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What is a quantum ground state phase?
By ground state phase we mean a set of models with
qualitatively similar behavior in the ground state(s).

Concretely, this is taken to mean that a g.s. ψ0 of one model
could evolve in finite time to a g.s. ψ1 of another model in the
same phase by some physically acceptable dynamics (one
generated by a short-range time-dependent Hamiltonian).

Such dynamics cannot induce or destroy long range order in
finite time, and the large-scale entanglement structure remains
unchanged.

In the physics literature the standard definition is that there is
a curve of Hamiltonians with finite-range interactions,
H(λ), λ ∈ [0, 1], such that one (or set of) ground state(s)
belongs to H(0) and the other to H(1), and such that there is
a uniform positive lower bound for the spectral gap above the
g.s. for all λ ∈ [0, 1] (absence of a quantum phase transition).
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I Using a version of Hasting’s quasi-adiabatic evolution
(Hastings 2004), one can show that the existence of a
gapped curve of Hamiltonians H(λ) implies the existence
of a ‘physical’ unitary evolution mapping the set of
ground states of H(0) into the set of ground states of
H(1) in finite time (Bachmann, Michalakis, N, Sims,
2012). ‘Physical’ means that there is Hamiltonian with
uniformly bounded short-range interactions generating it.

I Doing this for infinite systems allows for a clearer picture
with simpler statements.

I Unitary evolution for infinite systems are described by
automorphisms: the thermodynamic limit of the
Heisenberg dynamics. Unitary equivalence for infinite
systems is too restrictive (quasi-equivalence) and general
automorphisms mapping any one pure state into any
other always exist (Powers 1967).
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I The locality of the interactions is crucial. Automorphisms
generated by rapidly decaying interactions are the right
middle ground. E.g., such automorphisms satisfy
Lieb-Robinson propagation bounds.

I We then explore consequences of this ”Automorphic
Equivalence”. Under the constraint of a symmetry this
will lead to an interesting invariant in terms of the
symmetry acting on edge states.
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(Quasi-local) Automorphic Equivalence
For systems in a finite volume Λ ⊂ Zν , a physically acceptable
dynamics is described by a quasi-local unitary VΛ, solution of
the Schrödinger equation:

d

ds
VΛ(s) = iDΛ(s)VΛ(s), s ∈ [0, 1], VΛ(0) = 1l,

where DΛ(s) is a “Hamiltonian” with short-range interactions:

DΛ(s) =
∑
X⊂Λ

Ω(X , s).

When we take the thermodynamic limit to an infinite Γ ⊂ Zν ,

lim
Λ↑Γ

VΛ(s)∗AVΛ(s) = αs(A), A ∈ AΛ0 ,

this dynamics converges to quasi-local automorphisms of the
algebra of observables.
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Interactions, Dynamics, Ground States
The Hamiltonian HΛ = H∗Λ ∈ AΛ is defined in terms of an
interaction Φ: for any finite set X , Φ(X ) = Φ(X )∗ ∈ AX , and

HΛ =
∑
X⊂Λ

Φ(X )

For finite-range interactions, Φ(X ) = 0 if diamX ≥ R .
Heisenberg Dynamics: A(t) = τΛ

t (A) is defined by

τΛ
t (A) = e itHΛAe−itHΛ

For finite systems, ground states are simply eigenvectors of HΛ

belonging to its smallest eigenvalue (sometimes several ‘small
eigenvalues’).
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Suppose Φ0 and Φ1 are two interactions for two models on
lattices Γ.

Each has its set Si , i = 0, 1, of ground states in the
thermodynamic limit. I.e., for ω ∈ Si , there exists

ψΛn g.s. of HΛn =
∑
X⊂Λn

Φi(X ),

for a sequence of Λn ∈ Γ such that

ω(A) = lim
n→∞
〈ψΛn ,AψΛn〉.
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If the two models are in the same phase, we have a suitably
local automorphism α1 such that

S1 = S0 ◦ α1

This means that for any state ω1 ∈ S1, there exists a state
ω0 ∈ S0, such that the expectation value of any observable A
in ω1 can be obtained by computing the expectation of α(A)
in ω0:

ω1(A) = ω0(α1(A)).

