

Markus Morgenstern

Topological properties in solids probed by Experiment

- Quantum Hall effect
- 2D TIs
- Weak Topological Insulators
- Strong topological insulators

JARA FIT

Fundamentals of Future Information Technology

Vienna, 04.08.2014

What is Topology ?

Wikipedia: Topology is the study of continuity and connectivity

homeomorphism
fiber bundles ...
Pontryagin classes
Haussdorf dimension
Massey product

What is Topology ?

Idea: distinguish geometrical objects by integer numbers

How often does the path wind around P, which is never touched? 2. Path coordinate t ∈[0,1)

3

$$z(t) = |z(t)| \cdot e^{i\phi(t)}$$

$$Q(z) = \frac{1}{2\pi i} \int_0^1 \frac{dz(t)/dt}{z(t)} dt$$

4. Proof correctness

$$Q(z) = \frac{1}{2\pi i} \int_0^1 \frac{d}{dt} \log\left(z(t)\right) dt$$

$$= \frac{1}{2\pi i} [\log (z(t))]_0^1 = \frac{1}{2\pi i} \log \left(\frac{|z(1)|e^{i\phi(1)}}{|z(0)|e^{i\phi(0)}} \right)$$
$$= \frac{1}{2\pi i} \cdot (\log (e^{i\phi(1)}) - \log (e^{i\phi(0)})) = \frac{\phi(1) - \phi(0)}{2\pi}$$

Topology in Solids: quantum Hall effect

2D system

 accurate mesurement of h/e² (precision: 10⁻¹⁰)

/=1 InGaAs/AlGaAs 25 6 $\rho_{\rm xy}$ = h/ie² 7= 30 mK 5 20 $n=2.8 \times 10^{15} \text{ m}^{-2}$ $\rho_{\rm xx}$ (kΩ) 15 Ž μ =3.4 m²/Vs 2 <u>C</u> 10 5 0 3 5 6 7 8 9 0 2 4 В (T)

Thouless et al., PRL 49, 405 (82)

$$j_{y} = -e \iint_{MBZ} \frac{dk_{x}dk_{y}}{(2\pi)^{2}} \sum_{\alpha} v_{y}^{\alpha}$$

$$= \frac{E_{x}e^{2}}{h} \iint_{MBZ} \frac{dk_{x}dk_{y}}{(2\pi)i} \sum_{\alpha} \left(\langle \frac{\partial u^{\alpha}}{\partial k_{y}} | \frac{\partial u^{\alpha}}{\partial k_{x}} \rangle - \langle \frac{\partial u^{\alpha}}{\partial k_{x}} | \frac{\partial u^{\alpha}}{\partial k_{y}} \rangle \right)$$
Chern number *n*

Chern number is a distinct integer, if the system is gapped, i.e. a band is either completely occupied or completely empty

v. Klitzing et al., PRL 45, 494 (80), ...

4/35

Chern number = integer: the argument

1) Define magnetic Brilloun zone (MBZ) by integer number of flux quanta inside each unit cell

 \Rightarrow wave function has zeros inside the unit cell (Aharonov Bohm phase \neq 0)

 Combination with required periodicity of MBZ requires a <u>phase mismatch</u> around the zero for a particular real space <u>x</u>

3) Integral of the **gradient of the phase mismatch** along the interface has to be single valued: 0, 2π , 4π ...

4) By Stokes theorem, this is identical to the Chern number

Kohmoto, Ann. Phys. 160, 343 (85)

Requirement: the band must be full, such that the MBZ is densely occupied

Chern number = integer: filling the band

Quantum Hall winding number in real space 2D LDOS at B= 12 T, 0.3 K

One node (0) per flux quantum in extended state Corbino-Geometry

Prediction: one more flux quantum = one node encircles the flux = winding number of zeros

Arovas et al. PRL 60, 619 (85) 6/35

Bulk edge corespondance

Where is the charge of the quantized Hall voltage (bulk insulating) ?

