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�    Intrinsic topological(IT) order and symmetry Intrinsic topological(IT) order and symmetry Intrinsic topological(IT) order and symmetry Intrinsic topological(IT) order and symmetry 
protected topological(SPT) order.protected topological(SPT) order.protected topological(SPT) order.protected topological(SPT) order.

�    1D SPT phases in interacting bosonic systems.1D SPT phases in interacting bosonic systems.1D SPT phases in interacting bosonic systems.1D SPT phases in interacting bosonic systems.

� 2D and 3D SPT phases in interacting bosonic  2D and 3D SPT phases in interacting bosonic  2D and 3D SPT phases in interacting bosonic  2D and 3D SPT phases in interacting bosonic 
systems.systems.systems.systems.

�    SPT phases in interacting fermionic systems.SPT phases in interacting fermionic systems.SPT phases in interacting fermionic systems.SPT phases in interacting fermionic systems.

� Summ Summ Summ Summaaaary and outlookry and outlookry and outlookry and outlook....

OutlineOutlineOutlineOutline



Topological phenomena in strongly Topological phenomena in strongly Topological phenomena in strongly Topological phenomena in strongly 
correlated systemscorrelated systemscorrelated systemscorrelated systems
Fractional Quantum HallFractional Quantum HallFractional Quantum HallFractional Quantum Hall Effect Effect Effect Effect D C Tsui, et al 1982

Spin liquidSpin liquidSpin liquidSpin liquid

� Frustrated magnets
� High-Tc cuprates

SCSCSCSCAFAFAFAF

SL?SL?SL?SL?

S Yan, D Huse and S White Science, 2011

P W Anderson, 1987
Hong Ding, et al,1996
N P Ong's group, 2000



� Can have the same symmetry as disordered systems.

� Gapped ground state without long range correlations.

� Ground state degeneracy depends on the topology of 
the manifold.

� Ground state degeneracy is robust against any local 
perturbations.

� Excitations carry fractional statistics.

� Protected chiral edge states(chiral topological order, 
e.g. FQHE).

New phases of matter: intrinsic New phases of matter: intrinsic New phases of matter: intrinsic New phases of matter: intrinsic 
ttttopological opological opological opological oooorderrderrderrder X.-G. Wen,1989



Topological terms for intrinsic Topological terms for intrinsic Topological terms for intrinsic Topological terms for intrinsic 
ttttopological opological opological opological oooorderrderrderrder
FQHEFQHEFQHEFQHE

R B Laughlin 1983
E Witten, 1989
S C Zhang, et al 1989
X G Wen, et al 1989

ZZZZ2222 spin liquid  spin liquid  spin liquid  spin liquid R. Moessner and S. L. Sondhi 2001



Symmetry protected topological(SPT) Symmetry protected topological(SPT) Symmetry protected topological(SPT) Symmetry protected topological(SPT) 
phenomena phenomena phenomena phenomena     
Topological insulator in 2D/3D  Topological insulator in 2D/3D  Topological insulator in 2D/3D  Topological insulator in 2D/3D  

C L Kane, et al, 2005
B A Bernevig, et al 2006
W Molenkamp's group 2007
M Zahid Hasan, et al, 2008

from Wikipedia



� Can have the same symmetry as trivial disordered systems.

� Gapped ground state without long range correlations.

� Excitations do not carry fractional statistics.  

� Indistinguishable from trivial disordered systems if 
symmetry is broken in bulk.

� Stable against any local perturbations preserving symmetry.

� Protected gapless edge states if symmetry is not 
(spontaneously or explicitly)broken on the edge.

New phases of matter: symmetry New phases of matter: symmetry New phases of matter: symmetry New phases of matter: symmetry 
protected tprotected tprotected tprotected topological opological opological opological oooorderrderrderrder

Z C Gu and X G Wen, 2009



SPT phase in strongly interacting 1D model SPT phase in strongly interacting 1D model SPT phase in strongly interacting 1D model SPT phase in strongly interacting 1D model 
Spin one Haldane chain realizes 1D topological order(even 
with strong interaction) 

But Haldane phase requires symmetry protection!But Haldane phase requires symmetry protection!But Haldane phase requires symmetry protection!But Haldane phase requires symmetry protection!