The quasi-local character of α1 means that if the observable A
involves only the spins in a finite set X in the lattice, the
dependence of α1(A) on spins at distance d from X decays
rapidly as a function of d .
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Fix some lattice of interest, Γ and a sequence Λn ↑ Γ. Let
Φs , 0,≤ s ≤ 1, be a differentiable family of short-range
interactions for a quantum spin system on Γ.
Assume that for some a,M > 0, the interactions Φs satisfy

sup
x ,y∈Γ

ead(x ,y)
∑
X⊂Γ
x,y∈X

‖Φs(X )‖+ |X |‖∂sΦs(X )‖ ≤ M .

E.g,

Φs = Φ0 + sΨ

with both Φ0 and Ψ finite-range and uniformly bounded.
Let Λn ⊂ Γ, Λn → Γ, be a sequence of finite volumes,
satisfying suitable regularity conditions and suppose that the
spectral gap above the ground state (or a low-energy interval)
of

HΛn(s) =
∑
X⊂Λn

Φs(X )

is uniformly bounded below by γ > 0.
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Theorem (Bachmann, Michalakis, N, Sims (2012))
Under the assumptions of above, there exist automorphisms
αs of the algebra of observables such that S(s) = S(0) ◦ αs ,
for s ∈ [0, 1].
The automorphisms αs can be constructed as the
thermodynamic limit of the s-dependent “time” evolution for
an interaction Ω(X , s), which decays almost exponentially.

Concretely, the action of the quasi-local automophisms αs on
observables is given by

αs(A) = lim
n→∞

V ∗n (s)AVn(s)

where Vn(s) solves a Schrödinger equation:

d

ds
Vn(s) = iDn(s)Vn(s), Vn(0) = 1l,

with Dn(s) =
∑

X⊂Λn
Ω(X , s).
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The αs satisfy a Lieb-Robinson bound of the form

‖[αs(A),B]‖ ≤ ‖A‖‖B‖min(|X |, |Y |)(es − 1)F (d(X ,Y )),

where A ∈ AX ,B ∈ AY , 0 < d(X ,Y ) is the distance between
X and Y . F (d) can be chosen of the form

F (d) = Ce
−b d

(log d)2 .

with b ∼ γ/v , where γ and v are bounds for the gap and the
Lieb-Robinson velocity of the interactions Φs , i.e., b ∼ aγM−1.
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Product Vacua with Boundary States (PVBS)

We consider a quantum ‘spin’ chain with n + 1 states at each
site that we interpret as n distinguishable particles labeled
i = 1, . . . , n, and an empty state denoted by 0.
The Hamiltonian for a chain of L spins is given by

H[1,L] =
L−1∑
x=1

hx ,x+1,

where each hx ,x+1 is a sum of ‘hopping’ terms (each
normalized to be an orthogonal projection) and projections
that penalize particles of the same type to be nearest
neighbors.
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h =
n∑

i=1

|φ̂i〉〈φ̂i |+
n∑

1≤i≤j≤n

|φ̂ij〉〈φ̂ij |,

The φij ∈ Cn+1 ⊗ Cn+1 are given by

φi = |i , 0〉 − λ−1
i |0, i〉 , φij = |i , j〉 − λ−1

i λj |j , i〉 , φii = |i , i〉

for i = 1, . . . , n and i 6= j = 1, . . . , n.
The parameters satisfy: λi > 0, for 0 ≤ i , j ≤ n, and λ0 = 1.
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There exist n + 1 2n × 2n matrices v0, v1, . . . , vn, satisfying the
following commutation relations:

vivj = λiλ
−1
j vjvi , i 6= j (1)

v 2
i = 0, i 6= 0 (2)

Then, for B an arbitrary 2n × 2n matrix,

ψ(B) =
n∑

i1,...,iL=0

Tr(BviL · · · vi1)|i1, . . . , iL〉 (3)

is a ground state of the model (MPS vector). In fact, they are
all the ground states. E.g., one can pick B such that

ψ(B) =
L∑

x=1

λxi |0, . . . , 0, i , 0, . . . , 0〉
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If we add the assumption that λi 6= 1, for i = 1, . . . , n, we will
have nL particles having λi < 1 that bind to the left edge, and
nR = n − nL particles with λi > 1, which, when present, bind
to the right edge. The bulk ground state is the vacuum state

Ω = |0, . . . , 0〉 .
All other ground states differ from Ω only near the edges.
We can show that the energy of the first excited state is
bounded below by a positive constant, independently of the
length of the chain. As at most one particle of each type can
bind to the edge, any second particle of that type must be in a
scattering state. The dispersion relation is

εi(k) = 1− 2λi
1 + λ2

i

cos(k) .

