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Preamble

Motivation for this work comes from the uses of spectral flow in
condensed matter theory (where operators can have very complicated
spectra).

Fredholm theory is about the discrete spectrum of a self adjoint
operator. Scattering theory probes the essential spectrum. In this talk I
will mention some results inspired by scattering theory.

Typically a self adjoint Fredholm operator, particularly those arising in
quantum theory, will have both discrete and essential spectrum. Most1

of the mathematical theory is however, devoted to operators with
compact resolvent as arises in the study of compact manifolds.

On non-compact manifolds, which is where scattering theory is
studied, the essential spectrum is both physically and mathematically
important.

1except of course for type II theory
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On the mathematical side it may contain topological information (a
good example is provided by the Novikov-Shubin invariants for
covering spaces). Note that the ‘type II’ spectral flow is relevant to this
discussion as well.

Furthermore there are many examples of non-Fredholm operators that
arise naturally on non-compact manifolds and it is of interest to know if
spectral geometry can be developed for them.

Colleagues contributing to this work: Nurulla Azamov, Peter Dodds,
Fritz Gesztesy, Harald Grosse, Jens Kaad, Galina Levitina, Denis
Potapov, Fedor Sukochev, Yuri Tomilov, Dima Zanin among many
others.
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Part 1. Spectral flow and spectral shift

In the 1950s I. Lifshitz introduced the spectral shift function. He was
motivated by studying the S-matrix in quantum scattering problems.
This spectral shift function was made mathematically precise (in the
framework of trace class perturbations) by M. Krein in his famous 1953
paper.

For a pair of self-adjoint bounded operators A0 and A1 such that their
difference (being the perturbation) is trace class, there exists a unique
ξ ∈ L1(R) satisfying the trace formula:

Tr(φ(A1)− φ(A0)) =

∫
ξ(µ)φ′(µ)dµ

whenever φ belongs to a class of admissible functions.

NB ξ is not determined pointwise in general but only almost
everywhere.
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1.1 Spectral flow

At first sight this is an unrelated concept.

Recall that spectral flow was introduced in the index theory papers of
Atiyah-Patodi-Singer in the 1970’s. They give Lusztig the credit for the
idea.

Consider a norm continuous path Ft; t ∈ [0, 1] of bounded self adjoint
Fredholms joining F1 and F0. J. Phillips in 94-95 introduced an analytic
definition of spectral flow that is more useful than the original approach
of APS.

We let, for each t, Pt be the spectral projection of Ft corresponding to
the non-negative reals. Then we can write Ft = (2Pt − 1)|Ft|. Phillips
showed that if one subdivides the path into small intervals [tj , tj+1]
such that Ptj ,Ptj+1 are ‘close’ in the Calkin algebra then they form a
Fredholm pair and the spectral flow along {Ft} is∑

j

index(PtjPtj+1 : range Ptj+1 → range Ptj )
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1.2 Recent interactions between spectral flow and spectral shift

• To my knowledge the first person to understand that spectral shift
and spectral flow are the same (when both are defined as occurs in
some examples) was Werner Mueller (Bonn) in 1998.

• In 2007, (with Nurulla Azamov, Peter Dodds and Fedor Sukochev),
we showed that under very general conditions2 that guarantee that
both are defined, spectral shift and spectral flow are the same.

Questions

• The spectral shift function is defined more generally, even for
non-Fredholm operators. Can it be regarded as giving a generalisation
of spectral flow in the non-Fredholm case?

• Index/spectral flow theory is built today around Kasparov theory (and
this is tied closely to Fredholm operators). What replaces Kasparov
theory in the non-Fredholm case if the spectral shift function is giving
some generalised notion of spectral flow?

2and also in semi-finite von Neumann algebras
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Answers

•We have proved some index/spectral flow formulas when the
Fredholm operators in question have some essential spectrum. These
formulas extend to the non-Fredholm case providing a partial answer
to the first question.

•We have shown in some examples that the replacement for K-theory
(or Kasparov theory) in the non-Fredholm case is cyclic homology.
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Part 2: The Witten index: a proposal for the non-Fredholm case

Witten was studying supersymmetric quantum field theory and as a toy
model introduced supersymmetric quantum mechanics in the early
1980s.

Mathematically we interpret ‘supersymmetry’ as a Z2 grading.

Witten speculated that there might be a notion of index for
non-Fredholm operators and proposed a formula for this, extending an
idea due to Callias.