Z C Gu and X G Wen, 2009, F Pollmann, et al, 2010

� Haldane phase can be protected by many kinds of 
symmetries: time reversal, spin rotation, etc... 

The key observation: edge states form projective 
representation of the symmetry group!

� stable up to U~1

Z C Gu and X G Wen, 2009

Fixed point wavefunction: spin-(1/2,1/2) dimer modelFixed point wavefunction: spin-(1/2,1/2) dimer modelFixed point wavefunction: spin-(1/2,1/2) dimer modelFixed point wavefunction: spin-(1/2,1/2) dimer model



A revisit of transverse A revisit of transverse A revisit of transverse A revisit of transverse Ising Ising Ising Ising model:model:model:model:



AAAAnnnn example of  example of  example of  example of Ising Ising Ising Ising SPT phaseSPT phaseSPT phaseSPT phase in 2D in 2D in 2D in 2D
How many different paramagnetic phases? 
 (M. Levin and Z.-C. Gu, Phys. Rev. B 86, 115109 (2012))

Two! Two! Two! Two! 

Domain deformation ruleDomain deformation ruleDomain deformation ruleDomain deformation rule But why not?But why not?But why not?But why not?



Topologically consistent condition for fixed Topologically consistent condition for fixed Topologically consistent condition for fixed Topologically consistent condition for fixed 
point wavefunctionpoint wavefunctionpoint wavefunctionpoint wavefunction



Duality between Ising model and Duality between Ising model and Duality between Ising model and Duality between Ising model and 
ZZZZ2222 gauge model   gauge model   gauge model   gauge model  

Duality map requires ZDuality map requires ZDuality map requires ZDuality map requires Z2 2 2 2 

symmetry to be symmetry to be symmetry to be symmetry to be 
preserved!preserved!preserved!preserved!
� String condensation corresponds 
to domain wall condensation



Kitaev 2003, M. Levin and X.G. Wen 2005

ZZZZ2222 gauge model(toric code model) gauge model(toric code model) gauge model(toric code model) gauge model(toric code model)

Ground stateGround stateGround stateGround state



Quasi-particle in toric code model: Quasi-particle in toric code model: Quasi-particle in toric code model: Quasi-particle in toric code model: 
                                                                                1, e, m, f=em1, e, m, f=em1, e, m, f=em1, e, m, f=em

Topological propertiesTopological propertiesTopological propertiesTopological properties

eeee    

m m m m 

Four-fold ground Four-fold ground Four-fold ground Four-fold ground 
state degeneracy state degeneracy state degeneracy state degeneracy 
on a torus on a torus on a torus on a torus 

The same topological order as ZThe same topological order as ZThe same topological order as ZThe same topological order as Z2222 spin liquid  spin liquid  spin liquid  spin liquid 



Dehn twist and T matrixDehn twist and T matrixDehn twist and T matrixDehn twist and T matrix

from Wikipedia

Dehn twist:Dehn twist:Dehn twist:Dehn twist:            

T matrix:T matrix:T matrix:T matrix:        



The twisted toric code: double semion The twisted toric code: double semion The twisted toric code: double semion The twisted toric code: double semion 
modelmodelmodelmodel

Quasi-particle types in double semion model:Quasi-particle types in double semion model:Quasi-particle types in double semion model:Quasi-particle types in double semion model:
                                                                                                            1, s, 1, s, 1, s, 1, s, ssss, b=s, b=s, b=s, b=sssss

M. Levin and X.G. Wen 2005

� End of string is a semion or anti-semion.