We conjecture that the exact gap of the infinite chain is

γ = min

{
(1− λi)2

1 + λ2
i

∣∣∣∣ i = 1, . . . , n

}
.
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Automorphic equivalence classes of PVBS
models

Theorem (Bachmann-N, PRB 2012)
Two PVBS models with λi ∈ (0, 1) ∪ (1,+∞), i = 1, . . . n,
belong to the same equivalence class if and only if they have
the same nL and nR . l0 = l1 = 2nL , r0 = r1 = 2nR .

Recall that nL is the number of i such that λi ∈ (0, 1) and nR

is the number of i such that λi ∈ (1,+∞). ls and rs are the
dimensions of the ground state spaces of the left and right
half-infinite chains.

Conjecture
The dimensions l and r of the ground state spaces of the left
and right half-infinite chains are the complete set of invariants
for gapped spin chains.



18

The AKLT model
(Affleck-Kennedy-Lieb-Tasaki, 1987)
Antiferromagnetic spin-1 chain: [1, L] ⊂ Z, Hx = C3,

H[1,L] =
L∑

x=1

(
1

3
1l +

1

2
Sx · Sx+1 +

1

6
(Sx · Sx+1)2

)
=

L∑
x=1

P
(2)
x ,x+1

The ground state space of H[1,L] is 4-dimensional for all L ≥ 2.
In the limit of the infinite chain, the ground state is unique,
has a finite correlation length, and there is a non-vanishing
gap in the spectrum above the ground state (Haldane phase).

Theorem (Bachmann-N, CMP 2014)
There exists a curve of uniformly gapped Hamiltonians with
nearest neighbor interaction s 7→ Φs such that Φ0 is the AKLT
interaction and Φ1 defines a PVBS model with nL = nR = 1
and a unique ground state of the infinite chain that is a
product state.
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J2

J1ferro Haldane

dimer

AKLT

Sutherland SU(3)

Potts SU(3)

Bethe Ansatz

H =
∑

x J1Sx · Sx+1 + J2(Sx · Sx+1)2
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Symmetry protected phases
For a given system with G -symmetric interactions depending
on a parameter s, we would like to find criteria to recognize
that the model with s = s0 is in a different gapped phase than
with s = s1 6= s0, meaning that the gap above the ground state
necessarily closes for at least one intermediate value of s.

This is the same problem as before but restricted to a class of
models with a given symmetry group (and representation) G .

Our goal is to find invariants, i.e., computable and, in
principle, observable quantities that can be different at s0 and
s1, only if the model is in a different ground state phase.
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Consider

1. Γ ⊂ Zν , or another sufficient regular ‘lattice’, and an
increasing and absorbing sequence of finite Λn ↑ Γ. E.g.,
Γ = Zν , or Γ could be a half-space, or topological
non-trivial with a boundary.

2. A family of models defined by a interaction Φs , s ∈ [0, 1],
and suppose

I s 7→ Φs(X ) is differentiable and short-range
I Φs(X ) commutes with a local symmetry G , i.e.

[Φs(X ),
⊗

x∈X π(g)] = 0, g ∈ G , π a unitary
representation of G ;

I there is a uniform lower bound γ > 0 for the spectral
gap above the ground state of HΛn :=

∑
X⊂Λn

Φs(X ),
for all n.

Let τg (A) =
⊗

x∈Γ π(g)∗Aπ(g), for all g ∈ G , the action of
the symmetry on observables Γ, and let σs

g denote the
corresponding representation on the space spanned by the
ground states: σs

g (ω) = ω ◦ τg , ω ∈ Ss .
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Then, there exist quasi local automorphisms αs such that

I αs ◦ τg = τg ◦ αs ;

I Ss = S0 ◦ αs ;

I σs
g
∼= σ0

g , for all s ∈ [0, 1].

In other words:

Up to equivalence, the representation of G acting on the
ground states of the model defined in Γ is constant within a
gapped phase.

If Γ is, e.g., a half-space of a system with zero-energy edge
modes, there will in general be a non-trivial representation on
the space of edge states.
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For two interesting classes of one-dimensional models this
invariant, the representation of G given by σg , can be observed
from the ground state in the bulk, i.e. in the model defined on
Z, i.e., Edge-Bulk correspondence. (Bachmann-N, JSP 2014).

