Bulk-edge duality for topological insulators

Gian Michele Graf ETH Zurich

Topological Phases of Quantum Matter Erwin Schrödinger Institute, Vienna September 8-12, 2014

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Bulk-edge duality for topological insulators

Gian Michele Graf ETH Zurich

Topological Phases of Quantum Matter Erwin Schrödinger Institute, Vienna September 8-12, 2014

> joint work with Marcello Porta thanks to Yosi Avron

> > ◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

Rueda de casino

Hamiltonians

Indices

Quantum Hall effect

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

Insulator in the Bulk: Excitation gap
 For independent electrons: band gap at Fermi energy

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Insulator in the Bulk: Excitation gap
 For independent electrons: band gap at Fermi energy

(ロ) (同) (三) (三) (三) (三) (○) (○)

Time-reversal invariant fermionic system

- Insulator in the Bulk: Excitation gap
 For independent electrons: band gap at Fermi energy
- Time-reversal invariant fermionic system

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Insulator in the Bulk: Excitation gap
 For independent electrons: band gap at Fermi energy
- Time-reversal invariant fermionic system

Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open and time-reversal invariance.

In a nutshell: Termination of bulk of a topological insulator implies edge states

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

In a nutshell: Termination of bulk of a topological insulator implies edge states

(日) (日) (日) (日) (日) (日) (日)

 Goal: State the (intrinsic) topological property distinguishing different classes of insulators.

In a nutshell: Termination of bulk of a topological insulator implies edge states

 Goal: State the (intrinsic) topological property distinguishing different classes of insulators.

More precisely:

Express that property as an Index relating to the Bulk, resp. to the Edge.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In a nutshell: Termination of bulk of a topological insulator implies edge states

 Goal: State the (intrinsic) topological property distinguishing different classes of insulators.

- Express that property as an Index relating to the Bulk, resp. to the Edge.
- Bulk-edge duality: Can it be shown that the two indices agree?

Bulk-edge correspondence. Done?

In a nutshell: Termination of bulk of a topological insulator implies edge states

 Goal: State the (intrinsic) topological property distinguishing different classes of insulators.

- Express that property as an Index relating to the Bulk, resp. to the Edge. Yes, e.g. Kane and Mele.
- Bulk-edge duality: Can it be shown that the two indices agree? Schulz-Baldes et al.; Essin & Gurarie

Bulk-edge correspondence. Today

In a nutshell: Termination of bulk of a topological insulator implies edge states

 Goal: State the (intrinsic) topological property distinguishing different classes of insulators.

- Express that property as an Index relating to the Bulk, resp. to the Edge. Done differently.
- Bulk-edge duality: Can it be shown that the two indices agree? Done differently.

Introduction

Rueda de casino

Hamiltonians

Indices

Quantum Hall effect

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

Rueda de casino. Time 0'15"

Rueda de casino. Time 0'25"

Rueda de casino. Time 0'35"

Rueda de casino. Time 0'44"

Rueda de casino. Time 0'44.25"

Rueda de casino. Time 0'44.50"

Rueda de casino. Time 0'44.75"

Rueda de casino. Time 0'45"

Rueda de casino. Time 0'45.25"

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Rueda de casino. Time 0'45.50"

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Rueda de casino. Time 0'46"

Rueda de casino. Time 0'47"

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Rueda de casino. Time 0'55"

Rueda de casino. Time 1'16"

Rueda de casino. Time 3'23"

▲ロト ▲園 ト ▲ 国 ト ▲ 国 ト の へ ()・

Rules of the dance

Dancers

- start in pairs, anywhere
- end in pairs, anywhere (possibly elseways & elsewhere)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- are free in between
- must never step on center of the floor

Rules of the dance

Dancers

- start in pairs, anywhere
- end in pairs, anywhere (possibly elseways & elsewhere)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- are free in between
- must never step on center of the floor
- are unlabeled points

Rules of the dance

Dancers

- start in pairs, anywhere
- end in pairs, anywhere (possibly elseways & elsewhere)
- are free in between
- must never step on center of the floor
- are unlabeled points

There are dances which can not be deformed into one another.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

What is the index that makes the difference?