T matrix:T matrix:T matrix:T matrix:        



Dual theory of double semion model Dual theory of double semion model Dual theory of double semion model Dual theory of double semion model     

Different SPT ordersDifferent SPT ordersDifferent SPT ordersDifferent SPT orders

The dual theory of double semion model      The dual theory of double semion model      The dual theory of double semion model      The dual theory of double semion model      
is an SPT ordered phase!is an SPT ordered phase!is an SPT ordered phase!is an SPT ordered phase!

Different (intrinsic) Different (intrinsic) Different (intrinsic) Different (intrinsic) 
topological orderstopological orderstopological orderstopological orders

M Levin and Z.-C. Gu
(Phys. Rev. B 86, 115109 (2012))



Bulk response and the nature of Bulk response and the nature of Bulk response and the nature of Bulk response and the nature of 
gapless edgegapless edgegapless edgegapless edge
Assume that Ising spins carry Z2 gauge charge and can 
couple to background Z2 gauge field
ZZZZ2 2 2 2 gauge flux carries semion statistics!gauge flux carries semion statistics!gauge flux carries semion statistics!gauge flux carries semion statistics!

Non-trivial statistics of flux leads to degenerate edge states!Non-trivial statistics of flux leads to degenerate edge states!Non-trivial statistics of flux leads to degenerate edge states!Non-trivial statistics of flux leads to degenerate edge states!

ContradictionContradictionContradictionContradiction
There is No 1D representation!



Group cohomology classifies topological Group cohomology classifies topological Group cohomology classifies topological Group cohomology classifies topological 
Berry phase terms of discrete nonlinear sigma Berry phase terms of discrete nonlinear sigma Berry phase terms of discrete nonlinear sigma Berry phase terms of discrete nonlinear sigma 
model with gauge anomaly on their boundary! model with gauge anomaly on their boundary! model with gauge anomaly on their boundary! model with gauge anomaly on their boundary! 

� In-equivalent projective representations are classified by 
second group cohomology class, which classifies all 1D SPT 
phases.  

� In-equivalent flux statistics of G are classified by third 
group cohomology class, which classifies all 2D SPT phases.
(R. Dijkgraaf and E. Witten, 1990)

Do we have a systematic way to Do we have a systematic way to Do we have a systematic way to Do we have a systematic way to 
classify SPT phase?classify SPT phase?classify SPT phase?classify SPT phase?

 Conjuncture: Does d+1-th group cohomology class classify 
dD SPT phases? Why group cohomology? 



(bosonic) SPT phases in any (bosonic) SPT phases in any (bosonic) SPT phases in any (bosonic) SPT phases in any 
dimensions with any symmetry dimensions with any symmetry dimensions with any symmetry dimensions with any symmetry 

� Branched(vertex ordered) d+1-simplex  

� SPT orders in bosonic systems are classified by d+1  SPT orders in bosonic systems are classified by d+1  SPT orders in bosonic systems are classified by d+1  SPT orders in bosonic systems are classified by d+1 
group cohomology                          in d spacial dimension.group cohomology                          in d spacial dimension.group cohomology                          in d spacial dimension.group cohomology                          in d spacial dimension.
� Each element gives rise to an exactly solvable hermitian 
Hamiltonian with a unique ground state on closed manifold.  

co-cycle condition:    



An example of 1+1D caseAn example of 1+1D caseAn example of 1+1D caseAn example of 1+1D case

Fixed point wavefunctionFixed point wavefunctionFixed point wavefunctionFixed point wavefunctionTopological invariantTopological invariantTopological invariantTopological invariant



X. Chen, Z.-C. Gu, Z.-X. Liu, X.-G. Wen (Science 338, 1604 (2012))

means time reversal

Classifications of bosonic SPT phases  Classifications of bosonic SPT phases  Classifications of bosonic SPT phases  Classifications of bosonic SPT phases  
Just like we use group representation theory to classify 
symmetry breaking phases, we use group cohomology 
theory to classify bosonic SPT phases. 



