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Non-interacting insulator ground states
• Single particle Hilbert space l2(Zd)⊗ Cn

• Translation invariant Hamiltonian H =
⊕

k H(k) with
momentum k in Brioullin zone T d

E(k)

empty

occupied

k

gap n

m

• Insulator ground state given by assignment

k 7→ V (k) = subspace spanned by m occupied states
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Mathematical descriptions

Classifying map

T d → Grm(Cn)

k 7→ V (k)

Vector subbundle of T d × Cn

p : V → T d

p−1(k) = V (k)

• Impose symmetry T ◦ I (time-reversal T 2 = 1 and
inversion I2 = 1), effectively replaces C by R

• Example: d = 1, n = 2 and m = 1

V (k) ⊂ R2

T 1 = S1
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Topological Phases
“Two ground states are in the same topological phase if one

can be
{

adiabatically
continuously

} 
deformed into
connected to

interpolated into

 the other.”

In other words, V0,V1 : T d → Grm(Cn) are in the same
topological phase iff there exists a homotopy Vt (0 ≤ t ≤ 1).
Set of topological phases:

[T d ,Grm(Cn)]

Other equivalence relations:
• Isomorphic as vector bundles: VectCm(T d) = [T d ,Grm(C∞)]

• Stably equivalent: K̃ (T d) = [T d ,Gr∞(C∞)]
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Homotopy generalisations

Homotopy classes ⊃ Iso. classes of vector bundles ⊃ K -groups

Consequences:
1. More topological phases
2. More restrictive definition of “strong” topological insulators
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1. More topological phases
Symmetry T ◦ I in d = 1 with m = 1 of n = 2 bands occupied:

S1 → Gr1(R2)

(x , y) 7→ line through (x , y)

2 in
[
S1,Gr1(R2)

]
= Z

BUT: 0 in
[
S1,Gr1(R3)

]
= Z2
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1. More topological phases

S3 → Gr1(C2)

(x , y) 7→ line through (x , y)

S3 Gr1(C2)

1 in
[
S3,Gr1(C2)

]
= Z

BUT: 0 in
[
S3,Gr1(C3)

]
= 0
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1. More topological phases

Symmetry Dimension
class 1 2 3

A 0 Z 0
AIII Z 0 Z
D Z2 Z 0

DIII Z2 Z2 Z
AII 0 Z2 Z2
CII Z 0 Z2
C 0 Z 0
CI 0 0 Z
AI 0 0 0

BDI Z 0 0
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Strong and weak
Maps from cubes Id correspond to maps from
• T d if periodic in all coordinates
• Sd if ∂Id maps to a point

Usual definition[Kitaev 2009; RK,Guggenheim 2014] for large n,m:

[T d ,Grm(Cn)] =
d∏

p=1

[Sp,Grm(Cn)](
d
p)

= [Sd ,Grm(Cn)]

︸ ︷︷ ︸
strong

×
d−1∏
p=1

[Sp,Grm(Cn)](
d
p)

︸ ︷︷ ︸
weak
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Strong and weak
Example d = 3, m,n� 1:

[S1,Grm(Cn)] = 0

[S2,Grm(Cn)] = Z (Chern number)

[S3,Grm(Cn)] = 0

[T 3,Grm(Cn)] = [S2,Grm(Cn)](
3
2)

= [S2,Grm(Cn)]× [S2,Grm(Cn)]× [S2,Grm(Cn)]︸ ︷︷ ︸
weak

= Z× Z× Z

Interpretation: Chern insulators stacked orthogonal to vector
(n1,n2,n3) ∈ Z× Z× Z
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Strong and weak
Example d = 3, m = 1, n = 2:

[S1,Gr1(C2)] = 0

[S2,Gr1(C2)] = Z (Chern number)

[S3,Gr1(C2)] = Z (Hopf)

[T 3,Gr1(C2)] = {(n0;n1,n2,n3) | n1,n2,n3 ∈ Z,
n0 ∈ Z for n1 = n2 = n3 = 0,
n0 ∈ Z2·gcd(n1,n2,n3) otherwise}

6= Z× (Z× Z× Z)

New definition of “strong”: image of injective map

[S3,Gr1(C2)] ↪→ [T 3,Gr1(C2)]

Generalises to all d and Z2-equivariant classes[RK,Guggenheim 2014]
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Strong and weak
Example with symmetry T ◦ I for d = 2, m = 1, n = 3:

[S1,Gr1(R3)] = Z2 (Moebius band)

[S2,Gr1(R3)] = N (Skyrmions)
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Breakdown of strong invariant N→ Z2
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Breakdown of strong invariant N→ Z2
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Stacked realisation
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Conclusion

• Homotopy classes ⊃ Vect. bundle iso. classes ⊃ K -groups
• Stability typically reached quickly, but some exceptions

exist (Hopf insulator/superconductor)
• Only non-trivial maps from Sd are strong in general

Thank you!
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