A snapshot of the dance

A snapshot of the dance

Dance D as a whole

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

A snapshot of the dance

Dance D as a whole

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A snapshot of the dance

Dance D as a whole

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ
The index of a Rueda

A snapshot of the dance

Dance D as a whole

The index of a Rueda

A snapshot of the dance

Dance D as a whole

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The index of a Rueda

A snapshot of the dance

Dance D as a whole

 $\mathcal{I}(D)$ = parity of number of crossings of fiducial line

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Introduction

Rueda de casino

Hamiltonians

Indices

Quantum Hall effect

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

translation invariant in the vertical direction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

translation invariant in the vertical direction

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

period may be assumed to be 1:

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...)

(ロ) (同) (三) (三) (三) (三) (○) (○)

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...), totalling N

(ロ) (同) (三) (三) (三) (三) (○) (○)

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...), totalling N
- ▶ Bloch reduction by quasi-momentum $k \in S^1 := \mathbb{R}/2\pi\mathbb{Z}$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...), totalling N
- ▶ Bloch reduction by quasi-momentum $k \in S^1 := \mathbb{R}/2\pi\mathbb{Z}$

End up with wave-functions $\psi = (\psi_n)_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}; \mathbb{C}^N)$ and Bulk Hamiltonian

$$\left(\boldsymbol{H}(\boldsymbol{k})\boldsymbol{\psi}\right)_{n} = \boldsymbol{A}(\boldsymbol{k})\boldsymbol{\psi}_{n-1} + \boldsymbol{A}(\boldsymbol{k})^{*}\boldsymbol{\psi}_{n+1} + \boldsymbol{V}_{n}(\boldsymbol{k})\boldsymbol{\psi}_{n}$$

with

 $V_n(k) = V_n(k)^* \in M_N(\mathbb{C})$ (potential) $A(k) \in GL(N)$ (hopping)

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...), totalling N
- ▶ Bloch reduction by quasi-momentum $k \in S^1 := \mathbb{R}/2\pi\mathbb{Z}$

End up with wave-functions $\psi = (\psi_n)_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}; \mathbb{C}^N)$ and Bulk Hamiltonian

$$\left(\boldsymbol{H}(\boldsymbol{k})\boldsymbol{\psi}\right)_{n} = \boldsymbol{A}(\boldsymbol{k})\boldsymbol{\psi}_{n-1} + \boldsymbol{A}(\boldsymbol{k})^{*}\boldsymbol{\psi}_{n+1} + \boldsymbol{V}_{n}(\boldsymbol{k})\boldsymbol{\psi}_{n}$$

with

 $V_n(k) = V_n(k)^* \in M_N(\mathbb{C})$ (potential) $A(k) \in GL(N)$ (hopping) : Schrödinger eq. is the 2nd order difference equation

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$

(オロトオ間トオミトオミト ヨー ろんの

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$

► translation invariant as before (hence Bloch reduction) Wave-functions $\psi \in \ell^2(\mathbb{N}; \mathbb{C}^N)$ and Edge Hamiltonian

$$\left(\boldsymbol{H}^{\sharp}(k)\boldsymbol{\psi}\right)_{n} = \boldsymbol{A}(k)\boldsymbol{\psi}_{n-1} + \boldsymbol{A}(k)^{*}\boldsymbol{\psi}_{n+1} + \boldsymbol{V}_{n}^{\sharp}(k)\boldsymbol{\psi}_{n}$$

(日) (日) (日) (日) (日) (日) (日)

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$

► translation invariant as before (hence Bloch reduction) Wave-functions $\psi \in \ell^2(\mathbb{N}; \mathbb{C}^N)$ and Edge Hamiltonian

$$\left(\boldsymbol{H}^{\sharp}(\boldsymbol{k})\boldsymbol{\psi}\right)_{n} = \boldsymbol{A}(\boldsymbol{k})\boldsymbol{\psi}_{n-1} + \boldsymbol{A}(\boldsymbol{k})^{*}\boldsymbol{\psi}_{n+1} + \boldsymbol{V}_{n}^{\sharp}(\boldsymbol{k})\boldsymbol{\psi}_{n}$$

which

 agrees with Bulk Hamiltonian outside of collar near edge (width n₀)

$$V_n^{\sharp}(k) = V_n(k) , \qquad (n > n_0)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Hamiltonian on the lattice $\mathbb{N}\times\mathbb{Z}$ (half-plane) with $\mathbb{N}=\{1,2,\ldots\}$