Answer: at the topological phase boundary, where different Chern numbers clash

Laughlins argument: one more flux moves charge from inner to outer rim without energy cost (WF identical)

 $\Rightarrow \ldots \Rightarrow$ one chiral edge state per Chern number

Seeing the edge state

Edge state = "metallic" area of high compressibility

Part II 2D Topological Insulators (B = 0 T)

Topology in 2D at B = 0 T

Make a band gap in 2D by mixing two bands with different parity Inverted bands + k-mixing M from Parity spin orbit Μ Splitting from k·p k-space Formally: Spin 1 $\mathcal{H} = \begin{pmatrix} h(k) & 0\\ 0 & h^*(-k) \end{pmatrix}$ Bernevig et al, Science 314, 1757 (05) Bernevig et al, Spin 2 $h(k) = \epsilon(k) I_{2 \times 2} + d_a(k) \sigma^a$, Pauli matrix for s,p $d_{a}(k) = (Ak_{x}, -Ak_{y}, M(k))$ $M(k) = M - B(k_{x}^{2} + k_{y}^{2}),$ Nodal line in k-space topological number for one "spin" $\sigma_{xy} = -\frac{1}{8\pi^2} \iint dk_x dk_y \hat{\mathbf{d}} \cdot \partial_{\mathbf{x}} \hat{\mathbf{d}} \times \partial_{\mathbf{y}} \hat{\mathbf{d}} \cdot e^2 / h$ $\Delta \sigma_{xy}$ = +/- 1 for 0 < M < 4B (+: Spin 1, - Spin2)

no backscattering

Experiment: non-trivial topology at B = 0 T

$$\lambda_{1,2}^2 = k_x^2 + F \pm \sqrt{F^2 - (M^2 - E^2)/B_+ B_-},$$

$$F = \frac{A^2 - 2(MB + ED)}{2B_+ B_-}.$$

König et al., Science 318, 767 (07)

Scanning tunneling spectroscopy ? (LDOS with high resolution)

Stacked 2D topological insulators = weak 3D topological insulators

First experimental weak TI: Bi₁₄Rh₃I₉ cleaved at the dark side

Rasche et al., Nature Mat. 12, 422 (13)

Probing spin transport in 2D TI

Strong signal if both areas TI

small signal, if one area =TI one area = bulk

Quantum anomolous Hall effect

$$\mathcal{H} = \begin{pmatrix} h(k) & 0\\ 0 & h^*(-k) \end{pmatrix}$$

Quantum anomolous Hall effect (Exp.)

A ferromagnetic 2D TI Cr_{0.15}Bi_{0.18}Sb_{1.67}Te₃ 5 quintuple layers 5 quintuple layers *Pyx FI film with ferromagnetism everent electrode Pyx SrTiO desective substrate*

Part III 3D Topological Insulators (B = 0 T)

2D/3D Topological Insulators

Kramers pair movement in 2D ribbon

<u>Fu Kane Mele</u>

PRL 98, 106803 (07) PRB 74, 195312 (07)

Spin moved from left to right with band gap in bulk = spin pol. edge state required at E_F

States important for movement (Pfaffian vs. Determinant at TRIM)

Edge state = bulk band property

22/35

3D Topological Insulators

required surface states at E_F, all spin polarized and time reversal invariant

only relative Bloch wave function phases at TRIMs matter

Bulk inversion symmetry of crystal ⇒ Sign at TRIM = product of parities of all states below the gap E(k) dispersion

+ spin

upper surface

TRIM = Time reversal invariant momenta ($\underline{k} = -\underline{k}$)

Materials: 3D Topological Insulators

Bulk inversion symmetry of crystal ⇒ Sign at TRIM = product of parities of all states below the gap

 \Rightarrow Band inversion (= exchanged parity) at 1 TRIM (typically Γ)

Good means to invert bands

Spin-orbit interaction electron-electron interaction

Li et al., Rev. Mod. Phys 83, 1057 (11)

Exp. proof: 3D Topological Insulators

Zhang et al., Nature Phys. 5, 438 (09)

Science 325, 178 (09)

