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* Intrinsic topological(lT) order and symmetry
protected topological(SPT) order.

* 1D SPT phases in interacting bosonic systems.

= 2D and 3D SPT phases in interacting bosonic
systems.

= SPT phases in interacting fermionic systems.

= Summary and outlook.



Topological phenomena in strongly

correlated systems

Fractional Quantum Hall Effect D C Tsui, efa/1982
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Spin liquid
e Frustrated magnets
e High-Tc cuprates

S Yan, D Huse and S White Science, 2011

P W Anderson, 1987
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New phases of matter: intrinsic
topological order x ¢ wen 1989

e Can have the same symmetry as disordered systems.
o Gapped ground state without long range correlations.

e Ground state degeneracy depends on the topology of
the manifold.

e Ground state degeneracy is robust against any local
perturbations.

e EXxcitations carry fractional statistics.

e Protected chiral edge states(chiral topological order,
e.g. FQHE).



Topological terms for intrinsic

topological order
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Symmetry protected topological(SPT)

phenomena
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New phases of matter: symmetry

protected topological order
Z C Gu and X G Wen, 2009

e Can have the same symmetry as trivial disordered systems.
o Gapped ground state without long range correlations.
e EXxcitations do not carry fractional statistics.

e Indistinguishable from trivial disordered systems if
symmetry is broken in bulk.

o Stable against any local perturbations preserving symmetry.

o Protected gapless edge states if symmetry is not
(spontaneously or explicitly)broken on the edge.



SPT phase in strongly interacting 1D model

Spin one Haldane chain realizes 1D topological order(even
with strong interaction)

H =Y (Si-Sis1+U(S)?) e stable up to U~1

But Haldane phase requires symmetry protection!

e Haldane phase can be protected by many kinds of
symmetries: time reversal, spin rotation, efc...

Z C Gu and X G Wen, 2009, F Pollmann, efa/, 2010

Fixed point wavefunction: spin-(1/2,1/2) dimer model

Z C Gu and X G Wen, 2009

The key observation: edge states form projective
representation of the symmetry group!



A revisit of transverse Ising model:

H:—Zagag—tz:ag
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An example of Ising SPT phase in 2D

How many different paramagnetic phases? Two!
(M. Levin and Z.-C. Gu, Phys. Rev. B 86, 115109 (2012))
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Topologically consistent condition for fixed
point wavefunction

(e?) =1=e"’ ==+1



Duality between Ising model and
Z2 gauge model
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Z2 gauge model(toric code model)
Hy, = UZU: (1 — Hle) — tZHTf'

Kitaev 2003, M. Levin and X.G. Wen 2005
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Topological properties
The same topological order as Z: spin liquid

Four-fold ground
- + T state degeneracy

on a torus
o

Quasi-particle in toric code model:
1, e, m, f=em




Dehn twist and T matrix

Dehn twist:
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The twisted toric code: double semion
deel M. Levin and X.G. Wen 2005

Hdsemion — UZ (1 — Hle) — tz (H len H il-l-;f)

lev P lep lcleg of p

|\desemion> — Z (_)n(X) |X>

Xclosed 142

T matrix:

L O 0 O

01 0 0
= 00 0 1 » o
00 —10 (e'") = (1,1,4,—1)
e End of string is a semion or anti-semion.

Quasi-particle types in double semion model:
1,s, s, b=ss



Dual theory of double semion model
H isemion = UZ (1 1[I ) —ty (H’ff”“ I1 Z—l+;f)
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The dual theory of double semion model
is an SPT ordered phase!
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Bulk response and the nature of
gapless edge

Assume that Ising spins carry Z2 gauge charge and can
couple to background Z2 gauge field

Z2 gauge qux carrles semlon statlstlcs' —
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Do we have a systematic way to
classify SPT phase?

¢ In-equivalent projective representations are classified by
second group cohomology class, which classifies all 1D SPT
phases.

¢ In-equivalent flux statistics of G are classified by third

group cohomology class, which classifies all 2D SPT phases.
(R. Dijkgraaf and E. Witten, 1990)

Conjuncture: Does d+1-th group cohomology class classify
dD SPT phases? Why group cohomology?