► translation invariant as before (hence Bloch reduction) Wave-functions $\psi \in \ell^2(\mathbb{N}; \mathbb{C}^N)$ and Edge Hamiltonian

$$\left(\boldsymbol{H}^{\sharp}(\boldsymbol{k})\boldsymbol{\psi}\right)_{n} = \boldsymbol{A}(\boldsymbol{k})\boldsymbol{\psi}_{n-1} + \boldsymbol{A}(\boldsymbol{k})^{*}\boldsymbol{\psi}_{n+1} + \boldsymbol{V}_{n}^{\sharp}(\boldsymbol{k})\boldsymbol{\psi}_{n}$$

which

 agrees with Bulk Hamiltonian outside of collar near edge (width n₀)

$$V_n^{\sharp}(k) = V_n(k) , \qquad (n > n_0)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

any (self-adjoint, local) boundary conditions

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$

► translation invariant as before (hence Bloch reduction) Wave-functions $\psi \in \ell^2(\mathbb{N}; \mathbb{C}^N)$ and Edge Hamiltonian

$$\left(\boldsymbol{H}^{\sharp}(\boldsymbol{k})\boldsymbol{\psi}\right)_{n} = \boldsymbol{A}(\boldsymbol{k})\boldsymbol{\psi}_{n-1} + \boldsymbol{A}(\boldsymbol{k})^{*}\boldsymbol{\psi}_{n+1} + \boldsymbol{V}_{n}^{\sharp}(\boldsymbol{k})\boldsymbol{\psi}_{n}$$

which

 agrees with Bulk Hamiltonian outside of collar near edge (width n₀)

$$V_n^{\sharp}(k) = V_n(k) , \qquad (n > n_0)$$

► any (self-adjoint, local) boundary conditions Note: $\sigma_{\text{ess}}(H^{\sharp}(k)) \subset \sigma_{\text{ess}}(H(k))$, but typically $\sigma_{\text{disc}}(H^{\sharp}(k)) \not\subset \sigma_{\text{disc}}(H(k))$

General assumptions

• Gap assumption: Fermi energy μ lies in a gap for all $k \in S^1$:

 $\mu\notin\sigma(H(k))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

General assumptions

Gap assumption: Fermi energy μ lies in a gap for all k ∈ S¹:

$$\mu \notin \sigma(H(k))$$

• Fermionic time-reversal symmetry: $\Theta : \mathbb{C}^N \to \mathbb{C}^N$

- Θ is anti-unitary and $\Theta^2 = -1$;
- Θ induces map on $\ell^2(\mathbb{Z}; \mathbb{C}^N)$, pointwise in $n \in \mathbb{Z}$;
- For all $k \in S^1$,

$$H(-k) = \Theta H(k) \Theta^{-1}$$

(日) (日) (日) (日) (日) (日) (日)

Likewise for $H^{\sharp}(k)$

Elementary consequences of $H(-k) = \Theta H(k) \Theta^{-1}$ • $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.
- Time-reversal invariant points, k = -k, at $k = 0, \pi$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.
- ► Time-reversal invariant points, k = -k, at $k = 0, \pi$. There

$$H = \Theta H \Theta^{-1}$$
 $(H = H(k) \text{ or } H^{\sharp}(k))$

(日) (日) (日) (日) (日) (日) (日)

Hence any eigenvalue is even degenerate (Kramers).