E (k) with spins

25/35

Materials: topological insulators

Туре	Material	Band gap	Bulk transport	Remark	Reference
2D, $v = 1$	CdTe/HgTe/CdTe	< 10 meV	insulating	high mobility	26)
2D, $v = 1$	AlSb/InAs/GaSb/AlSb	~4 meV	weakly insulating	gap is too small	64)
3D (1;111)	$Bi_{1-x}Sb_x$	< 30 meV	weakly insulating	complex S.S.	31,35)
3D (1;111)	Sb	semimetal	metallic	complex S.S.	34)
3D (1;000)	Bi ₂ Se ₃	0.3 eV	metallic	simple S.S.	79)
3D (1;000)	Bi ₂ Te ₃	0.17 eV	metallic	distorted S.S.	80,81)
3D (1;000)	Sb ₂ Te ₃	0.3 eV	metallic	heavily <i>p</i> -type	82)
3D (1;000)	Bi ₂ Te ₂ Se	~0.2 eV	reasonably insulating	ρ_{xx} up to 6 Ω cm	96,99,101)
3D (1;000)	(Bi,Sb) ₂ Te ₃	< 0.2 eV	moderately insulating	mostly thin films	168)
3D (1;000)	$Bi_{2-x}Sb_{x}Te_{3-y}Se_{y}$	< 0.3 eV	reasonably insulating	Dirac-cone engineering	103, 104, 187)
3D (1;000)	Bi ₂ Te _{1.6} S _{1.4}	0.2 eV	metallic	<i>n</i> -type	185)
3D (1;000)	Bi _{1.1} Sb _{0.9} Te ₂ S	0.2 eV	moderately insulating	ρ_{xx} up to 0.1 Ω cm	185)
3D (1;000)	Sb ₂ Te ₂ Se	?	metallic	heavily p-type	96)
3D (1;000)	Bi ₂ (Te,Se) ₂ (Se,S)	0.3 eV	semi-metallic	natural Kawazulite	186)
3D (1;000)	TlBiSe ₂	~0.35 eV	metallic	simple S.S., largest gap	87–89)
3D (1;000)	TlBiTe ₂	~0.2 eV	metallic	distorted S.S.	89)
3D (1;000)	TlBi(S,Se) ₂	< 0.35 eV	metallic	topological P.T.	93,94)
3D (1;000)	PbBi ₂ Te ₄	~0.2 eV	metallic	S.S. nearly parabolic	106, 109)
3D (1;000)	PbSb ₂ Te ₄	?	metallic	<i>p</i> -type	106)
3D (1;000)	GeBi ₂ Te ₄	0.18 eV	metallic	<i>n</i> -type	96–98)
3D (1;000)	PbBi ₄ Te ₇	0.2	metallic	heavily n-type	110)
3D (1;000)	GeBi ₄ Te ₇	?	?	no data published yet	111)
3D (1;000)	$(PbSe)_5(Bi_2Se_3)_6$	0.5 eV	metallic	natural heterostructure	114)
3D (1;000)	(Bi ₂)(Bi ₂ Se _{2.6} S _{0.4})	semimetal	metallic	$(Bi_2)_n (Bi_2Se_3)_m$ series	112)
3D (1;000)	$(Bi_2)(Bi_2Te_3)_2$?	?	no data published yet	111)
3D TCI	SnTe	0.3 eV (4.2 K)	metallic	Mirror TCI, $n_M = -2$	54)
3D TCI	$Pb_{1-x}Sn_xTe$	< 0.3 eV	metallic	Mirror TCI, $n_M = -2$	140)
3D TCI	Pb _{0.77} Sn _{0.23} Se	invert with T	metallic	Mirror TCI, $n_M = -2$	138)
3D (1;111)?	SmB_6	20 meV	insulating	possible Kondo TI	118–121)
3D (0;001)?	Bi14Rh3I9	0.27 eV	metallic	possible weak 3D TI	123)
3D (1;000)?	RBiPt (R = Lu, Dy, Gd)	zero gap	metallic	evidence negative	130)
Weyl S.M.?	$Nd_2(Ir_{1-x}Rh_x)_2O_7$	zero gap	metallic	too preliminary	135)

26/35

Detecting prohibited backscattering

Berry phase: $+\pi/2$

Li et al., Rev. Mod. Phys 83, 1057 (11)

Joint DOS from ARPES

Fourier transform

STM map of standing electron waves

Experiment

Roushan et al. Nature 460, 1106 (09)

3D TI: tuning $E_F = E_D$

Mixing Bi₂Se₃ and Sb₂Te₃

 \Rightarrow towards devices

Y. Ando, J. Phys. Soc. Jap. 82, 102001 (13)

ARPES data

28/35

3D TI: magnetotransport

Y. Ando, J. Phys. Soc. Jap. 82, 102001 (13)

3D TI spin transport

Melnik et al., Nature 511, 449 (14) wis of forromagnetic resonance

Towards switchable Topological Insulators

conducting

0.5 ns Loke et al., Science 336,1566 1 fJ/bit Xiong et al., Science 332,568

insulating Phase change materials (Ge_xSb_yTe_z) PCRAM PCRAM Since 1996

Hsieh et al., Nature Com. 3, 982 (12)

Topological Crystalline Insulators

Idea: use point group symmetries in Brillouin zone

4 non-equivalent TRIMs at L1-L4 with inverted band gap = trivial Z2

L3, L4 on mirror plane: classify mirror parities: N₊-N₋ Γ: +1 L3, L4: -1

 $\Rightarrow \text{ surface states for any surface} \\ \text{ with mirror symmetry} \\ \text{ between } \overline{\Gamma} \text{ and } \overline{X} \\ \end{cases}$

DFT: band inversion at L removed in PbTe

$\begin{array}{l} \mathsf{ARPES} \\ \mathsf{Pb}_{0.6}\mathsf{Sn}_{0.4}\mathsf{Te} \end{array}$

Xu et al., Nature Com. 3, 1192 (12)

32/35

Even more general ?

