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INTRODUCTION



WHAT ARE “SPIN LIQUIDS” ?

Phases of guantum spin systems which don’t order (at zero temperature) but
instead exhibit unusual, often exotic properties.
[Loosely speaking: typically happens due to “frustration”.]

In general, two cases:

-(A): Gapped spin liguids (typically have some kind of topological order)

-(B): Gapless spin liquids (but gapless degrees of freedom are *not*
the Goldstone modes of some spontaneous symmetry breaking)



SOME HISTORY:

= Kalmeyer and Laughin (1987), suggestion (not correct):

Ground state of s=1/2 Heisenberg quantum antiferromagnet on triangular lattice
(which is frustrated) might break time reversal symmetry spontaneously, producing
the Bosonic: v = 1/2 Laughlin (fractional) quantum Hall state, a ‘Chiral Spin Liquid’.
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=  Wen, Zee, Wilczek 1989; Baskaran 1989:

— — -

use the “spin chirality operator” Xijk «— Si ; (Sj X Sk)

as an order parameter for chiral spin states.



Bosonic Laughlin quantum Hall state at filling v = 1/2

Wavefunction :

At e H (z; — zj)z

Fact :
The edge of the v = 1/2 Bosonic Laughlin state is described
by SU(2); Conformal Field Theory having central charge ¢ = 1



= a ‘Chiral Spin Liquid’ has appeared in the past

(i): in models with somewhat artificial Hamiltonians:
- Ch. Mudry (1989) , Schroeter, Thomale, Kapit, Greiter (2007);
long-range interactions
-Yao+Kivelson (2007 — 2012);
certain decorations of Kitaev’s honeycomb model

(ii): particles with topological bandstructure plus interactions:
-Tang et al. (2011), Sun et al. (2011), Neupert et al. (2011); “flat bands”
-Nielsen, Sierra, Cirac (2013)

(iii): SU(N) cases, cold atom systems: Hermele, Gurarie, Rey (2009).

Here | will describe the appearance of

- (A): the Kalmeyer-Laughlin (gapped) ‘Chiral Spin Liquid’ (the Bosonic Laughlin
quantum Hall state at filling v = 1/2 ),

as well as
- (B): a gapless spin liquid which is a non-Fermi Liquid with lines in momentum
space supporting gapless SU(2) spin excitations replacing the Fermi-surface
of a Fermi-liquid (sometimes called a “Bose-surface”),

in an extremely simple model of s=1/2 quantum spins with SU(2) symmetry and local
short- range interactions.




Notion of “Bose Surface” originates in work by: Matthew Fisher and collaborators

e.g.:
- Paramekanti, Balents, M. P. A. Fisher, Phys. Rev. B (2002);

- Motrunich and M. P. A. Fisher, Phys. Rev. B (2007);
- H.-C. Jiang et al. Nature (2013).



MODELS



“BARE-BONES” MODELS:

5 (breaks time-reversal
Sk)

* Spin chirality operator  Xijk := S; - (5 X i

serves as an interaction term in the Hamiltonian on a lattice made of triangles:

 We consider: Kagome lattice (a lattice of corner-sharing triangles)

triangles

Ho= SN L e

ijk

* QUESTION: What are the phases of this system?



TWO CASES:

The lattice of the centers of the plaquettes of the Kagome lattice is a bipartite lattice
->there are two natural models:

H:KZ Xijk i'KZ Xijk
k % %

ATASA
A z A = tXijk  and v = Zv S
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Uniform (“Homogeneous”) ' ~ Staggered




HUBBARD-MODEL (MOTT INSULATOR) REALIZATION
FOR THE UNIFORM PHASE :

One of the main messages of our work:

The uniform phase is the ground state of the simple (half-filled) Hubbard model
on the Kagome lattice when a magnetic field is applied.

