

CA.AD

## Spatial Symmetry Protected Topological Phases and Geometry

#### Taylor L. Hughes UIUC ESI Program on Topological Matter

DEPARTMENT OF THE NA





## Spatial Symmetry Protected Topological Phases and Geometry

#### Taylor L. Hughes UIUC ESI Program on Topological Matter

DEPARTMENT OF THE NAVA

## Outline

Part 0: Introduction

Part 1: Topological phases protected by discrete translation and rotation symmetries

Part 2: Bound states on geometric defects in point-group protected topological phases

Part 3: Interaction-Induced Topological Phases Protected by Point-Group Symmetry

## Part 0: Brief Introduction To Topological Insulators

### (Atomic) Band Insulators



Are all (non-interacting) insulators essentially atomic insulators?

#### **Inverted Band Order From Strong Spin-Orbit Coupling**



Take HgTe:



#### Simple Insulator with Band Inversion: 1D Dirac Model

$$H = \sum_{k} c_{k}^{\dagger} (k\sigma^{x} + m\sigma^{z})c_{k} = \sum_{k} c_{k}^{\dagger} \begin{pmatrix} m & k \\ k & -m \end{pmatrix} c_{k}$$

$$E_{\pm}(k) = \pm \sqrt{k^2 + m^2}$$



Λ

# Part 1:Topological Phases and Response Protected by Spatial Symmetries

Inversion

### **Periodic Table of Free Fermion Topological Phases**

| Dim/Symmetry | C,Ť        | С          | C,T        | т          | T,Č        | Č          | Č,Ť        | Ť          | 0 | x |
|--------------|------------|------------|------------|------------|------------|------------|------------|------------|---|---|
| (0+1)d       | <b>Z</b> 2 | <b>Z</b> 2 | 0          | Z          | 0          | 0          | 0          | Z          | Z | 0 |
| (1+1)d       | Z          | <b>Z</b> 2 | <b>Z</b> 2 | 0          | Z          | 0          | 0          | 0          | 0 | Z |
| (2+1)d       | 0          | Z          | <b>Z</b> 2 | <b>Z</b> 2 | 0          | Z          | 0          | 0          | Z | 0 |
| (3+1)d       | 0          | 0          | Z          | <b>Z</b> 2 | <b>Z</b> 2 | 0          | Z          | 0          | 0 | Z |
| (4+1)d       | 0          | 0          | 0          | Z          | <b>Z</b> 2 | <b>Z</b> 2 | 0          | Z          | Z | 0 |
| (5+1)d       | Z          | 0          | 0          | 0          | Z          | <b>Z</b> 2 | <b>Z</b> 2 | 0          | 0 | Z |
| (6+1)d       | 0          | Z          | 0          | 0          | 0          | Z          | <b>Z</b> 2 | <b>Z</b> 2 | Z | 0 |
| (7+1)d       | <b>Z</b> 2 | 0          | Z          | 0          | 0          | 0          | Z          | <b>Z</b> 2 | 0 | Z |

The non-zero entries represent "strong" topological invariants of the bulk that distinguish gapped phases from a trivial atomic limit.

Does not include unitary symmetries. Important to consider spatial symmetries such as translation, reflection, (discrete) rotation.

Schnyder,Ryu,Furusaki,Ludwig: PRB (2008) Kitaev: Adv. in Theoretical Phys. 2009 Qi, Hughes, Zhang: PRB(2008)

# **Spatial Symmetries and Topology**

Precursor of Spatial-Symmetry Protected Topological Phases:

• Zak, J. "Berry's phase for energy bands in solids." *Physical review letters* **62**, 2747 (1989). -Wannier center locations are quantized in inversion symmetric crystals, i.e., polarization is quantized.

#### Modern Inception of Field:

- Fu, L., Kane, C. L., & Mele, E. J. (2007). Topological insulators in three dimensions. *Physical review letters*, 98(10), 106803.
- Moore, J. E., and Leon Balents. "Topological invariants of time-reversal-invariant band structures." *Physical Review B* 75.12 (2007): 121306.
- Roy, R. "Topological phases and the quantum spin Hall effect in three dimensions." *Physical Review B*, 79, 195322 (2009).
- -Introduction of weak topological insulators protected by time-reversal and translation symmetry
- Fu, Liang, and Charles L. Kane. "Topological insulators with inversion symmetry." *Physical Review B* **76**, 045302 (2007).