Towards a periodic table of topology

			TRS	PHS	SLS	d = 1	<i>d</i> =2	<i>d</i> =3
Stan	dard	A (unitary)	0	0	0	-	\mathbb{Z}	-
(Wigner	-Dyson)	AI (orthogonal)	+1	0	0	-	-	-
		AII (symplectic)	-1	0	0	-	\mathbb{Z}_2	\mathbb{Z}_2
Chi	iral	AIII (chiral unitary)	0	0	1	Z	-	Z
(subla	attice)	BDI (chiral orthogonal)	+1	+1	1	\mathbb{Z}	-	-
		CII (chiral symplectic)	-1	-1	1	Z	-	\mathbb{Z}_2
Bd	lG	D	0	+1	0	\mathbb{Z}_2	Z	-
		С	0	-1	0	-	\mathbb{Z}	-
Schn	yder et al.	DIII	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	Z
PRL 7	8, 19512	5 CI	+1	-1	1	-	-	Z
Space of projectors					ermionic rep	Topological (
AZ class	in	momentum space	BL class	N_f^{\min}	NL	σM target :	space	WZW term
А	{($Q(k) \in G_{m,m+n}(\mathbb{C})\}$	0	1	U(2	$(2N)/U(N) \times$	$\mathrm{U}(N)$	Pruisken
AI	$\{Q(k)\in O\}$	$G_{m,m+n}(\mathbb{C}) \left Q(k)^* = Q(-k) \right\}$	4_+	2	Sp(2	$N)/\operatorname{Sp}(N)$	Sp(N)	N/A
AII	$\{Q(k)\in G_{2m,2(m+1)}\}$	$P_{n}(\mathbb{C}) (i\sigma_y)Q(k)^*(-i\sigma_y) = Q(-k) \}$	3+	1	O(2	$2N)/O(N) \times$	O(N)	\mathbb{Z}_2
AIII	$\{q(k)\in \mathrm{U}(m)\}$		1 or 2	1 or 1	2 U(N × U(N)/	WZW	
BDI	$\{q(k) \in U(m) q(k)^* = q(-k)\}$		9 ₊	2		U(2N)/Sp(N)		N/A
CII	$\{q(k) \in \mathrm{U}(2m) \big (i\sigma_y)q(k)^*(-i\sigma_y) = q(-k)\}$		9_	2		U(2N)/O(2	\mathbb{Z}_2	
D	$\{Q(k) \in G_{m,2m}(\mathbb{C}) \mid \tau_x Q(k)^* \tau_x = -Q(-k)\}$		3_	1		O(2N)/U(l	Pruisken	
С	$\{Q(k)\in G_{m,2m}(\mathbb{C})\big \tau_yQ(k)^*\tau_y\!=\!-Q(-k)\}$		4_	2		$\operatorname{Sp}(N)/\operatorname{U}(N)$	Pruisken	
DIII	$\{q(k) \in U(2m) q(k)^T = -q(-k)\}$		5 or 7	1 or 1	2 O(21	V × O(2 N)/	WZW	
CI	CI $\{q(k) \in \mathbf{U}(m) q(k)^T = q(-k)\}$		6 or 8	2 or -	4 Sp()	V) × Sp(N)/	WZW	

People

Topological indices:

Integer bulk property requiring robust non-trivial transversal conductivity which implies boundary states at E_F

Experimentally realized:

- Quantum Hall effect (80's): GaAs, Si, Graphene, ...

- 2D Topological insulator: HgTe, InAs/GaSb

- Quantum anomolous Hall effect: BiCrSbTe

- Weak 3D topological insulator: BiRhI

- Strong 3D topological insulator (many examples, mostly SO, but also Kondo ?)

- Topological crystalline insulators: SnTe

3D TI: strong

Hasan et al., Rev. Mod. Phys 82, 3045 (10) Li et al., Rev. Mod. Phys 83, 1057 (11) Y. Ando, J. Phys. Soc. Jap. 82, 102001 (13)