- $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.
- ► Time-reversal invariant points, k = -k, at $k = 0, \pi$. There

$$H = \Theta H \Theta^{-1}$$
 $(H = H(k) \text{ or } H^{\sharp}(k))$

Hence any eigenvalue is even degenerate (Kramers). Indeed

$$H\psi = E\psi \implies H(\Theta\psi) = E(\Theta\psi)$$

and $\Theta \psi = \lambda \psi$, ($\lambda \in \mathbb{C}$) is impossible:

$$-\psi = \Theta^2 \psi = \bar{\lambda} \Theta \psi = \bar{\lambda} \lambda \psi \qquad (\Rightarrow \Leftarrow)$$

(日) (日) (日) (日) (日) (日) (日)

- $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.
- Time-reversal invariant points, k = -k, at $k = 0, \pi$. There

$$H = \Theta H \Theta^{-1}$$
 $(H = H(k) \text{ or } H^{\sharp}(k))$

Hence any eigenvalue is even degenerate (Kramers).

Bands, Fermi line (one half fat), edge states

Introduction

Rueda de casino

Hamiltonians

Indices

Quantum Hall effect

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The edge index

The spectrum of $H^{\sharp}(k)$

symmetric on $-\pi \le k \le 0$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Bands, Fermi line, edge states

Definition: Edge Index

 \mathcal{I}^{\sharp} = parity of number of eigenvalue crossings

The edge index

The spectrum of $H^{\sharp}(k)$

symmetric on $-\pi \leq k \leq 0$

Bands, Fermi line, edge states

Definition: Edge Index

 $\mathcal{I}^{\sharp} = parity of number of eigenvalue crossings$

Collapse upper/lower band to a line and fold to a cylinder: Get rueda and its index.

Towards the bulk index

Let $z \in \mathbb{C}$. The Schrödinger equation

$$(H(k)-z)\psi=0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

(as a 2nd order difference equation) has 2*N* solutions $\psi = (\psi_n)_{n \in \mathbb{Z}}, \ \psi_n \in \mathbb{C}^N$.

Towards the bulk index

Let $z \in \mathbb{C}$. The Schrödinger equation

$$(H(k)-z)\psi=0$$

(as a 2nd order difference equation) has 2*N* solutions $\psi = (\psi_n)_{n \in \mathbb{Z}}, \ \psi_n \in \mathbb{C}^N$.

Let $z \notin \sigma(H(k))$. Then

$$E_{z,k} = \{ \psi \mid \psi \text{ solution, } \psi_n \to 0, \ (n \to +\infty) \}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

has

• dim $E_{z,k} = N$.

Towards the bulk index

Let $z \in \mathbb{C}$. The Schrödinger equation

$$(H(k)-z)\psi=0$$

(as a 2nd order difference equation) has 2*N* solutions $\psi = (\psi_n)_{n \in \mathbb{Z}}, \ \psi_n \in \mathbb{C}^N$.

Let $z \notin \sigma(H(k))$. Then

$$E_{z,k} = \{ \psi \mid \psi \text{ solution, } \psi_n \to 0, \ (n \to +\infty) \}$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

has

• dim $E_{z,k} = N$.

• $E_{\bar{z},-k} = \Theta E_{z,k}$

Vector bundle *E* with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and $\Theta^2 = -1$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Loop γ and torus $\mathbb{T} = \gamma \times S^1$

Vector bundle *E* with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and $\Theta^2 = -1$.

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \dim E$)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Loop γ and torus $\mathbb{T} = \gamma \times S^1$

Vector bundle *E* with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and $\Theta^2 = -1$.

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \dim E$)

Definition: Bulk Index

$$\mathcal{I} = \mathcal{I}(E)$$

Loop γ and torus $\mathbb{T} = \gamma \times S^1$

Vector bundle *E* with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and $\Theta^2 = -1$.

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \dim E$)

Definition: Bulk Index

$$\mathcal{I} = \mathcal{I}(E)$$

What's behind the theorem? How is $\mathcal{I}(E)$ defined?
The bulk index

Loop γ and torus $\mathbb{T} = \gamma \times S^1$

Vector bundle *E* with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and $\Theta^2 = -1$.