-TIs with time-reversal and inversion symmetry are classified in 2D and 3D. First discrete eigenvalue formula.

• Teo, Jeffrey CY, Liang Fu, and C. L. Kane. "Surface states and topological invariants in three-dimensional topological insulators: Application to Bi\_ {1- x} Sb\_ {x}." *Physical Review B*, **78**, 045426 (2008).

-Introduction of mirror Chern number in 3D materials. Call for a complete topological band theory including all pointgroup symmetries.

## **Recent Work**

#### **Resulting Classification:**

- Fu, Liang. "Topological crystalline insulators." *Physical Review Letters* 106.10 (2011): 106802.
- Hughes, Taylor L., Emil Prodan, and B. Andrei Bernevig. "Inversion-symmetric topological insulators." *Physical Review B* 83.24 (2011): 245132.
- Turner, Ari M., et al. "Quantized response and topology of magnetic insulators with inversion symmetry." *Physical Review B* 85.16 (2012): 165120.
- Fang, Chen, Matthew J. Gilbert, and B. Andrei Bernevig. "Bulk topological invariants in noninteracting point group symmetric insulators." *Physical Review B* 86.11 (2012): 115112.
- Jadaun, Priyamvada, et al. "Topological classification of crystalline insulators with space group symmetry." *Physical Review B* 88.8 (2013): 085110.
- Slager, Robert-Jan, et al. "The space group classification of topological band-insulators." *Nature Physics* 9.2 (2012): 98-102.
- Teo, Jeffrey CY, and Taylor L. Hughes. "Existence of Majorana-Fermion Bound States on Disclinations and the Classification of Topological Crystalline Superconductors in Two Dimensions." *Physical review letters* 111.4 (2013): 047006.
- Chiu, Ching-Kai, Hong Yao, and Shinsei Ryu. "Classification of topological insulators and superconductors in the presence of reflection symmetry." *Phys. Rev. B* 88, 075142 (2013).
- Zhang, Fan, C. L. Kane, and E. J. Mele. "Topological Mirror Superconductivity." *Phys. Rev. Lett.* **111**, 056403 (2013).

#### Material Prediction and Experimental Confirmations

- Hsieh, Timothy H., et al. "Topological crystalline insulators in the SnTe material class." *Nat. Comm.* **3**, 982 (2012).
- Tanaka, Y., et al. "Experimental realization of a topological crystalline insulator in SnTe." *Nat. Phys.* **8**, 800 (2012).
- Dziawa, P., et al. "Topological crystalline insulator states in Pb1– xSnxSe." Nat. Mat. 11, 1023 (2012).
- Xu, Su-Yang, et al. "Observation of a topological crystalline insulator phase and topological phase transition in Pb1– xSnxTe." *Nat. Com.* **3**, 1192 (2012).

#### **Example: Su-Schrieffer-Heeger model in 1D**

Class D insulator in 1+1-d with (fine-tuned) particle-hole symmetry. Strong invariant:  $Z_2$ .

Given: 
$$H(k) \ni CH(k)C^{-1} = -H^T(-k)$$
  
Construct:  $A^{mn}(k) = -i\langle u_m(k) | \partial_k | u_n(k) \rangle$   
Calculate:  $\theta = \int_{-\pi/a}^{\pi/a} dk \operatorname{Tr} [A(k)]$ 

Θ=0



#### **Example: Su-Schrieffer-Heeger model**





Connection between strong topological invariant and EM responsethe charge polarization.

$$P_1 = \frac{e\theta}{2\pi} \mod Ze$$



#### **Electromagnetic Response Actions**



2D (strong)

$$S_{CS}[A_{\mu}] = \frac{e^2}{4h} \int d^2x dt \ A_{\mu} \epsilon^{\mu\nu\rho} F_{\nu\rho}$$

**Quantization of Z<sub>2</sub> Electromagnetic Response**  $S_1[A_\mu] = \frac{e}{4\pi} \int dx dt \ \theta \epsilon^{\mu\nu} F_{\mu\nu} = \int dx dt \ P_1 E$  $Z_{2} \xrightarrow{P_{1}} S_{3}[A_{\mu}] = \int d^{3}x dt P_{3} \mathbf{E} \cdot \mathbf{B} \operatorname{als P_{1} is periodic i.e. P_{1} = P_{1} + ne}_{(\text{odd under T, T^{2}=-1})}$  $S_5[A_\mu] = \int d^5x dt \ P_5 E_{01} B_{23} B_{45}$ (odd under C,  $C^2=-1$ )  $S_7[A_\mu] = \int d^7 x dt \ P_7 E_{01} B_{23} B_{45} B_{67}$ (odd under T,  $T^2$ =+1)

Interestingly, every action has an E-field, thus also odd under inversion!