Witten’s idea was taken up by mathematical physicists, Bollé,
Gesztesy, Grosse and Simon in 1987 and Borisov, Schrader, Mueller
in 1988. They were able to give it a mathematical basis.
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Early results

• Bollé et al found simple examples in two dimensions of Dirac
operators coupled to connections that had only continuous spectrum
for which Witten’s formula gave a finite answer.

•When these operators are Fredholm then Witten’s formula gives the
Fredholm index (even if the operators have some essential spectrum).
In non-Fredholm situations the formula can give any real number.

• They proved a stability result that gave invariance of the Witten index
for relatively trace class perturbations but not compact perturbations in
the non-Fredholm case.

• Callias studied a three dimensional example but unfortunately his
methods are mathematically incomplete. All other early examples of
the Witten index were one and two dimensional.
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2.1 Gesztesy-SImon

The first substantial theoretical advance was due to Gesztesy- Simon
(1987) in a subsequent paper.

We are given a Hilbert space equipped with a Z2 grading γ and a self
adjoint unbounded operator D such that Dγ + γD = 0.

For simplicity take the space to be H(2) := H⊕H for a fixed separable
infinite dimensional Hilbert space H. Then we may write:

γ =

(
1 0
0 −1

)
D =

(
0 D−
D+ 0

)
.

Gesztesy-Simon consider, for z in the intersection of the resolvent
sets, the situation where the difference

(z +D−D+)−1 − (z +D+D−)−1

is in the trace class but the individual operators are not trace class.
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Then they define nonnegative self-adjoint operators

H1 = D−D+; H2 = D+D−

and introduce the spectral shift function ξ(µ;H2;H1) associated with a
pair (H2;H1) such that ξ(µ;H2;H1) = 0, µ < 0 and

Tr[(z +H1)−1 − (z +H2)−1] = −
∫ ∞

0
ξ(µ;H2;H1)(µ+ z)−2dµ

and they introduce the ‘Witten index’ of D+ as

lim
z→0

zTr[(z +H1)−1 − (z +H2)−1]

whenever the limit exists. They prove that in some cases it is given by
limµ↓0 ξ(µ;H2;H1).
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Heat kernel approach

Gesztesy-Simon also introduced a heat kernel approach. A more
extensive treatment of the heat kernel approach linking it to both index
theory and scattering theory proper was developed by N. V. Borisov,
W. Müller and R. Schrader in 1988.

They did not discuss operators with ‘nasty spectrum’ as occur in
condensed matter theory or the non-Fredholm case but did lay out a
general set of results for geometric scattering problems in higher
dimensions using the heat kernel approach to the Witten index and
‘supersymmetric scattering theory’.
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2.2 Relation with spectral flow

Consider spectral flow along a path of self adjoint Fredholm operators
{A(s)|s ∈ R} joining A0 and A1 on K.

We convert this into an index problem on a Z2 graded space by
introducing on L2(R,K) the operators:

D+ =
∂

∂s
+A(s), D− = D∗+

and on L2(R,K(2)) the operator

D =

(
0 D−
D+ 0

)
.

Recently it was shown by GLMST that for Fredholm operators A± with
essential spectrum there is a situation where the index of D+ is the
spectral flow along the path A(s).

Alan Carey The Australian National University Spectral flow



2.3 The GLMST trace formula.

In a long paper in Advances in Mathematics in 2011 GLMST
established a trace formula that relates the Fredholm index of D+ with
spectral flow along the path A(s) even when there is essential
spectrum.

But a very restrictive hypothesis was needed.

HYPOTHESIS: the relatively trace class perturbation assumption holds
namely: (A+ −A−)(1 +A2

−)−1/2 is trace class.

This means their result does not apply directly to geometric situations
and differential operators

The GLMST trace formula is:

trL2(R,K2) z
(
(H2 + z)−1 − (H1 + z)−1

)
=

1

2
trK

(
gz(A+)− gz(A−)

)
, (1)

where gz(x) = x(x2 + z)−1/2. The operator differences on both sides
are trace class under the HYPOTHESIS.
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They also showed that (in the Fredholm case) if we take limz→0 on both
sides then the LHS is the Fredholm index and the RHS is spectral flow.

In recent work we have shown:

(i) The GLMST formula holds for relatively trace class perturbations in
the non-Fredholm case. Now when we take limz→0 the LHS is the
Witten index and the RHS is given by the spectral shift function at zero
for the pair A±.

