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Motivation

I Often Bulk-edge correspondances have their origin in topology.
I They can often (and should best) be described by algebraic

topology.

I In the context of quantum mechanics this is based on exact
sequences (extensions) of operator algebras (Banach algebras):

Two algebras J, A which are linked by an extension E :
π : E → A surjective algebra morph., J ∼= kerπ.

J ↪→ E π→ A

I Boundary maps, e.g. ind : K1(A)→ K0(J), give rise to equations
between topologically quantised physical quantities, one related
to the system described by J the other to that by A.
Example: IQHE [Kellendonk, Richter, Schulz-Baldes]

I I will show here that Levinson’s theorem is of that type.
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Levinson’s theorem

Consider H = H0 + V on L2(Rd )

I H0 is ”nice” free motion (no bound states) (e.g. H0 = −∆, ∂, · · · )
I V (decaying) potential creating finitely many bound states
I σ(H0) = σac(H0) = σac(H) = IH0 (interval)

Scattering operator S = S(H0), S(E) the scattering matrix (unitary)

Time delay at energy E is iS∗(E)S′(E).



Levinson’s theorem

Theorem
Integrated time delay = number of bound states + corrections.

i
2π

∫
σ(H0)

(tr(S∗(E)S′(E))− reg.) dE = Tr(Pb) + corr .

corr . =

{ 1
2 if ∃ halfbound state
0 else (d = 3)

tr trace on L2(Sd−1), Tr trace on L2(Rd ), Pb bound state projection.
Halfbound state (0-energy resonance): HΨ = 0 for Ψ ∈ L2

loc(Rd )\L2(Rd ) but
in some weighted L2

Usual proofs involve complex analysis but it is topology!
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Topological version of Levinson’s theorem 1

Compare evolution of e−itHΨ, Ψ ∈ imP⊥b with e−itH0 Ψ±, Ψ± ∈ L2(Rd )
such that limt→±∞ ‖e−itHΨ− e−itH0 Ψ±‖ = 0.

I Ω± := s−limt→±∞
(
e−itH

)∗
e−itH0 wave operators.

I Ω = Ω− an isometry intertwining dynamics of H0 with that of H |ac

Ω∗Ω = 1, ΩΩ∗ = 1− Pb

S = Ω∗+Ω− = s− lim
t→+∞

(
e−itH0

)∗
Ωe−itH0

Theorem ([Kellendonk, Richard 2007])

If the wave operator Ω belongs to an extension of C(S1) by K(H)
then the number of bound states equals the winding number of π(Ω).

I May also consider C(S1,K(H′)+) in place of C(S1).
I Part of π(Ω) should be related to the scattering oper. S so that

part of the winding number is integrated time delay.
I Eigenvalues may be embedded. No gap condition needed!
I Conceptual clearness.
I Topologically more involved models possible.
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New formulae for wave operators

The condition on the wave operator is the difficult analytical part!

Theorem ([Kellendonk, Richard (d=1) 2009][Richard, Tiedra (d=3) 2013])

H0 = −∆ sur L2(Rd ) (d = 1,3), V (x)|1 + x2|ρd ∈ L2(Rd ).

Ω = 1 + R(A)(S(H0)− 1) + compact

A = 1
2 (~x · ~∇+ ~∇·~x) (gen. dilation), R(A) = ⊕l∈NRl (A) (angular mom.)

R0(A) =
1
2
(
1 + tanh(πA)− i cosh(πA)−1)Ps−wave

Rl are smooth functions with Rl (−∞) = 0, Rl (+∞) = 1.

I There are results in d = 2 in the absense of half bound states.
I Bellissard & Schulz-Baldes have studied H0 = Laplacian on a

lattice.
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Some non-commutative topology

H inf. dim. sep. Hilbert space, K(H) compact operators.
W isometry of codim 1. W ∗W = 1, WW ∗ = 1− proj. of rank 1.