Turner, Zhang, Vishwanath (2010) TLH, Prodan, Bernevig (2011) Turner, Zhang, Mong, Vishwanath (2011)

### **Inversion Protected Topological Phases**

Stabilize topology with inversion instead of C or T symmetry. Leads to new material possibilities, e.g., insulating magnets.

Also, allows efficient calculation of bulk topological invariants:

Example: 
$$PH(k)P^{-1} = H(-k)$$

$$P_1 = \frac{e}{2\pi i} \operatorname{Log}\left(\frac{\det B(\pi/a)}{\det B(0)}\right) = \frac{e}{2\pi i} \operatorname{Log}\left(\prod_{a \in occ.} \zeta(\pi/a)\zeta(0)\right)$$

$$\operatorname{Tr}[A(-k)] = -\operatorname{Tr}[A(k)] - i\nabla_k \operatorname{Log}[\det B(k)]$$
$$B_{mn}(k) \equiv \langle u_m(-k)|P|u_n(k)\rangle$$

If we know the inversion eigenvalues of the occupied bands we can determine polarization. Continuous integral -> discrete data.

#### **Inversion Eigenvalue Example**





#### **Higher Dimensional Cases with Inversion**

2D: Chern Number



 $C_n$  rotation determines Chern number mod n (Fang et al.)

3D: Magnetoelectric polarization



$$S_3[A_\mu] = \int d^3x dt \ P_3 \mathbf{E} \cdot \mathbf{B}$$

With T and P we can use the Fu-Kane formula:

$$P_3 = \prod_{\Lambda, \alpha \in occ./2} \zeta_{\alpha}(k = \Lambda)$$

Eigenvalues come in Kramers' pairs with T & P. But if we break T, how do we choose half the occupied states?

# Part 1:Topological Phases and Response Protected by Spatial Symmetries

**Translation** 

### Weak Invariants Protected by Translation Symmetry

Preserving translation invariance introduces a new series of invariants generically called "weak" topological invariants.

| Dim/Symmetry | С          | C & Translation                                            | Invariants                                          |  |
|--------------|------------|------------------------------------------------------------|-----------------------------------------------------|--|
| (0+1)d       | <b>Z</b> 2 | Z2                                                         | G <sub>0</sub>                                      |  |
| (1+1)d       | <b>Z</b> 2 | Z2+Z2                                                      | G+ <mark>G</mark> 0                                 |  |
| (2+1)d       | Z          | Z+ <mark>2Z</mark> 2+Z2                                    | G+ <mark>G</mark> a+G <sub>0</sub>                  |  |
| (3+1)d       | 0          | 0+ <b>3Z</b> +3Z <sub>2</sub> + <mark>Z<sub>2</sub></mark> | 0+ <mark>G</mark> a+G <sub>ab</sub> +G <sub>0</sub> |  |
|              |            |                                                            |                                                     |  |
|              |            |                                                            |                                                     |  |
|              |            |                                                            |                                                     |  |
|              |            |                                                            |                                                     |  |

While strong invariants are isotropic, the weak invariants are anisotropic. (Fu-Kane-Mele 2007, Moore-Balents 2007, Roy 2009)

> K-theory classification on torus instead of sphere (Kitaev 2009)

#### Strong+Weak+Secondary Weak+Global

#### **Example: Weak Invariants from SSH**

Class D in 2d: Z+2Z<sub>2</sub>





### Weak vs. Strong in 2D





If only the weak invariant is non-zero, breaking translation symmetry (even just on the edge) allows us to gap the system!