Since the Hubbard model is the minimal model describing typical Mott-insulating materials,
this is a step towards finding the chiral spin liquid in standard electronic materials:

H = = Z (tijcggcja e tij;ng'a) S Uzni,+1ni,—1 e
<7:,j>,0'::|:]_ v

h.
B e Z(ni,+1 — 74,1

_i.

where MG s
tij. = -complex
and tijtjk‘tkz' = t362q)

where ® = magnetic flux through triangle



At half filling (one electron per site, of either spin), standard perturbation theory
in (t/U) turns out to yield the following spin-1/2 Hamiltonian:

= JHBzgi'§j+JX Z S‘;(gjxgk)—l—

42 32t 2443
where : JHB:7<]-_W+), JX:(I)W—i_

First set Zeemann field to zero: h, =0 [put back later (will not change conclusions)]

Parametrize : Jgp = Jcosl, J, = Jsindb; (from now on set J = 1)
Then :

0 = 0 : Heisenberg antiferromagnet on Kagome lattice

HE oD g8
(4,5)

6 = /2 : ”Bare Bones” 3 — spin model




OUR RESULTS (from numerics): PHASE DIAGRAM
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PREDICTION OF THE PHASES OF THE BARE-BONES MODEL

(HEURISTIC):




TWO CASES:

The lattice of the centers of the plaquettes of the Kagome lattice is a bipartite lattice
->there are two natural models:

H:KZ Xijk i'KZ Xijk
k % %

ATASA
A z A = tXijk  and v = Zv S
]

Ay

A__A
X XX
IYXX XXXX
><\/><\/>< ><\/><\/><

Uniform (“Homogeneous”) ' ~ Staggered




“NETWORK MODEL”

Think in terms of a “network model” to try to gain intuition about the behavior of the system:

Chiral topological
phase

T

hiral edge state

The 3-spin interaction on a triangle breaks time-reversal symmetry (and parity),
but preserves SU(2)symmetry:

-> nal;dral to view each triangle with 3-spin interaction as the
seed of a puddle of a chiral topological phase
[which is expected to be the » = 1/2 Bosonic Laughlin state
— simplest state with broken Time-reversal and SU(2) symmetry].




Joining two triangles (puddles) with a corner-sharing spin: a 2-channel Kondo effect

two triangles of equal chirality:




Joining two triangles (puddles) with a corner-sharing spin: a 2-channel Kondo effect

Two semi-infinite s=1/2 Heisenberg spin chains

/ﬁ i

This is the same edge state SU(2);

as in the Bosonic Laughlin state

[Il.Affleck+AWWL PRL(1992); S.Eggert+l.Affleck PRB (1992)]



Joining two triangles (puddles) with a corner-sharing spin: a 2-channel Kondo effect

(a) (b) (C) (d)
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Joining two triangles (puddles) with a corner-sharing spin: a 2-channel Kondo effect

(a) (b} (C) (d)
b A S G £ XX
SR B Yy

(d)

In both cases:

Equal
Chirality
[ 1 -
-

The two puddles
join to form a larger
(d) puddle

[surrounded by

a single edge state ]
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Direct Analysis of the Case of Opposite Chirality Triangles:

N

N

N

/

N

[I.Affleck+AWWL PRL(1992); I. Affleck (Taniguchi Symposium, Japan,1993), J.Maldacena+AWWL, Nucl. Phys.B (1997)]



Protected by permutation symmetry 1 <->2:

forbids (RG-) relevant tunneling term:

€*? g114(0) gr25(0) — €*P gr24(0) gr15(0) = (—1) €** gr14(0) gr2s(0)



(A): Prediction for

the nature of the Uniform (Homogeneous) Phase
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for each pair of corner-sharing triangles

» -I.i' (o

< asingle edge state described
9 by SU(2); conformal field theory

- surrounds the the system which is
thus in the (gapped) Bosonic Laughlin

. quantum Hall state at filling ¥ = 1/2

A [described by SU(2)-level-one
Chern Simons theory].

