Topological Phases of Quantum Matter September 08 2014 ESI Vienna, Austria

Dissipatively Induced Quantum Phases of Atomic Fermions

UNIVERSITY OF INNSBRUCK

Sebastian Diehl

Institute for Theoretical Physics, Innsbruck University, and Institute for Theoretical Physics, Technical University Dresden

Collaborations: J. C. Budich, M. A. Baranov, P. Zoller (Innsbruck) C. Bardyn (Caltech), A. Imamoglu (ETH)

Motivation

Bose-Einstein Condensate (1995)

Vortices

(1999)

Many-body physics with cold atoms

Mott Insulator (2002)

Fermion superfluid (2003)

Common theme:

 closed system (isolated from environment)

 stationary states in thermodynamic equilibrium

- thermalization/equilibration (PennState, Berkeley, Chicago, ...)
- sweep and quench many-body dynamics (Munich, Vienna)
- metastable excited many-body states (Innsbruck, MIT, ...)

Motivation

Bose-Einstein Condensate (1995)

Vortices

(1999)

Many-body physics with cold atoms

Mott Insulator (2002)

Fermion superfluid (2003)

Common theme:

 stationary states in thermodynamic equilibrium

Novel Situation: Cold atoms as open many-body systems

Many-body physics with tailored dissipation

SD et al., Nature Physics (2008) B. Kraus, SD, et al PRA (2008)

Many-Body Physics with Dissipation: Description

• Many-Body master equations

- extend notion of Hamiltonian engineering to dissipative sector
- microscopically well controlled non-equilibrium many-body quantum systems
- here: focus on H = 0
- Important concept: Dark states

$$J_i |D\rangle = 0 \quad \forall i$$
$$\Rightarrow \mathcal{L}[|D\rangle \langle D|] = 0$$

ightarrow time evolution stops when $ho=|D
angle\langle D|$

Many-Body Physics with Dissipation: Description

• Many-Body master equations

Interesting situation: unique dark state solution

Dark states: An analogy

• optical pumping: three internal (electronic) levels (Aspect, Cohen-Tannoudji; Kasevich, Chu)

(no conflict with second law of thermodynamics)

Sketch of implementation with cold bosonic atoms

 Lindblad operators for BEC dark state: locally mapping any antisymmetric component into the symmetric one

$$J_i = (a_i^{\dagger} + a_{i+1}^{\dagger})(a_i - a_{i+1})$$

m

(i) Drive: coherent coupling to auxiliary system with double wavelength Raman laser

Sketch of implementation with cold bosonic atoms

 Lindblad operators for BEC dark state: locally mapping any antisymmetric component into the symmetric one

$$J_i = (a_i^{\dagger} + a_{i+1}^{\dagger})(a_i - a_{i+1})$$

m

by immersion of driven system into BEC reservoir

Summary: Dissipative Many-Body State Preparation

• Lindblad operators for BEC dark state:

$$J_i = (a_i^{\dagger} + a_{i+1}^{\dagger})(a_i - a_{i+1}) \qquad J_i |\text{BEC}\rangle = 0$$

- Long range phase coherence/ boson condensation builds up from quasilocal dissipative operations
- Uniqueness of stationary solution can be shown (for fixed particle number)
 - Ordered phase reached from arbitrary initial state

Dissipatively Induced Fermion Pairing

SD, W. Yi, A. Daley, P. Zoller, PRL (2010); W. Yi, SD, A. Daley, P. Zoller, New J. Phys. (2012);

Motivation: Fermi-Hubbard Model Quantum Simulation

- Goal: finding ground state of Fermi-Hubbard model
- Clean realization of fermion Hubbard model possible
 - Detection of Fermi surface in 40K (M. Köhl et al. PRL 05)
 - Fermionic Mott Insulators (R. Jördens et al. Nature 08; U. Schneider et al., Science 08)
- Cooling problematic: small d-wave gap sets tough requirements

- Roadmap via dissipative quantum state preparation approach:
- (1) Dissipatively prepare pure (zero entropy) state close to the expected ground state
- (2) Adiabatic passage to the Hubbard ground state

The State to Be Prepared

Features shared with expected Hubbard ground state:

(1) Quantum numbers

- ➡ no phase transition crossed in preparation process: gap protection
- (2) Energetically close?
 - → off-site pairing avoids excessive double occupancy
 - Task: find "parent Liouvillian" for this state
 - "cooling" into the d-wave

Pairing mechanism

- Consider 1D cut only
- Half filling: Neel state for antiferromagnetism

- Lindblad operators (1D): e.g. $j^+_{i-1,\uparrow} = c^\dagger_{i-1,\uparrow} c_{i,\downarrow}$

full set:

$$j_{\ell} = \{j_{i\pm}^{\pm}, \ j_{i\pm}^{z}\}$$

dark state based on Fermi statistics

• D-wave (analog) state: interpret the state as a symmetrically delocalized Neel order

$$|\text{BCS}_1\rangle = (d^{\dagger})^N |\text{vac}\rangle, \ d^{\dagger} = \sum_i (c_{i+1,\uparrow}^{\dagger} + c_{i-1,\uparrow}^{\dagger})c_{i,\downarrow}^{\dagger})$$
• Lindblad operators (1D): e.g. $J_i^+ = j_{i,+}^+ + j_{i,-}^+ = (c_{i+1,\uparrow}^{\dagger} + c_{i-1,\uparrow}^{\dagger})c_{i,\downarrow}$
phase locking

Combine fermionic Pauli blocking with delocalization as for bosons

Dissipative Pairing: The d-wave jump operators

The full set of Lindblad operators is found from

$$[J_i^{\alpha}, G^{\dagger}] = 0 \quad \forall i, \alpha \qquad |D(N)\rangle \sim G^{\dagger N} |\text{vac}\rangle$$

- Discussion: These operators
 - form exhaustive set: d-wave steady state unique, reached for arbitrary initial state
 - bilinear: describe the redistribution of the superposition of a single particle
 - generalization to arbitrary symmetries possible

Projective pair condensation mechanism, does not rely on attractive conservative forces

Fixed Number vs. Fixed Phase Lindblad Operators

- spinless fermions for simplicity
- fixed number Lindblad operators

$$J_i = C_i^{\dagger} A_i$$

• resulting dark state

$$BCS, N\rangle = G^{\dagger N} |vac\rangle$$

• fixed phase Lindblad operators

$$j_i = C_i^{\dagger} + r e^{\mathrm{i}\theta} A_i$$

• resulting dark state (with
$$\Delta N \sim 1/\sqrt{N}$$

$$|BCS,\theta\rangle = \exp(re^{i\theta}G^{\dagger})|vac\rangle$$

requirements

translation invariant creation and annihilation part

antisymmetry

$$C_{i}^{\dagger} = \sum_{j} v_{i-j} a_{j}^{\dagger} \qquad C_{k}^{\dagger} = v_{k} a_{k}^{\dagger} \qquad \varphi_{k} = \frac{v_{k}}{u_{k}} = -\varphi_{-k}$$
$$A_{i} = \sum_{j} u_{i-j} a_{j} \qquad A_{k} = u_{k} a_{k} \qquad G^{\dagger} = \sum_{k} \varphi_{k} c_{-k}^{\dagger} c_{k}^{\dagger}$$

 comment: allows us to construct exactly solvable interacting Hubbard models with parent Hamiltonian

$$H = \sum_{i} J_{i}^{\dagger} J_{i} \qquad J_{i} |D\rangle = 0 \,\forall i$$

Spontaneous Symmetry Breaking and Dissipative Gap

- use equivalence of fixed number and fixed phase states in thdyn limit
- use exact knowledge of stationary state: linearized long time evolution

$$\mathcal{L}[\rho] = \kappa \sum_{i} [j_i \rho j_i^{\dagger} - \frac{1}{2} \{ j_i^{\dagger} j_i, \rho \}] = \sum_{\mathbf{q}} \kappa_{\mathbf{q}} [j_{\mathbf{q}} \rho j_{\mathbf{q}}^{\dagger} - \frac{1}{2} \{ j_{\mathbf{q}}^{\dagger} j_{\mathbf{q}}, \rho \}]$$

properties

• effective damping rate with a "dissipative gap"

$$\kappa_{\mathbf{q}} = \kappa_0 \int_{\mathrm{BZ}} \frac{d^2 \mathbf{k}}{(2\pi)^2} \frac{|u_{\mathbf{k}} v_{\mathbf{k}}|^2}{|u_{\mathbf{k}}|^2 + |\alpha v_{\mathbf{k}}|^2} (|u_{\mathbf{q}}^2| + |v_{\mathbf{q}}^2|) \ge \kappa_0 n$$