# Part 1:Topological Phases and Response Protected by Spatial Symmetries

Rotation

### **Classification of C4 Invariant 2D Superconductors**

Description of Mean-Field Superconductors with rotation symmetry

- BdG Hamiltonian in class D (T-breaking)  $\Xi H_{BdG}(\mathbf{k})\Xi^{-1} = -H_{BdG}(-\mathbf{k})$
- C4 rotation symmetry (square lattice)  $\hat{r}H_{BdG}(\mathbf{k})\hat{r}^{\dagger} = H_{BdG}(r \cdot \mathbf{k})$

$$\Xi \hat{r} \Xi^{-1} = \hat{r}$$
$$\hat{r}^4 = -1$$

Teo , TLH; PRL 2013

## **Classification of C4 Symmetric Superconductors**

Topological invariants (all T-breaking)

(i) First Chern Number

$$ch = \frac{i}{2\pi} \int_{BZ} \operatorname{Tr}(d\mathcal{A})$$

(ii) Rotation invariants

3 integers defined from rotation eigenvalues at special points in the BZ



**Full Classification** 

$$\mathbb{Z}^4 = \{(ch; n_4, n_6, n_7)\}$$

Note: Adding T-symmetry restricts all invariants to vanish!

Teo, TLH; PRL 2013

#### **Some Model Hamiltonians**

Arrays of Kitaev p-wave wires that preserve C4 symmetry



Raghu, Kapitulnik, Kivelson, 2010

| TB model | ch | $n_4$ | $n_6$ | $n_7$ |
|----------|----|-------|-------|-------|
| $H_b$    | 0  | 1     | -1    | 1     |
| $H_c$    | 0  | 2     | 0     | 0     |

Teo , TLH; PRL 2013

# Part 2: Bound States on Topological Defects in Spatial Symmetry Protected Phases

## **Boundstate Production Mechanisms**

For free fermion models the Dirac domain wall/vortex is the generic mechanism for topological boundstates. However, this does not apply for more complicated interacting systems.

Another mechanism which can be used even with interactions are considering "gauge fluxes" of a global symmetry.

| Symmetry                        | Flux          |
|---------------------------------|---------------|
| U(1) Global Charge Conservation | Magnetic flux |
| Translation Symmetry            | Dislocation   |
| Rotation Symmetry               | Disclination  |
| Anyonic Symmetry                | Twist Defect  |

In the case of free fermions the mechanisms coincide.

#### **Bound States on a flux in the QAHE/Chern Insulator**

Topological Phase Protected by Global U(1) symmetry: global charge conservation



Gapless fermion spectrum on cut

Lee, Zhang, Xiang PRL (2007)

### **Crystal Dislocations: Translation Defects**

![](_page_30_Picture_1.jpeg)

Let's take a path in the lattice 3 steps right 3 steps up 3 steps left 3 steps down This path is closed in the reference state.

The amount of translation is the Burgers vector and it is a vector of topological charges. It doesn't change if you continuously deform the dislocation.

### **Dislocation Bound States in Translation Protected Topological States**

Topological insulators/ superconductors (class D) with weak indices (G<sub>1</sub>, G<sub>2</sub>, G<sub>3</sub>)=**G**<sub>c</sub>

![](_page_31_Figure_2.jpeg)

Ran, Zhang, Vishwanath, 2009

![](_page_31_Figure_4.jpeg)

Teo, Kane, 2010, Ran 2010, Asahi, Nagaosa, 2012 Juricic, et al., 2012 TLH, Yao, Qi, 2013

#### **Bound States on Dislocations**

$$m(y) = me^{i\mathbf{b}\cdot\mathbf{K}}$$

![](_page_32_Figure_2.jpeg)

Ran, Zhang, Vishwanath Nat. Phys. (2009).

### **Bound States with Secondary Weak Invariants**

In class D in 3d we have an antisymmetric tensor **G**<sub>ab</sub>

$$n = \frac{1}{2\pi} G_{ab} B^a \tau^b$$

![](_page_33_Figure_3.jpeg)

Requires translation symmetry along dislocation.

A weak invariant for the dislocation itself!

TLH, Yao, Qi, 2013

![](_page_33_Picture_7.jpeg)

Bound state on linked dislocations does not require symmetry along dislocation. Possible appearance in Raghu, Kapitulnik, Kivelson state of  $Sr_2RuO_4$  where  $G_{ab} \neq 0$ .