, (See below: we have checked numerically the presence
é @, 5 Wy of edge state, torus ground state degeneracy,
entanglement spectrum, S- and T-matrices, etc.).



(B): Prediction for the nature of the Staggered Phase

AN
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VY V for each pair of corner-sharing triangles

Three stacks of
parallel lines of edge
states, rotated

with respect to each
other by 120 degrees




A single edge state One stack of parallel edge states
(in the “x-direction”): (in the “x-direction”):

Real space
Real space
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Three stacks of parallel edge states (rotated with respect to each other by 120 degrees):

Real space

Momentum space
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Real space:

SYMMETRIES:

Momentum space:
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(Reflection symmetry: x <-> -x) composed with (time-reversal symmetry)
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CHECK NETWORK MODEL PICTURE IN THE CASE OF A TOY MODEL

Non-interacting Majorana Fermion Toy model:




CHECK NETWORK MODEL PICTURE IN THE CASE OF A TOY MODEL

Non-interacting Majorana Fermion Toy model:

spin-1/2 operators S; at the by Majorana Fermion

-> Replace _ : ;
sites of the Kagome lattice zero modes ; (=, )

-> On each triangle, replace:
Spin Chirality operator |x;jr = S, - (5_’;, X gk) by | Xije == t(vivs + 75k +YeYi)
k

defining a notion of chirality for a triangle: i
i J

-> Hamiltonian as before (sum over triangles):

HZKZ Xijk =T KZ Xijk>s (K > 0)
A \V4



“NETWORK MODEL”

(Non-interacting Majorana Fermion Toy model)

Think in terms of a “network model” to try to gain intuition about the behavior of the system:

Chiral topological
phase

Vg

hiral edge state

The 3-spin interaction on a triangle breaks time-reversal symmetry (and parity):

-> can vi/ev/each triangle with 3-spin interaction as the
seed (puddle) of a ceraI topological phase
[which is here the 2D Pz T %Py topological superconductor (symmetry
class D), possessing a chiral Ising CFT edge theory (central charge c=1/2)]

[Grosfeld+Stern, PRB 2006; AWWL, Poilblanc, Trebst, Troyer, N.J.Phys. (2012)]



Joining two triangles (puddles) with a corner-sharing Majorana zero mode: resonant-level tunneling

[Kane+Fisher, 1992]
(a) (b} {c) (d)
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(A): Prediction for the nature of the Uniform (Homogeneous) Phase
(Non-interacting Majorana Fermion Toy model)
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><><>< using
XX X X
X XX
VvV V

for each pair of corner-sharing triangles

I
IA : o -I.i' oy
W - o \
; 3 _ a single edge state described
] A 'S i 3 : [}
v by Ising conformal field theory
o o surrounds the the system which is
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-- (Non-interacting) Fermion solution of the Uniform (Homogeneous) case:
[Ohgushi, Murakami, Nagaosa (2000)]

* Gapped spectrum

 Chern number of top and
bottom bands is +1

-- In agreement with prediction from Network Model:




(B): Prediction (from Network) for the nature of the Staggered Phase

(Non-interacting Majorana Fermion Toy model)

-- (Non-interacting) Fermion solution of the staggered case:
[Shankar, Burnell, Sondhi (2009)] | |

Dispersion FE(k,, k,) versus (k, k) :

-- In agreement with prediction from Network Model:




RETURN TO THE ORIGINAL MODEL OF S=1/2 SU(2) SPINS
(NOT SOLVABLE):

(A): UNIFORM CASE - NUMERICAL RESULTS




RETURN TO THE ORIGINAL MODEL OF S=1/2 SU(2) SPINS
(NOT SOLVABLE):

(A): UNIFORM LADDER GEOMETRY (“thin torus”, “thin strip” limits)
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recall 2D bulk model:




(Al1): Numerical Results for Uniform phase: gap, and ground state
degeneracy on torus

gaps to various low excited states:

gap to 1t excited state: cylinder geometry torus versus cylinder geometry
: (.08 ; 0.08 !
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torus: 1 additional state becomes
degenerate with the ground state !