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \dim E$)

Definition: Bulk Index

$$\mathcal{I} = \mathcal{I}(E)$$

What's behind the theorem? How is $\mathcal{I}(E)$ defined? Aside ..., a rueda

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Sketch of proof: Consider

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Sketch of proof: Consider

• torus
$$\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$$

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

Sketch of proof: Consider

▶ torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$ with cut (figure)

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

Sketch of proof: Consider

▶ torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$ with cut (figure)

(日) (日) (日) (日) (日) (日) (日)

a (compatible) section of the frame bundle of E

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

Sketch of proof: Consider

▶ torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$ with cut (figure)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

a (compatible) section of the frame bundle of E

• the transition matrices $T(\varphi_2) \in GL(N)$ across the cut

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

Sketch of proof: Consider

▶ torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$ with cut (figure)

a (compatible) section of the frame bundle of E

▶ the transition matrices $T(\varphi_2) \in GL(N)$ across the cut

$$\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0 , \qquad (\varphi_2 \in S^1)$$

with $\Theta_0: \mathbb{C}^N \to \mathbb{C}^N$ antilinear, $\Theta_0^2 = -1$

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

$$\bullet \ \Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$$

- Only half the cut ($0 \le \varphi_2 \le \pi$) matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

(日) (日) (日) (日) (日) (日) (日)

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

$$\bullet \Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$$

- Only half the cut ($0 \le \varphi_2 \le \pi$) matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

Eigenvalues of *T* come in pairs λ , $\bar{\lambda}^{-1}$:

$$\Theta_0(T-\lambda)=T^{-1}(1-\bar{\lambda}T)\Theta_0$$

(日) (日) (日) (日) (日) (日) (日)

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

$$\bullet \Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$$

- Only half the cut ($0 \le \varphi_2 \le \pi$) matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

Eigenvalues of *T* come in pairs λ , $\bar{\lambda}^{-1}$:

$$\Theta_0(T-\lambda) = T^{-1}(1-\bar{\lambda}T)\Theta_0$$

Phases $\lambda/|\lambda|$ pair up (Kramers degeneracy)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

$$\bullet \Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$$

- Only half the cut ($0 \le \varphi_2 \le \pi$) matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

Eigenvalues of *T* come in pairs λ , $\bar{\lambda}^{-1}$:

$$\Theta_0(T-\lambda) = T^{-1}(1-\bar{\lambda}T)\Theta_0$$

Phases $\lambda/|\lambda|$ pair up (Kramers degeneracy)

For $0 \le \varphi_2 \le \pi$, phases $\lambda/|\lambda|$ form a rueda, *D*

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

$$\bullet \ \Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$$

For $0 \le \varphi_2 \le \pi$, phases $\lambda/|\lambda|$ form a rueda, *D*

Definition (Index): $\mathcal{I}(E) := \mathcal{I}(D)$

Remark: $\mathcal{I}(E)$ agrees (in value) with the Pfaffian index of Kane and Mele.

(ロ) (同) (三) (三) (三) (三) (○) (○)

... aside ends here.

Main result

Theorem Bulk and edge indices agree:

 $\mathcal{I}=\mathcal{I}^{\sharp}$

Main result

Theorem Bulk and edge indices agree:

 $\mathcal{I} = \mathcal{I}^{\sharp}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $\mathcal{I} = +1$: ordinary insulator $\mathcal{I} = -1$: topological insulator

Fermi line (one half **fat**) edge states torus

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Fermi line (one half **fat)** edge states torus

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Edge states define a rueda

Fermi line (one half **fat)** edge states torus

Edge states define a rueda Bulk torus cut along Fermi line;

Fermi line (one half **fat)** edge states torus

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Edge states define a rueda Bulk torus cut along Fermi line; frame bundle admits a section, which is "aware of the edge";

Fermi line (one half **fat)** edge states torus

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Edge states define a rueda

Bulk torus cut along Fermi line; frame bundle admits a section, which is "aware of the edge"; transition matrix defines rueda.

Proof of Theorem: Dual ruedas

Edge rueda: edge eigenvalues; Bulk rueda: eigenvalues of T(k)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof of Theorem: Dual ruedas

Edge rueda: edge eigenvalues; Bulk rueda: eigenvalues of T(k)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The two ruedas share intersection points.