Group cohomology classifies topological
Berry phase terms of discrete nonlinear sigma
model with gauge anomaly on their boundary!



(bosonic) SPT phases in any
dimensions with any symmetry

53
1 S01---d
4= = Z H Va+1 (90,91, ga+1)
G|V = L
{gi} d+1—simplex g1
e Branched(vertex ordered) d+1-simplex v
Vgr1 : G XG X -- xG— U(1) g, > g,
Vd+1(990, ggi, - 7ggd—|—1) — Vd—|—1(909 gi, - agd—l—l)
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o SPT orders in bosonic systems are classified by d+1
group cohomology?/!™¢[G, U(1)] in d spacial dimension.

e Each element gives rise to an exactly solvable hermitian
Hamiltonian with a unique ground state on closed manifold.



An example of 1+1D case
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Topological invariant Fixed point wavefunction
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Classifications of bosonic SPT phases

Just like we use group representation theory to classify
symmetry breaking phases, we use group cohomology
theory to classify bosonic SPT phases.

Symm. group ||[d=0|{d=1|d=2|d=3
U(1) x Z5 7 | Zs | 72 | 75
U(l) x Z3 7, | 75 | 71 | 73

Zzl 74 72 71 22

U(1) 7 VA VA VA
SO(3) VAR WA VA A\
SO(3) x Z5 7, | 75 | 7o | 73
Z Zn | 271 | Zn | 74

Zy X Da=Dy|| 75 | Z5 | Z5 | Z5

Zg means time reversal 72 = 1
X. Chen, Z.-C. Gu, Z.-X. Liu, X.-G. Wen (Science 338, 1604 (2012))



Basic concepts of classifying SPT
phases in interacting fermion systems

¢1D fermionic systems can be mapped to bosonic systems

with an additional unbroken fermion parity symmetry. (Xie Chen,
Z C Gu, X G Wen, Phys. Rev. B 84, 235128 (2011))

e The statistics of the gauge flux is still a good way to

understand the classification scheme in 2D.
(Meng Cheng and Zheng-Cheng Gu, Phys. Rev. Lett. 112, 141602(2014))

e Discrete topological nonlinear sigma model can be
generalized into interacting fermion systems.

e Lead to the discovery of new mathematics --- a (special)
group super-cohomology theory, which can be regarded as a

square root of group cohomology class.
(Z.-C. Gu, X.-G. Wen, arXiv:1201.2648)



An example of intrinsic fermionic Ising SPT
phase in 2D
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Topologically consistent condition for fixed
point wavefunction

2 _+ + . + 2 _+ _ + L

Z2 gauge flux carries anyon statistics (exchange phase +:z/4)]
(Z.-C. Gu, Zhenghan Wang and X.-G. Wen arXiv:1309.7032,(2013))



The concept of Grassmann valued
topological Berry phase

The domain decoration picture for wavefunction implies
Grassmann graded amplitude for partition function
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Fermionic topological nonlinear sigma model
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Super co-cycle condition(consistent domain deformation rules)

Topological invariant conditions enforce ’/c:zt+1 can be expressed by mg_1 and v4y1 that satisfies:
d+1

H V(,(i—_l—)l (907 s gi—15Gi4+15 00 3gd—|—2) — (_)fd—|—2
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A (special) group super-cohomology theory

faso is the Steenrod square Sq? of ng, which maps:
ng < Hd(Gb, Zg) — fd+2 = %d+2(Gb, Zg)

e The Steenrod square, one of the most novel structures in

algebraic topology enters fermionic SPT phases!
Compute group super-cohomology class by using short

exact sequence

dsp short exact sequence

0 0— H'[Gp,Ur(1)] = Gy, Up(1)] — Z2 — 0

1 0—)7{2[G5,UT(1)] —)jﬂaz[Gf,UT(l)] %Hl(Gb,Zz) — 0

2 | 0—=H[G,Ur(1)] — 2°[G¢,Ur(1)] = BH (Gp, Z2) — 0
3 O—>H4 [Gb,UT(l)] —>¢%04[Gf,UT(1)] —>B'H3(Gb,22) — 0

rigid

A valid graded structure must be obstruction free:
BHd[Gb, ZQ] = {nd|nd - Hd[Gb, ZQ] and (—)fd+2 - Bd+2[Gb, U(l)]}
Hfigid[va UT(l)] = H* [Gbn UT(l)]/Fa

I is a subgroup of H*[Gy, Ur(1)] generated by (—)7*.