Scale generated in long time evolution ; exponentially fast approach of steady state

fermions

bosons

Robustness of prepared state against perturbations

Topology by Dissipation

One Dimension

SD, E. Rico, M. A. Baranov, P. Zoller, Nat. Phys. (2011)

Two Dimensions

C. Bardyn, E. Rico, M. Baranov, A. Imamoglu, P. Zoller, SD, PRL (2012); New J. Phys. (2013); J. C. Budich, P. Zoller, SD, in preparation

Key Questions:

- Is topological order an exclusive feature of Hamiltonian ground states, or pure states?
- Which topological states be reached by a targeted, dissipative cooling process?
- What are proper microscopic, experimentally realizable models?
- What are the parallels and differences to the equilibrium (ground state) scenario?

Topological States of Matter [Hamiltonian setting]

topological states of matter (noninteracting fermions)

- beyond the Landau paradigm
- robust edge states and non-Abelian excitations
- topological protected quantum memory and quantum computing Nayak et al., RMP (2008)

Quantum Hall systems and topological insulators/ BdG superconductors

 minimal model: Kitaev's quantum wire Kitaev, Phys. Usp. (2001) classification: Schnyder et al. PRB (2008); Kitaev (2009) based on Altland and Zirnbauer, PRB (1997)

- Wire Hamiltonian (spinless [spin-polarized] fermions)

$$H = \sum_{i} \begin{bmatrix} -Ja_{i}^{\dagger}a_{i+1} + \Delta a_{i}a_{i+1} + h.c. - \mu \left(a_{i}^{\dagger}a_{i} - \frac{1}{2}\right) \end{bmatrix}$$

hopping superconducting order parameter chemical potential

Hasan and Kane, RMP (2010)

Qi and Zhang, RMP (2011)

Reminder: Kitaev's quantum wire (Hamiltonian scenario)

Kitaev, Phys. Usp. (2001)

• Hamiltonian

$$H = 2J \sum_{i=1}^{N-1} (\tilde{a}_i^{\dagger} \tilde{a}_i - \frac{1}{2}) + 0 \cdot \tilde{a}_N^{\dagger} a_N$$

with $\tilde{a}_i = \frac{1}{2}i(a_{i+1} + a_{i+1}^{\dagger} - a_i + a_i^{\dagger})$ for $(\Delta = J, \mu = 0)$ quasilocal

• "Majorana fermions" $a_j \equiv \frac{1}{2} \left(c_{2j-1} + ic_{2j} \right)$ $c_j^{\dagger} = c_j, \{c_j, c_l\} = 2\delta_{jl}$

unpaired Majorana edge modes

bulk

- p-wave superfluid in ground state

 $\tilde{a}_i |\mathbf{p} - \mathbf{wave}\rangle = 0 \ (i = 1, \dots, N-1)$

- off-site paired Majoranas
- gap in spectrum: 2J

edge

- unpaired Majoranas $\,\gamma_L,\gamma_R\,$
- non-local Bogoliubov fermion

$$|0
angle,\,|1
angle= ilde{a}_{N}^{\dagger}|0
angle$$

- zero energy

Dissipative Topological Quantum Wire

Dissipative Topological Quantum Wire

master equation

$$\dot{\rho} = \kappa \sum_{i=1}^{N-1} \left(\tilde{a}_i \rho \tilde{a}_i^{\dagger} - \frac{1}{2} \tilde{a}_i^{\dagger} \tilde{a}_i \rho - \rho \frac{1}{2} \tilde{a}_i^{\dagger} \tilde{a}_i \right)$$