Proof of Theorem: Dual ruedas

Edge rueda: edge eigenvalues; Bulk rueda: eigenvalues of T(k)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The two ruedas share intersection points. Hence indices are equal \square

Introduction

Rueda de casino

Hamiltonians

Indices

Quantum Hall effect

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Quantum Hall effect in doubly periodic lattices

Quantum Hall effect in doubly periodic lattices

Definition: Edge Index

 $\mathcal{N}^{\sharp} =$ signed number of eigenvalue crossings

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Quantum Hall effect in doubly periodic lattices Definition: Edge Index

 $\mathcal{N}^{\sharp} =$ signed number of eigenvalue crossings

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Bulk: Brillouin zone (torus) of quasi-momenta (κ , k).

Quantum Hall effect in doubly periodic lattices Definition: Edge Index

 $\mathcal{N}^{\sharp} =$ signed number of eigenvalue crossings

Bulk: Brillouin zone (torus) of quasi-momenta (κ , k). Energy bands j = 0, 1, ...; eigenstates $|\kappa, k\rangle_j$ form a line bundle E_j with torus as base space (Bloch bundle).

Quantum Hall effect in doubly periodic lattices Definition: Edge Index

 $\mathcal{N}^{\sharp}=\text{signed}$ number of eigenvalue crossings

Bulk: Brillouin zone (torus) of quasi-momenta (κ , k). Energy bands j = 0, 1, ...; eigenstates $|\kappa, k\rangle_j$ form a line bundle E_j with torus as base space (Bloch bundle).

Chern number $ch(E_j)$

Quantum Hall effect in doubly periodic lattices Definition: Edge Index

 $\mathcal{N}^{\sharp} =$ signed number of eigenvalue crossings

Bulk: Brillouin zone (torus) of quasi-momenta (κ , k). Energy bands j = 0, 1, ...; eigenstates $|\kappa, k\rangle_j$ form a line bundle E_j with torus as base space (Bloch bundle).

Chern number $ch(E_j)$ is computed by • cutting torus to cylinder • taking global section of E_j on cylinder • defines transition matrix T (phase factor) along circle • $ch(E_j)$ = winding number of T.

Quantum Hall effect in doubly periodic lattices Definition: Edge Index

 $\mathcal{N}^{\sharp} =$ signed number of eigenvalue crossings

Bulk: $ch(E_j)$ is the Chern number of the Bloch bundle E_j of the *j*-th band. Bulk index is sum over filled bands.

Quantum Hall effect in doubly periodic lattices Definition: Edge Index

 $\mathcal{N}^{\sharp} =$ signed number of eigenvalue crossings

Bulk: $ch(E_j)$ is the Chern number of the Bloch bundle E_j of the *j*-th band. Bulk index is sum over filled bands.

Duality:

$$\mathcal{N}^{\sharp} = \sum_{j} \operatorname{ch}(E_{j})$$

Quantum Hall effect in doubly periodic lattices Definition: Edge Index

 $\mathcal{N}^{\sharp} =$ signed number of eigenvalue crossings

Bulk: $ch(E_j)$ is the Chern number of the Bloch bundle E_j of the *j*-th band. Bulk index is sum over filled bands.

Duality:

$$\mathcal{N}^{\sharp} = \sum_{j} \operatorname{ch}(E_{j})$$

(cf. Hatsugai) Here via scattering and Levinson's theorem.

Duality via scattering

Brillouin zone \ni (κ , k) Energy band $\varepsilon_j(\kappa, k)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Duality via scattering

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Duality via scattering

Minima $\kappa_{-}(k)$ and maxima $\kappa_{+}(k)$ of energy band $\varepsilon_{i}(\kappa, k)$ in κ at fixed k

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Minima $\kappa_{-}(k)$ and maxima $\kappa_{+}(k)$ of energy band $\varepsilon_{j}(\kappa, k)$ in κ at fixed k

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

・ロト・(四ト・(川下・(日下))

Maxima $\kappa_+(k)$ with semi-bound states (to be explained)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

At fixed *k*: Energy band $\varepsilon_j(\kappa, k)$ and the line bundle E_j of Bloch states

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Line indicates choice of a section $|\kappa\rangle$ of Bloch states (from the given band). No global section in $\kappa \in \mathbb{R}/2\pi\mathbb{Z}$ is possible, as a rule.