K(H) ↪→ B(H)
π→ B(H)/K(H)

‖
⋃ ⋃

K(H) ↪→ C∗(W )
π→ π(C∗(W )) ∼= C(S1)

C∗(W ) = Toeplitz is C∗-algebra gen. by W ,W ∗.

Theorem (Atkinson)
F ∈ B(H) is Fredholm whenever π(F ) is invertible.

Theorem (Index theorem; Gochberg, Krein)
If F is Fredholm then ind(F ) = −wind(π(F )).

I index and winding number are homotopy invariant and
characterise uniquely the homotopy classes.
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Heisenberg pair A, B

[A,B] = ı, σ(A) = σ(B) = R.

M = σ(A)× σ(B) a square (R = [−∞,+∞]). ∂M ∼= S1.
I K(L2(R)) = C∗(f (A)g(B)|f ,g ∈ C0(R))

I Toeplitz = C∗(f (A)g(B)|f ,g ∈ C(R))

I π : Toeplitz→ C(∂M) is taking limits A→ ±∞ or B → ±∞
I π(F ) = Γ1 ◦ Γ2 ◦ Γ3 ◦ Γ4 (concatenation to restrictions on sides)

Γ1(A) = s− lim
s→−∞

eisAF (A,B)e−isA

Γ2(B) = s− lim
t→+∞

eitBF (A,B)e−itB

similarily for Γ3, Γ4.

wind(π(F )) = w1 + w2 + w3 + w4,

wi = εi
1

2πı

∫ +∞

−∞
Γ−1

i (x)Γ′i (x)dx , ε1 = ε2 = 1, ε3 = ε4 = −1

differentiability and integrability assumed.
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M as energy-scale space

Specify B = 1
2 ln(−∆), A generator of scaling (dilation).

π(Ω) = Γ1 ◦ Γ2 ◦ Γ3 ◦ Γ4 with

Γ2(H0) = s− lim
t→+∞

eit 1
2 ln H0 Ωe−it 1

2 ln H0 = S(H0)

Γ4(H0) = 1
Γ1(A) = s− lim

s→+∞
e−isAΩeisA rescale p → e−sp

here
= 1 + R(A)(S(0)− 1) = P⊥hb + (1− 2R0(A))Phb

Γ3(A)
here
= 1 + R(A)(S(+∞)− 1) = 1

So w3 = w4 = 0,

w2 = integrated time delay

w1 = −1
2

number of halfbound states
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More philosophy
I wish to place Levinson’s theorem into the larger context of
topological boundary maps.

(1) Topol. invariants in QM arise as elements of K (A) where A is a
natural C∗-algebra to which H is affiliated.

K1(A) abelian group generated by homotopy classes of unitaries in A
(or Mn(A), n ∈ N).

K0(A) Grothendieck group of the abelian semigroup generated by
homotopy classes of projections in A (or Mn(A), n ∈ N).

(2) Need to get numbers! These arise from homomorphisms
τ : K (A)→ C.

Ex.: Trace, wind, chern-number: higher traces ht(A) (cycl. cohom.).
τ(g) (Connes’ pairing) is a topological quantum number.

(3) Need to give these numbers a physical interpretation.
(4) When are they integer?

Find Fredholm operator F s.th. τ(g) = indF (g ∈ K (A), τ ∈ ht(A)).
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Boundary maps

(5) A topological relation between two physical systems (algebras) A
and J is given by an extension E : J ↪→ E π→ A.

From J ↪→ E → A we get

δ : Ki (A)→ Ki+1(J), δ∗ : hti (J)→ hti+1(A)

such that
τ(δx) = δ∗τ(g)



Examples

1. Bulk edge correspondances.
A = C∗(bulk) = B oB R2,
g = gF the class in K0 of the Fermi proj. (supposed in a gap).

C∗(edge) ↪→Wiener-Hopf π→ C∗(bulk)

wind‖k chern = δ∗wind‖k
σedge = σH = chern(gF )

wind⊥x Tr
pressure on bdry / energy = integr. density of states

2. Levinson’s theorem. g is the class in K1 of π(Ω).

C∗(bounded) ↪→ Toeplitz π→ C∗(scattered)

Tr windE

number bound states = integr. time delay + corr.
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Higher degree Levinson’s theorems

Add degrees of freedom.