cylinder: non-degenerate ground state



(A2): Numerical Results for the Uniform phase: gapped on the cylinder,
versus
gapless on strip

gap to 1t excited state: cylinder geometry gapless: strip geometry (due to edge state)
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(A3): Numerical Results for the Uniform phase: entanglement entropy
on a strip (c=1)

at center of the system:

S(l) = S +Cln(—sm"%) -> e > S() =8+ gInL
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(A4): Numerical Results for the Uniform phase: Entanglement
T spectrum

4 |
Infinite G _/ Half-infinite /'\
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Entanglement spectrum:

S? = integer S% = half — integer
X % % % X
Ferrrallnlls
a0 X X X X
= 3k« SENE f
RN AN AR A
-
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E) = X 1 X -x_% I I x%
§ 1 ><_1 X ><1 1 ¥
= i i .
iU v = Tjor -3 13 L=
I—27TI 0 27r 47 67r I—7r | T 3w |57r
Momentum Momentum

Degeneracies (at fixed Sz): 1-1-2-3-5-... (=number of partitions of non-neg. integers)



Aside:

number of partitions = U(1) Kac-Moody Algebra Degeneracies:
1B i)
1.5 JZ111)
2=1+1""2 T2, 1), (J21)%13)
e I S e 0 T2 i), JE o241 2P
4=34+1=24+2=24+1+1=14+1+1+1 .5

etc.



(A5): Numerical Results for the Uniform phase: Anyonic Bulk
Excitations; Modular S- and T-Matrices (=Generators of the

Modular Group)

Torus: &///’ {z€C| z=24+w; =2+ ws}
W1

Ground State Wavefunctions on the Torus

anyons : a=1,2,...,M (= number of anyons); a = 1(identity anyon)
Two Bases:

Basis1: |[I%) a=1,2,...M

Basis 2: |U%2) a=1,2,.. M

S — matrix : |U¥?) = Z Sba |¥31),
b

T — matrix : |U%) = exp{—i2mc/24} exp{i2nh,} |¥%7), Dehn Twist

[c central charge, h, = ”topological spin”]



Recall:

QuantumDimensions : d, = S¢/S;

Total Quantum Dimension : D = 1/5;




For the Bosonic Laughlin State:
a'= 1:58;7dy ='d; =:1;hence: P =2
1(central charge); hy = 1,hg = 1/4

_ —d2mj2a |10 i 1 ek
R [0 z] S_\/ﬁ{l =

Numerical Results (system of 48 sites):

a
I

__—i(27/24)-0.988 1 0 b L 0.996 0995
Tnum ERN [0 7 - 6—10.002171'] ) Snum Ty \/§ |:0996 —0.994 - 6—20.00197T
; /0988 Dpum = 1/S11 = v/2/0.996

(determines also topological entanglement entropy :
S = const.L —~; ~=InD)

Note: S,,.., is unitary -> the full set of anyon particles has been retained



RETURN TO THE ORIGINAL MODEL OF S=1/2 SU(2) SPINS

(NOT SOLVABLE):

(B): STAGGERED CASE - NUMERICAL RESULTS




RETURN TO THE ORIGINAL MODEL OF S=1/2 SU(2) SPINS
(NOT SOLVABLE):

(B): STAGGERED CASE

Real (position) space: Momentum space:

Bt
4

e

L>W <2 o}

W = # of k, points

i S=5+%<InL

(bipartite entanglement cut: center of system)



(B): STAGGERED CASE -- W=2 LADDER GEOMETRY

Network model prediction: ¢ =2

recall 2D bulk model:




(B): NUMERICAL RESULTS FOR THE STAGGERED CASE
-- W=2 LADDER GEOMETRY
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(B): STAGGERED CASE - W=2 LADDER GEOMETRY:

Stability to Heisenberg interactions (cylinder geometry)

Heisenberg interaction

v/
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END