bulk driven to pure steady state: Kitaev's ground state

$$\tilde{a}_i |\mathbf{p} - \mathbf{wave}\rangle = 0 \ (i = 1, \dots, N-1)$$

dark state = topological p-wave

$$\{\tilde{a}_i, \tilde{a}_j\} = 0 \quad \{\tilde{a}_i^{\dagger}, \tilde{a}_j\} = \delta_{ij}$$
 Hilbert space
 => dark state
 unique
 dark state
 dark state

master equation

$$\dot{\rho} = \kappa \sum_{i=1}^{N-1} \left(\tilde{a}_i \rho \tilde{a}_i^{\dagger} - \frac{1}{2} \tilde{a}_i^{\dagger} \tilde{a}_i \rho - \rho \frac{1}{2} \tilde{a}_i^{\dagger} \tilde{a}_i \right)$$

bulk driven to pure steady state: Kitaev's ground state

$$\tilde{a}_i |\mathbf{p} - \mathbf{wave}\rangle = 0 \ (i = 1, \dots, N-1)$$

dark state = topological p-wave

Majorana edge modes decoupled from dissipation

$$|0
angle,\,|1
angle= ilde{a}_{N}^{\dagger}|0
angle$$

non-local decoherence free subspace

 $\tilde{a}_i |\mathbf{p} - \mathbf{wave}\rangle = 0 \ (i = 1, \dots, N-1)$

dark state = topological p-wave

non-local decoherence free subspace

 $|0\rangle, |1\rangle = \tilde{a}_{N}^{\dagger}|0\rangle$

Implementation with Fermionic Atoms

• Microscopic implementation with spinless fermions (cold atoms)

$$J_{i} = (a_{i}^{\dagger} + a_{i+1}^{\dagger})(a_{i} - a_{i+1})$$
• physical edge via single site addressability

• Gakr et al. Nature 2009;
Weitenberg et al. Nature 2009;
Weitenberg et al. Nature 2011
also: Chicago Penplete, ...

• Chicago Penplete, ...

• Chicago Penplete, ...

• Logical edge via single site addressability

• Chicago Penplete, ...

• Logical edge via single site addressability

• Chicago Penplete, ...

• Logical edge via single site addressability

• Chicago Penplete, ...

• Logical edge via single site addressability

• Chicago Penplete, ...

• Logical edge via single site addressability

• Chicago Penplete, ...

• Logical edge via single site addressability

• Chicago Penplete, ...

• Logical edge via single site addressability

• Chicago Penplete, ...

• Logical edge via single site addressability

• Logical edge via site addressability

• Logical edge via site addressability

• Logical edge via si

immersion of driven system into BEC reservoir (similar to bosonic case above)

Connection to quadratic theory: we obtain

Properties: "Topology by Dissipation"

parallels Hamiltonian case

Topological invariant for mixed density matrices

• A Gaussian translationally invariant state is completely characterized by (spinless fermions):

$$\begin{pmatrix} \langle [a_k^{\dagger}, a_k] \rangle & \langle [a_k^{\dagger}, a_{-k}^{\dagger}] \rangle \\ \langle [a_{-k}, a_k] \rangle & \langle [a_{-k}, a_{-k}^{\dagger}] \rangle \end{pmatrix} = \vec{n}_k \vec{\sigma} = Q_k \qquad |\vec{n}_k| \le 1 \quad \forall k \in (-\pi, \pi]$$

• Chiral symmetry for the state: There is $\Sigma ext{ s.t. } \{\Sigma, Q_k\} = 0 \quad orall k \quad \Sigma ext{ unitary, } \Sigma^2 = 1$

• Winding number:
$$W = \frac{1}{4\pi i} \int_{-\pi}^{\pi} dk \operatorname{tr}(\Sigma Q_k^{-1} \partial_k Q_k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} dk \vec{a} \cdot \left(\hat{\vec{n}}_k \times \partial_k \hat{\vec{n}}_k\right)$$

• pure states: $\forall k : |\vec{n}_k| = 1$
 $\hat{\vec{n}}_k = \frac{\vec{n}_k}{|\vec{n}_k|}$

defined if topology of circle is preserved

 $\forall k: |\vec{n}_k| > 0$

i.e. mixed states

• circle collapses to line:

 $\exists k_0: |ec{n}_{k_0}| = 0$ modes k_0 completely mixed "purity gap" closes

Topological invariant for mixed density matrices

• A Gaussian translationally invariant state is completely characterized by (spinless fermions):

$$\begin{pmatrix} \langle [a_k^{\dagger}, a_k] \rangle & \langle [a_k^{\dagger}, a_{-k}^{\dagger}] \rangle \\ \langle [a_{-k}, a_k] \rangle & \langle [a_{-k}, a_{-k}^{\dagger}] \rangle \end{pmatrix} = \vec{n}_k \vec{\sigma} = Q_k \qquad |\vec{n}_k| \le 1 \quad \forall k \in (-\pi, \pi]$$

• Chiral symmetry for the state: There is $\Sigma ext{ s.t. } \{\Sigma, Q_k\} = 0 \quad orall k \quad \Sigma ext{ unitary, } \Sigma^2 = 1$

• Winding number:
$$W = \frac{1}{4\pi i} \int_{-\pi}^{\pi} dk \operatorname{tr}(\Sigma Q_k^{-1} \partial_k Q_k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} dk \vec{a} \cdot \left(\hat{\vec{n}}_k \times \partial_k \hat{\vec{n}}_k\right)$$

• pure states: $\forall k : |\vec{n}_k| = 1$
 $\hat{\vec{n}}_k = \frac{\vec{n}_k}{|\vec{n}_k|}$

non-pure states motivate the definition of spectral projector by smooth deformation

$$\mathcal{P}_k = rac{1}{2} (\mathbb{I} - \hat{ec{n}}_k ec{\sigma})$$
 for $|ec{n}_k| > 0$ finite "purity gap"

two gaps required for topological stability: damping and purity gap

Two Gaps: Physical Implications

- topological phase transitions via different patterns of gap closing
 - $\Delta_d = 0, \ \Delta_p > 0$ $\Delta_d = 0, \ \Delta_p = 0$

critical behavior

- $\Delta_d > 0, \ \Delta_p = 0$
- chiral Zigzag ladder: incoherent sum of two Liouvillians

topological phase transition with and without criticality (via purity gap closing)

 $\mathcal{L} \propto \mathcal{L}^{(1)} + \kappa \mathcal{L}^{(2)}$

Dissipative Topological Superfluid in 2 Dimensions

J. C. Budich, P. Zoller, SD, in preparation (2014)

Dissipative Chern Insulators (BdG Superfluids/-conductors)

- Goal: Extend scope of dissipatively preparable topologically non-trivial states
 - D > 1
 - in particular, states with nonzero Chern number
- recipe for pure dissipative topological states (so far)
 - Bogoliubov eigenoperators as Lindblad operators
 - quasi-locality of Wannier functions key requirement for physical realization

$$L_i = \sum_j u_{j-i} a_j + v_{j-i} a_j^{\dagger}$$

Hurdle: Exponentially (let alone compactly supported) Wannier functions do not exist when Chern number nonzero

$$H_{\text{parent}} = \sum_{i} L_{i}^{\dagger} L_{i} \quad L_{i} |G\rangle = 0 \forall i$$

$$L_i = \sum_i u_{j-i} a_j + v_{j-i} a_j^{\dagger}$$

Competition of Topology and Locality in Chern insulator/ BdG superconductor

• first Chern number

$$\mathcal{C} = \frac{i}{2\pi} \int_{\mathrm{BZ}} \mathrm{d}^2 k \operatorname{Tr} \left(\mathcal{P}_{\mathbf{k}} \left[(\partial_{k_x} \mathcal{P}_{\mathbf{k}}), (\partial_{k_y} \mathcal{P}_{\mathbf{k}}) \right] \right)$$

projector onto occupied bands; e.g. spinless fermions

 $\mathcal{P}_{\mathbf{k}} = \frac{1}{2} (\mathbf{1} - \vec{n}_{\mathbf{k}} \vec{\sigma}) = |u_{\mathbf{k}}\rangle \langle u_{\mathbf{k}}| \qquad |\vec{n}_{\mathbf{k}}| = 1$