Classify fermionic SPT phases by using
(special) group super cohomology theory

Interacting fermionic SP'T phases

G \dsp 0 1 2 3 Example
“none” =73 7o Z1| Zi | Z1 | superconductor

Zo x 71 7% |72 74 | 74

ZZI ~ sz 2 Ly| L L2 C;;ll};,?lr;;ogg)ii'rlv‘(])f(}iler
Zoky1 X ng Lagsro 21| Zok+1| 21

Zok X Z3 ||Za x Z2|Z2| Zar | 74

7" means time reversal T2 = 1 (Z-C. Gu, X.-G. Wen, arXiv:1201.2648)

o The 2+1D classifications are consistent with (spin) Chern-Simons theory
approach. (Meng Cheng and Zheng-Cheng Gu, Phys. Rev. Lett. 112, 141602(2014))

e The 3+1D topological superconductor with T2=1 time reversal symmetry can
not be obtained by K-theory classification for free fermion systems.

e The 3+1D topological superconductor with T2=1 time reversal symmetry can
not be realized as bosonic SPT phase either.



Towards a complete classification
Bosonic SPT phases

e Does the group super conomology class give rise to a
complete classification for bosonic SPT phases or not?

It is complete in 1+1D and 2+1D, but not in 3+1D and higher
dimensions.

e Physically, this is because gauge-gravitational mixture
anomaly exists in 3+1D and higher dimensions, and such a
new anomaly can not be characterized by cohomology theory.

Example in 4+1D with a U(1) symmetry

o Gauge-gravitational mixture anomaly with topological response:
Zo(sym.twist, M°) = exp[i%/ F A CS3(T)]
M.B

(Juven Wang, Z C Gu and X G Wen, arXiv:1405.7689)

Cobordism theory can describe gauge-gravitational
mixture anomaly! (Anton Kapustin arXiv:1404.6659)



Fermionic SPT phases

e Does the (special) group super cohomology class give rise to
a complete classification for fermionic SPT phases or not?

It is complete in 1+1D, but incomplete in 2+1D. A general group
super cohomology theory is very desired.

e Our recent work shows that there are 8 different fermionic 2D

SPT phases protected by Ising symmetry.
(Z.-C. Gu and M. Levin, Phys. Rev. B 89, 201113(R) (2014))

e In a recent work, we find a (generic) group super-cohomology
theory in 2+1D, which might give rise to a complete classification
of fermionic SPT phases in 2+1D. (M Cheng and Z C Gu, to appear)

0 — H°Gy,Ur(1)] = Hynera |Gy, Ur(1)] = HY (G, Z3) — 0

e In 3+1D, we sill need to understand the generic group super-
cohomoloay theorv and even a super cobordism theory.

0 — ATG,, Up(1)] — 221 Gy, Up(1)] =7 —= 0
f /

general
e T0 describe gravitational-gauge mixture anomaly in fermion
systems, we even need a super cobordism theory.



Other applications and future work

Application in high energy physics

e By studying T2=-1 topological superconductor, we find that a
pair of topological Majorana zero modes carry fractionalized
C,P,T symmetries, with T4=-1,P4=-1,C4=-1.

e By further assuming a Majorana neutrino is made up of four
topological Majorana zero modes at cutoff scale, we naturally
explained the origin of three generations of neutrinos and
obtained the neutrino mass mixing matrix from a first principle.
Mixing angles are intrinsically close to experimental data.
Exact neutrino masses are predicted according to current
neutrino oscillation data. (z C Gu, arXiv:1308.2488, arXiv: 1403.1869)

Future directions

e SPT phases protected by supersymmetry.

o Twisted supersymmetry and a quantum theory of gravity.

e SPT phases as topologically stable and universal
resources of measurement based quantum computation.



