Chern-Simons Theory and Knot Polynomials, Commun. Math. Phys.
126, 167 (1989).
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[35] J. Fröhlich and T. Kerler, Quantum Groups, Quantum Categories and Quantum Field Theory,

Lecture notes in mathematics, Springer (1993).
[36] J. Fuchs, I. Runkel, and Ch. Schweigert, Twenty five years of 2d rational CFT, J. Math. Phys. 51,

015210 (2010), and refs. therein.
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