ヘロト ヘポト ヘヨト ヘヨト

States $|\kappa\rangle$ above the solid line are left movers ($\varepsilon'_j(\kappa) < 0$)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

They are incoming asymptotic (bulk) states for scattering at edge (from inside)

$$\kappa |\kappa\rangle \equiv |\mathrm{in}\rangle$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Scattering determines section $|\text{out}\rangle$ of right movers above line

・ コット (雪) (小田) (コット 日)

Scattering matrix

$$|{
m out}
angle=S_+|\kappa
angle$$

as relative phase between two sections of the same fiber (near κ_+)

・ コット (雪) (小田) (コット 日)

Scattering matrix

 $|{
m out}
angle=\mathcal{S}_+|\kappa
angle$

as relative phase between two sections of the same fiber (near κ_+) Likewise S_- near κ_- .

▲□▶▲□▶▲□▶▲□▶ □ のQ@

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$ch(E_j) = \mathcal{N}(S_+) - \mathcal{N}(S_-)$$

with $\mathcal{N}(S_{\pm})$ the winding of $S_{\pm} = S_{\pm}(k)$ as $k = -\pi \dots \pi$.

As $\kappa \to \kappa_+$, whence

 $|\text{in}\rangle = |\kappa\rangle \rightarrow |\kappa_+\rangle$ $|\text{out}\rangle = S_+|\kappa\rangle \rightarrow |\kappa_+\rangle$ (up to phase)

their limiting span is that of

$$|\kappa_+
angle, \quad rac{{m d}|\kappa
angle}{{m d}\kappa}\Big|_{\kappa_+}$$

(bounded, resp. unbounded in space). The span contains the limiting scattering state $|\psi\rangle \propto |in\rangle + |out\rangle$.

If (exceptionally) $|\psi\rangle \propto |\kappa_+\rangle$ then $|\psi\rangle$ is a semi-bound state.

As a function of *k*, semi-bound states occur exceptionally.

(a)

ъ

Levinson's theorem

Recall from two-body potential scattering: The scattering phase at threshold equals the number of bound states

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Levinson's theorem

Recall from two-body potential scattering: The scattering phase at threshold equals the number of bound states

$$\sigma(p^2 + V) = 0 \qquad \qquad \bullet \bullet \bullet_0 \qquad \qquad \bullet \bullet \bullet_E$$

arg
$$S\big|_{E=0+}=2\pi N$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

N changes with the potential *V* when bound state reaches threshold (semi-bound state \equiv incipient bound state)

Levinson's theorem (relative version)

Spectrum of edge Hamiltonian

$$\varepsilon(k) = \varepsilon_j(\kappa_+(k), k)$$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э.

Levinson's theorem (relative version)

Spectrum of edge Hamiltonian

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

$$\lim_{\delta \to 0} \arg S_+(\varepsilon(k) - \delta) \Big|_{k_1}^{k_2} = \pm 2\pi$$

Proof

$$egin{aligned} \mathcal{N}^{\sharp} &= \mathcal{N}(\mathcal{S}^{(j_0)}_+) \quad ig(= \mathcal{N}(\mathcal{S}^{(j_0+1)}_-) \ &= \sum_{j=0}^{j_0} \mathcal{N}(\mathcal{S}^{(j)}_+) - \mathcal{N}(\mathcal{S}^{(j)}_-) \ &= \sum_{j=0}^{j_0} \operatorname{ch}(E_j) \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$(\mathcal{N}(\mathcal{S}^{(1)}_{-})=0)$$

Summary

Bulk = Edge

$\mathcal{I}=\mathcal{I}^{\sharp}$

- The bulk and the indices of a topological insulator (of reduced symmetry) are indices of suitable ruedas
- In case of full translational symmetry, bulk index can be defined and linked to edge in other ways

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>