This supports the idea that the spectral shift function for the pair A± is
a generalised spectral flow.

(ii) The GLMST formula can be applied to certain pseudodifferential
operators in all dimensions.

(iii) The formula can be extended to the situation of relatively
Hilbert-Schmidt perturbations and this allows one and two dimensional
differential operator examples both Fredholm and non-Fredholm.
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We are thinking of these results as showing that when the path does
not consist of Fredholm operators, we may think of spectral flow as
being replaced by the spectral shift function and the Fredholm index by
the Witten index.

BUT the explicit examples for differential operators (not
pseudo-differential operators) are greatly restricted. We have
generalised spectral flow in one dimension= the Witten index in two
dimensions.

For applications we want to know what happens in two and three
dimensions.
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2.4 Speculation on higher dimensions

For inspiration we turn to some older work on operators with ‘compact’
resolvent.

In BCPRSW, we established a formula for Dirac type operators on
covering spaces. The set-up there is that we have a simply connected
space M̃ admitting an action by a discrete group Γ such that the
quotient M = M̃/Γ is a compact manifold.

Assume A± are unitarily equivalent Γ-invariant Dirac type operators on
M̃ and τΓ is the Γ trace of Atiyah.

We were interested in the ‘type II spectral flow’ along a path
A(s), s ∈ [0, 1] of Γ invariant self adjoint operators joining unitarily
equivalent A±.

This is defined by taking Phillips analytic approach to spectral flow and
generalising it to the type II setting.

Note that in this type II setting operators can have continuous
spectrum including zero but still be ‘Breuer-Fredholm’.
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We form D± as before (that is D+ = ∂
∂s +A(s)) and regard these as

differential operators on a Hilbert space H of sections of a bundle on
S1 × M̃ .

Then the following trace formula holds:

τΓ,H(e−εD−D+ − e−εD+D−) =

√
ε

π

∫
τΓ(

dA(s)

ds
e−εA(s)2)ds

The LHS is the (Breuer)-Fredholm index and the RHS is semi-finite
spectral flow.
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Using a Laplace transform argument we obtain for r > 0:

τH,Γ((1 +D−D+)−r − (1 +D+D−)−r)

= Cr+1/2

∫
τΓ(

dA(s)

ds
(1 +A(s)2)−(r+1/2))ds

where Cr+1/2 = Γ(r + 1/2)π−1/2Γ(r)−1 provided both sides are trace
class.

This is our guess for the higher dimensional GLMST formula. For r = 1
and when the operators A(s) have ‘compact’ resolvents it is exactly the
GLMST formula.
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2.5 Cyclic homology: the work of Jens Kaad, R.W. Carey and J.
Pincus

Consider bounded operators T satisfying [T, T ∗] is trace class. Such
‘almost normal operators’ formed the subject of an extensive series of
papers by Carey-Pincus in both the Fredholm case and the
non-Fredholm case.

Carey-Pincus (1986) wrote T = X + iY where X is the real part and Y
is the imaginary part of T . Then we have [T, T ∗] = 2i[X,Y ] and thus
we are dealing with an ‘almost commuting’ pair of self adjoint
operators.

They then introduced their ‘principal function’, observed that it can be
related to the spectral shift function and created a functional calculus
for almost commuting pairs.

They introduced an index for such almost commuting pairs using the
limit at zero from above of the spectral shift function (when it exists)
just as for the Gesztesy-Simon ‘Witten index’.
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The punchline

Witten goes to Carey-Pincus via the map

D+ → T = D+(1 +D−D+)−1/2

because
(1 +D−D+)−1 − (1 +D+D−)−1 = [T, T ∗]

Form the algebra A generated by T, T ∗ and consider the quotient
B = A/(A ∩ Trace class) with q : A → B the quotient map..

The Witten index is defined via q(T )⊗ q(T ∗)→ Tr([T, T ∗]) which turns
out to be a function on the degree one cyclic homology group of B.

By analogy the Fredholm index would be a function on the K-theory of
A/compacts.

Higher dimensions: there is an ‘index’ constructed from

Tr((1 +D−D+)−n − (1 +D+D−)−n) = Tr((1− T ∗T )n − (1− TT ∗)n)

which is a functional on a more complicated cyclic homology group for
the algebra A.

Alan Carey The Australian National University Spectral flow