This has also been done for some discrete symmetries for
models with MPS ground states (Pollmann & Turner, PRB
2012) and for certain SU(N) spin chains (Duivenvoorden &
Quella, PRB 2012) and in a different way for MPS states by
Haegeman, Perez-Garcia, Cirac, & Schuch (PRL 2012).
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Symmetry protected phases in 1 dimension:
Half-chains
Consider Γ = [1,+∞) ⊂ Z, and translation-invariant models
defined by a nearest-neighbor interaction h(s), s ∈ [0, 1].
Suppose

I s 7→ h(s) is differentiable;

I h(s) commutes with a local symmetry G , i.e.
[h(s), π(g)⊗ π(g)] = 0, g ∈ G , π a representation of G ;

I there is a uniform lower bound γ > 0 for the spectral gap
above the ground state of

∑L−1
x=1 hx ,x+1(s), for all L ≥ 2.

Let τg (A) =
⊗

x∈Γ π(g)∗Aπ(g), for all g ∈ G , the action of
the symmetry on observables of the half-chain, and let σs

g

denote the corresponding representation on the space spanned
by the ground states: σs

g (ω) = ω ◦ τg , ω ∈ Ss .
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Models to keep in mind: antiferromagnetic chains in the
Haldane phase and generalizations. Unique ground state with
a spectral gap and an unbroken continuous symmetry.

Let S i
x , i = 1, 2, 3, x ∈ Z, denote the ith component of the

spin at site x . Claim: one can define

+∞∑
x=1

S i
x ,

as s.a. operators on the GNS space of the ground state on Z
and they generate a representation of SU(2) that is
characteristic of the gapped ground state phase.
We can prove the existence of these excess spin operators for
two classes of models:
1) models with a random loop representation;
2) models with a matrix product ground state (MPS).



26

Frustration-free chains with an SU(2) invariant
MPS ground state

H =
∑
x

hx ,x+1

Ground state is defined in terms of an isometry V , which
intertwines two representations of SU(2):

Vug = (Ug ⊗ ug )V , g ∈ SU(2).

E.g., in the AKLT chain Ug is the spin-1 representation and ug

is the spin-1/2 representation of SU(2), corresponding to the
well-known spin 1/2 degrees of freedom at the edges.
Let k = dim(ug ). The transfer operator is defined by

E(B) = V ∗(1l⊗ B)V ,B ∈ Mk .

If ω is a G -invariant, pure, translation-invariant finitely
correlated state generated by the intertwiner V , one can
assume that 1 is the unique eigenvalue of maximal modulus of
E, and that it is simple (Fannes-N-Werner, JFA 1994).



27

Let S = (S1, S2, S3) be the vector of generators of Ug , and
write Ug = exp(ig · S). Define

S+(L) =
L2∑
x=1

fL(x − 1)Sx ,

where fL : Z+ → R is given by

fL(mL+n) = 1−m/L, if m, n ∈ [0, L−1], and fL(x) = 0, if x ≥ L2.

Then, U+
g (L) = exp(igS+(L)) is an observable and use the

same notation for its representative on the GNS Hilbert space,
Hω, of ω.

Theorem
Let ω be as above. Then, the strong limit

U+
g = lim

L→∞
e ig ·S+(L)

exists and defines a strongly continuous unitary representation
of G on Hω.
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The representation of U+
g is an invariant

Summary of the proof: U+
g |πω(A(−∞,0])Ωω

∼= (⊕ug )∞.
(i) First consider the model on the half-infinite chain. The
space of ground states transforms as ug under the action of
SU(2). We call this the edge spin representation. We proved
that, in general, along a curve of models with a non-vanishing
gap, the edge representation is constant.
(ii) On the infinite chain, we showed that the excess spin
representation is well-defined.
(iii) One can verify that on the subspace of the GNS Hilbert
space of the infinite-chain ground state consisting of the
ground state of the Hamiltonian of the half-infinite chain, acts
as (an infinite number of copies of) ug .

This is also shows that ug is experimentally observable.
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Concluding Remarks
I Version of edge-bulk correspondence is valid in the

symmetry protected case for certain classes of models
such as FF chains with parent hamiltonians.

I There are infinitely many inequivalent SU(2) and
translation invariant gapped ground state phases of
integer spin chains.

I You can classify the types of topological order by your
favorite method (homotopy of occupied bands,
cohomology of symmetry group), but you should not
expect the ordered phases in realistic models to
necessarily be continuously connected to the toy model
representatives; other quantum phase transitions affect
basic properties of the ground state, the topological
ordered ”phase”, could be a collection of disconnected
pieces.

I 2 and more dimensions!!!