�1D fermionic systems can be mapped to bosonic systems 
with an additional unbroken fermion parity symmetry.  (Xie Chen, 
Z C Gu, X G Wen, Phys. Rev. B 84, 235128 (2011)) 

� The statistics of the gauge flux is still a good way to 
understand the classification scheme in 2D.                            
(Meng Cheng and Zheng-Cheng Gu, Phys. Rev. Lett. 112, 141602(2014))

� Discrete topological nonlinear sigma model can be 
generalized into interacting fermion systems.

� Lead to the discovery of new mathematics --- a (special) 
group super-cohomology theory, which can be regarded as a 
square root of group cohomology class.                                  
(Z.-C. Gu, X.-G. Wen, arXiv:1201.2648)

Basic concepts of classifying SPT Basic concepts of classifying SPT Basic concepts of classifying SPT Basic concepts of classifying SPT 
phphphphaaaases in interacting fermion systems ses in interacting fermion systems ses in interacting fermion systems ses in interacting fermion systems 



An example ofAn example ofAn example ofAn example of    intrinsic fermionicintrinsic fermionicintrinsic fermionicintrinsic fermionic    Ising Ising Ising Ising SPT SPT SPT SPT 
phasephasephasephase in 2D  in 2D  in 2D  in 2D 

Domain deformation ruleDomain deformation ruleDomain deformation ruleDomain deformation rule::::    

Domain decoration ruleDomain decoration ruleDomain decoration ruleDomain decoration rule::::    



Topologically consistent condition for fixed Topologically consistent condition for fixed Topologically consistent condition for fixed Topologically consistent condition for fixed 
point wavefunctionpoint wavefunctionpoint wavefunctionpoint wavefunction

ZZZZ2 2 2 2 gauge flux carries anyon statistics (exchange phase        )!gauge flux carries anyon statistics (exchange phase        )!gauge flux carries anyon statistics (exchange phase        )!gauge flux carries anyon statistics (exchange phase        )!4/πi±

(Z.-C. Gu, Zhenghan Wang and X.-G. Wen arXiv:1309.7032,(2013)) 



The concept of Grassmann valued The concept of Grassmann valued The concept of Grassmann valued The concept of Grassmann valued 
topological Berry phase topological Berry phase topological Berry phase topological Berry phase     
The domain decoration picture for wavefunction implies The domain decoration picture for wavefunction implies The domain decoration picture for wavefunction implies The domain decoration picture for wavefunction implies 
Grassmann graded amplitude for partition functionGrassmann graded amplitude for partition functionGrassmann graded amplitude for partition functionGrassmann graded amplitude for partition function            

ZZZZ2222 graded structure graded structure graded structure graded structure

Total symmetryTotal symmetryTotal symmetryTotal symmetry
Arbitrary dimensionArbitrary dimensionArbitrary dimensionArbitrary dimension        



Super co-cycle conditionSuper co-cycle conditionSuper co-cycle conditionSuper co-cycle condition(consistent domain deformation rules)

Fermionic topological nonlinear sigma modelFermionic topological nonlinear sigma modelFermionic topological nonlinear sigma modelFermionic topological nonlinear sigma model        

Example in 2+1D:Example in 2+1D:Example in 2+1D:Example in 2+1D:



A (special)A (special)A (special)A (special)    group super-cohomology theorygroup super-cohomology theorygroup super-cohomology theorygroup super-cohomology theory    

Compute group super-cohomology class by using short Compute group super-cohomology class by using short Compute group super-cohomology class by using short Compute group super-cohomology class by using short 
exact sequence   exact sequence   exact sequence   exact sequence   

� The Steenrod square, one of the most novel structures in 
algebraic topology enters fermionic SPT phases!