- nonzero Chern number <=> whole Bloch sphere covered by $\vec{n}_{\mathbf{k}}$
- then, no global gauge of Bloch functions exists:

$$|u_{\mathbf{k}}\rangle = \frac{\mathcal{P}_{\mathbf{k}}|G\rangle}{\sqrt{\langle G|\mathcal{P}_{\mathbf{k}}|G\rangle}}$$

 implication: exponentially localized Wannier functions exist if and only if Chern number is zero

> Landau levels: D. J. Thouless, J. Phys. C (1984); general band structures: C. Brouder et al. PRL (2007)

previous preparation strategy requires to physically realize algebraically decaying Lindblad operators

circumvent by using intrinsic open system properties

Model

- Strategy: combine
 - critical (topological) quasi-local Lindblad operators
 - non-topological Lindblad stabilizing critical point
- Lindblad operators generating dissipative dynamics:
 - starting point: interacting Liouvillian with $L_i = C_i^{\dagger}A_i$ & long time linearization

• e.g. half filling
$$L_i = C_i^\dagger + A_i$$

• creation part

$$C_{i}^{\dagger} = \beta \, a_{i}^{\dagger} + (a_{i_{1}}^{\dagger} + a_{i_{2}}^{\dagger} + a_{i_{3}}^{\dagger} + a_{i_{4}}^{\dagger})$$

s-wave symmetric creation part

• annihilation part

$$A_{i} = (a_{i_{1}} + ia_{i_{2}} - a_{i_{3}} - ia_{i_{4}})$$
 local circulation
= $\nabla_{i,x}a_{i} + i\nabla_{i,y}a_{i}$ p-wave symmetric annihilation part

Observations

- pure stationary state: $\{L_i, L_j\} = 0, \ \{L_i, L_j^{\dagger}\} \neq 0 \ \forall i, j$
- standard 2D diagnostics via first Chern number

$$\mathcal{C} = \frac{1}{4\pi} \int d^2k \, \vec{n}_{\mathbf{k}} (\partial_{k_1} \vec{n}_{\mathbf{k}} \times \partial_{k_2} \vec{n}_{\mathbf{k}})$$

- vanishes except for special points
- special points are critical: closing of damping gap
 - not a Landau-Ginzburg transition (same symmetries)

$$\vec{n}_{\mathbf{k}}(\delta\beta) = \vec{n}_{-\mathbf{k}}(-\delta\beta) \qquad \text{dist}$$

distance from transition

not obviously a topological transition

$$\mathcal{C}(\delta\beta) = \mathcal{C}(-\delta\beta)$$

- side remark C. Bardyn, E. Rico, M. Baranov, A. Imamoglu, P. Zoller, SD, PRL (2012); New J. Phys. (2013)
 - dissipative topological transition after dimensional reduction in presence of optically imprinted odd vortex
 - generic presence of unpaired Majorana mode despite topologically trivial 2D bulk

Physics at the dissipative critical point

 examine critical (damping gap closing) points for quasilocal p+ip Lindblad operators

$$L_{\mathbf{k}} = \tilde{u}_{\mathbf{k}} a_{\mathbf{k}} + \tilde{v}_{\mathbf{k}} a_{-\mathbf{k}}^{\dagger}$$

$$B_{\mathbf{k}} = \begin{pmatrix} \tilde{u}_{\mathbf{k}} \\ \tilde{v}_{\mathbf{k}} \end{pmatrix} = \begin{pmatrix} 2i\left(\sin(k_x) + i\sin(k_y)\right) \\ \beta + 2\left(\cos(k_x) + \cos(k_y)\right) \end{pmatrix}$$