#### **Summary of Boundstate Index Theorems in Topological Superconductors**

Strong Invariant (no symmetry)

$$\Theta_{\textit{vortex}} = rac{1}{2\pi} rac{\Phi}{\phi_0} Ch \qquad \left( \phi_0 = rac{h}{2e} 
ight)$$

Primary Weak Invariant (Translation)

$$\Theta_{dislocation} = \frac{1}{2\pi} \mathbf{B} \cdot \mathbf{G}_{\nu}$$

Secondary Weak Invariant (Translation)

$$\Theta_{dislocation^2} = \frac{1}{2\pi} (B_1^a B_2^b) G_{ab}$$

Total Index (= 0 even number of Majorana Boundstates, =1 odd number)

$$\Theta = \Theta_{vortex} + \Theta_{dislocation} + \Theta_{dislocation^2} \mod 2$$

Teo, TLH 2013, TLH, Yao, Qi, 2013

#### **Disclinations in the Square Lattice**

![](_page_35_Figure_1.jpeg)

Classification:  $C_4 \times \mathbb{Z}_2$ 

Frank Angle x Translation Parity

Eveness / oddness of number of translations. Equal to number of distinct rotation centers.

Teo , TLH; PRL 2013

## **Dislocation = Disclination Dipole**

![](_page_36_Figure_1.jpeg)

Teo, TLH; PRL 2013

### **Majorana Zero Modes at Disclinations**

• Simple Majorana TSC Models with C4 symmetry:

![](_page_37_Figure_2.jpeg)

![](_page_37_Figure_3.jpeg)

Teo , TLH; PRL 2013

## Z<sub>2</sub> Index for MBS on Disclinations

![](_page_38_Figure_1.jpeg)

## Z<sub>2</sub> Index for MBS on Disclinations

![](_page_39_Figure_1.jpeg)

# Part 3: Interaction-Induced Topological Phases Protected by Point-Group Symmetry

M. F. Lapa, J. C. Y. Teo, and TLH (Submitted)

Take class BDI which are topological superconductors with T symmetry (T<sup>2</sup>=+1)

$$\begin{array}{c} \gamma_{A,1} \gamma_{B,1} & \gamma_{A,2} \gamma_{B,2} & \gamma_{A,3} & \gamma_{B,3} \\ \gamma = \gamma^{\dagger} & \gamma^{2} = 1 \end{array} \quad \begin{array}{c} \gamma_{A,2} & \gamma_{B,2} & \gamma_{A,3} & \gamma_{B,3} \\ c_{n} = \gamma_{nA} + i\gamma_{nB} \end{array}$$

Action of T:  $Tc_n T^{-1} = c_n$ 

 $T\gamma_{nA}T^{-1} = \gamma_{nA} \quad T\gamma_{nB}T^{-1} = -\gamma_{nB}$ 

BDI Classified by an integer:  $\nu = \#(\text{unpaired B modes}) - \#(\text{unpaired A modes})$ 

![](_page_42_Figure_2.jpeg)

Introduce interactions (Fidkowski and Kitaev 2011):

![](_page_43_Figure_2.jpeg)

Introduce interactions (Fidkowski and Kitaev 2011):

![](_page_44_Figure_2.jpeg)

$$\implies \nu = 8 \equiv \nu = 0$$
$$\implies \mathbb{Z} \to \mathbb{Z}_8$$

Now add inversion symmetry

 $\nu \rightarrow -\nu$ 

 $\implies \nu = -\nu$ 

 $\implies \nu = 0, 4 \text{ since } \nu \in \mathbb{Z}_8$  $0 \to \mathbb{Z}_2$ 

This means we have an interaction induced topological invariant that does not appear in free fermion (including mean-field) systems.

Now, can we find a model that represents the non-trivial phase?

Let's try to construct a simple example model

![](_page_45_Picture_3.jpeg)

![](_page_45_Picture_4.jpeg)

We can immediately see why strong interactions are required.

Now, can we find a model that represents the non-trivial phase?

Let's do better by making it translation invariant by forming a Fidkowksi-Kitaev chain:

![](_page_46_Picture_3.jpeg)

This model is a topological charge-4e superconductor.

Just as one can get single-electron teleportation in the Kitaev chain, we can observe teleportation of full Cooper pairs in the Kitaev-Fidkowski chain.

## Acknowledgements

# Thank you!

And thanks to my close collaborators

Jeffrey C. Y. Teo (UIUC Postdoc/Simons Fellow)->U. Virginia Wladimir Benalcazar (UIUC student) Matt Lapa (UIUC student)

Emil Prodan (Yeshiva) Andrei Bernevig (Princeton)

![](_page_47_Picture_5.jpeg)