A valid graded structure must be obstruction free:A valid graded structure must be obstruction free:A valid graded structure must be obstruction free:A valid graded structure must be obstruction free:



Classify fermionic SPT phases by using Classify fermionic SPT phases by using Classify fermionic SPT phases by using Classify fermionic SPT phases by using 
(special) group super cohomology theory  (special) group super cohomology theory  (special) group super cohomology theory  (special) group super cohomology theory  

means time reversal (Z.-C. Gu, X.-G. Wen, arXiv:1201.2648)

� The 2+1D classifications are consistent with (spin) Chern-Simons theory 
approach. (Meng Cheng and Zheng-Cheng Gu,  Phys. Rev. Lett. 112, 141602(2014))

� The 3+1D topological superconductor with T2=1 time reversal symmetry can 
not be obtained by K-theory classification for free fermion systems. 

� The 3+1D topological superconductor with T2=1 time reversal symmetry can 
not be realized as bosonic SPT phase either.



Towards a complete classificationTowards a complete classificationTowards a complete classificationTowards a complete classification

� Does the group super cohomology class give rise to a 
complete classification for bosonic SPT phases or not?  
It is complete in 1+1D and 2+1D, but not in 3+1D and higher 
dimensions.  

Bosonic SPT phasesBosonic SPT phasesBosonic SPT phasesBosonic SPT phases

� Physically, this is because gauge-gravitational mixture 
anomaly exists in 3+1D and higher dimensions, and such a 
new anomaly can not be characterized by cohomology theory.  

Cobordism theory can describe gauge-gravitational Cobordism theory can describe gauge-gravitational Cobordism theory can describe gauge-gravitational Cobordism theory can describe gauge-gravitational 
mixture anomaly!  mixture anomaly!  mixture anomaly!  mixture anomaly!  (Anton Kapustin arXiv:1404.6659)

Example in 4+1D with a U(1) symmetryExample in 4+1D with a U(1) symmetryExample in 4+1D with a U(1) symmetryExample in 4+1D with a U(1) symmetry
� Gauge-gravitational mixture anomaly with topological response:

(Juven Wang, Z C Gu and X G Wen, arXiv:1405.7689)



� Does the (special) group super cohomology class give rise to 
a complete classification for fermionic SPT phases or not?  
It is complete in 1+1D, but incomplete in 2+1D. A general group 
super cohomology theory is very desired.
� Our recent work shows that there are 8 different fermionic 2D 
SPT phases protected by Ising symmetry. 
( Z.-C. Gu and M. Levin, Phys. Rev. B 89, 201113(R) (2014))

Fermionic SPT phasesFermionic SPT phasesFermionic SPT phasesFermionic SPT phases

� In a recent work, we find a (generic) group super-cohomology 
theory in 2+1D, which might give rise to a complete classification 
of fermionic SPT phases in 2+1D. (M Cheng and Z C Gu, to appear)

� In 3+1D, we sill need to understand the generic group super-
cohomology theory and even a super cobordism theory. 

� To describe gravitational-gauge mixture anomaly in fermion 
systems, we even need a super cobordism theory. 



Other applications and future work Other applications and future work Other applications and future work Other applications and future work 

Future directionsFuture directionsFuture directionsFuture directions
� SPT phases protected by supersymmetry.

� Twisted supersymmetry and a quantum theory of gravity.  

� SPT phases as topologically stable and universal 
resources of measurement based quantum computation. 

Application in high energy physicsApplication in high energy physicsApplication in high energy physicsApplication in high energy physics
� By studying T2=-1 topological superconductor, we find that a 
pair of topological Majorana zero modes carry fractionalized 
C,P,T symmetries, with T4=-1,P4=-1,C4=-1. 

� By further assuming a Majorana neutrino is made up of four 
topological Majorana zero modes at cutoff scale, we naturally 
explained the origin of three generations of neutrinos and 
obtained the neutrino mass mixing matrix from a first principle. 
Mixing angles are intrinsically close to experimental data. 
Exact neutrino masses are predicted according to current 
neutrino oscillation data. (Z C Gu, arXiv:1308.2488, arXiv: 1403.1869)