H = H(y) for y ∈ Y a 2n dim. closed manifold (top. space).

C(Y ,K(H)) ↪→ E π→ C(S1 × Y ,K(H′))

E = Toeplitz⊗ C(Y ). Pb = Pb(y) vector bundle over Y .

If Ω ∈ E
chern2n([Pb]0) = δ∗chern2n([π(Ω)]1)

(degree 2n Levinson theorem), explicitely (n = 1)

1
2πi

∫
Y

Tr(PbdPb dPb) =
1

24π2

∫
σ(H0)×Y

tr((S∗ − 1)dS S∗dS S∗dS)

+ similar terms with Γi , i = 1,3,4

d exterior differential on Y , d exterior differential on R+ × Y .



Higher degree Levinson’s theorems

Add degrees of freedom.

H = H(y) for y ∈ Y a 2n dim. closed manifold (top. space).

C(Y ,K(H)) ↪→ E π→ C(S1 × Y ,K(H′))

E = Toeplitz⊗ C(Y ). Pb = Pb(y) vector bundle over Y .

If Ω ∈ E
chern2n([Pb]0) = δ∗chern2n([π(Ω)]1)

(degree 2n Levinson theorem), explicitely (n = 1)

1
2πi

∫
Y

Tr(PbdPb dPb) =
1

24π2

∫
σ(H0)×Y

tr((S∗ − 1)dS S∗dS S∗dS)

+ similar terms with Γi , i = 1,3,4

d exterior differential on Y , d exterior differential on R+ × Y .



Higher degree Levinson’s theorems

Higher degree Levinson’s theorem. g is the class in K1 of π(Ω).

C∗(bounded)⊗ C(Y ) ↪→ Toeplitz⊗ C(Y )
π→ C∗(scattered)⊗ C(Y )

chern2n wind2n+1

chern nb. of bd state bundle = ?

I ”Adiabatic curvature and the S-matrix” Sadun & Avron 1996
contains elements of a higher Levinson’s theorem.

I I provide an example where the above identity is not trivial.



Aharonov Bohm point interaction

Hα =

(
ı∇+ α

(
−y

x2 + y2 ,
x

x2 + y2

))2

on C∞c (R2\{0}).
Hα = ⊕m∈ZHα,m, Hα,m = −∂2

r −
1
r
∂r +

(m + α)2

r2

I If c = |m + α| ≥ 1 then Hα,m is essentially self-adjoint.
I If c = |m + α| < 1 then Hα,m deficiency index (1,1).
I Hα=0 one parameter family of δ-interactions.
I For α ∈ (0,1), Hα describes a four parameter family of
δ-interactions with magnetic flux tube at 0 (B = αδ).

(1− U)

(
a0

a−1

)
= 2i(1 + U)

(
αb0

(1− α)b−1

)
ψm(r) = amr−c + bmr c + o(r c), U ∈ U(2).

So H = HU
α , U ∈ U(2), α ∈ (0,1).



Aharonov Bohm point interaction

I Free Hamiltonian is −∆, σac(HU
α ) = σ(−∆) = R+.

I Number of eigenvalues of HU
α equals number of eigenvalues of U

with positive imaginary part.

Theorem (Kellendonk & Pankrashkin & Richard 2011)

Let λi ∈ C, |λi | = 1, =(λ1) < 0 < =(λ2).
Y = Yλ1,λ2 = {U ∈ U(2)|U has eigenvalues λ1, λ2}.

1. Y 3 U 7→ Ω = Ω(HU
α ,−∆) is continuous

2. Ω ∈ E = Toeplitz⊗ C(Y ,M2(C)),
3. Pb = PU

b defines a non-trivial line bundle over Y with chern
number 1.