- pseudo Bloch functions:
 - orthogonal, but not normalized
 - non-vanishing for all k (except at critical point)
- critical point $\beta = -4$
 - there is one point k=0 where

$$L_{k=0} = 0, B_{k=0} = 0$$

but projection smoothly defined all over BZ

$$\mathcal{P}_{\mathbf{k}} = \frac{B_{\mathbf{k}}B_{\mathbf{k}}^{\dagger}}{\operatorname{Tr}\left\{B_{\mathbf{k}}B_{\mathbf{k}}^{\dagger}\right\}} \to \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix} \text{ for } \mathbf{k} \to 0$$

i

 i_3

 i_2

+i

Chern number

$$\nu_{2D}$$

 ν_{2D}
 -4 $+4$

 \dot{i}_1

$$\mathcal{C} = -1$$

Physics at the dissipative critical point

 rexamine critical (damping gap closing) points for quasilocal p+ip Lindblad operators

$$L_{\mathbf{k}} = \tilde{u}_{\mathbf{k}} a_{\mathbf{k}} + \tilde{v}_{\mathbf{k}} a_{-\mathbf{k}}^{\dagger}$$

$$B_{\mathbf{k}} = \begin{pmatrix} \tilde{u}_{\mathbf{k}} \\ \tilde{v}_{\mathbf{k}} \end{pmatrix} = \begin{pmatrix} 2i\left(\sin(k_x) + i\sin(k_y)\right) \\ \beta + 2\left(\cos(k_x) + \cos(k_y)\right) \end{pmatrix}$$

- pseudo Bloch functions:
 - orthogonal, but not normalized
 - non-vanishing for all k (except at critical point)
- critical point $\beta = -4$
 - there is one point k=0 where

$$L_{k=0} = 0, B_{k=0} = 0$$

 \dot{i}

• interpretation: over-completeness of quasi-local pseudo Wannier (and Bloch) functions necessary to obtain non-zero Chern number

E. Rashba, L. Zhukov, A. Efros, PRB (1997)

• damping criticality of this point: $\kappa_{\mathbf{k}=0} = \{L_{\mathbf{k}=0}^{\dagger}, L_{\mathbf{k}=0}\} = \operatorname{Tr}\left\{B_{\mathbf{k}=0}B_{\mathbf{k}=0}^{\dagger}\right\} = 0$

ightarrow amounts to fine-tuning of damping function $\kappa_{\mathbf{k}} \geq 0$

Stabilization of the critical point

É

• useful decomposition of Chern number: sum of winding numbers around TRI points λ within "electron region" \mathcal{E} , where $\hat{n}_{3,\mathbf{k}} > 0$ \vec{n}_k ^

$$\mathcal{C} = \frac{1}{4\pi} \int d^2 \mathbf{k} \, \hat{\vec{n}}_{\mathbf{k}} (\partial_{k_1} \, \hat{\vec{n}}_{\mathbf{k}} \times \partial_{k_2} \, \hat{\vec{n}}_{\mathbf{k}}) = \sum_{\lambda \in \mathcal{E}} \nu_{\lambda}$$

$$\mathbf{n}_{\mathbf{k}} = \frac{1}{|\vec{n}_{\mathbf{k}}|}$$

$$\nu_{\lambda} = \frac{1}{2\pi} \oint_{\mathcal{F}_{\lambda}} \nabla_{\mathbf{k}} \theta_{\mathbf{k}} \cdot d\mathbf{k}$$
height function: $\hat{n}_{3,\mathbf{k}} = 1 - 2n(\mathbf{k})$ vector field: $\begin{pmatrix} n_{1,\mathbf{k}} \\ n_{2,\mathbf{k}} \end{pmatrix} = r_{\mathbf{k}} \begin{pmatrix} \sin \theta_{\mathbf{k}} \\ \cos \theta_{\mathbf{k}} \end{pmatrix}$

$$\int_{\mathbf{k}} \frac{1}{|\vec{n}_{\mathbf{k}}|} \int_{\mathbf{k}} \frac{1}{|\vec$$

need to "plug the hole" (here, near k=0)

Stabilization of the critical point

 minimal solution: add momentum selectively non-topological Lindblad operators (Raman pulse with Gaussian envelope)

$$L^A_{\mathbf{k}} = \sqrt{g} e^{-\mathbf{k}^2 d^2} a_{\mathbf{k}}$$

Summary

Tailored dissipation opens new perspectives for many-body physics with cold atom systems

• Pure states with long range correlations from quasilocal dissipation

• Pair condensation mechanism for fermions with potential applications for fermion cooling

• Targeted preparation of topologically nontrivial states in one and two dimensions

