

Layer construction of threedimensional topological states and String-String braiding statistics

Xiao-Liang Qi Stanford University Vienna, Aug 29th, 2014

Outline

Part I

- 2D topological states and layer construction
- Generalization to 3D: a simplest example
- Layer construction of 3D topological states: general setting and examples
- Field theory description

Part II

- Some general results on string-string braiding.
- Ref: Chao-Ming Jian & XLQ, arXiv:1405.6688

Supported by

(arriving here tonight...)

Topologically ordered states

 Topological ground state degeneracy; quasiparticles with fractional quantum numbers and fractional statistics.

Key properties of topologically ordered states

- Quasiparticles have no knowledge about distance. Only topology matters.
- Fusion $a \times b = N_{ab}^c c$

• Braiding *a*, *b* and spinning *a*, *b* is equivalent to spinning *c*. **Topological spin** of particles *h*_a

$$a \bigoplus_{i=1}^{a} = e^{i2\pi h_a} \qquad R_{ab}^c R_{ba}^c = e^{i2\pi (h_a + h_b - h_c)}$$

Examples of topologically ordered states

- 1. Laughlin state $\Psi(\{z_i\}) = \prod_{i < j} (z_i z_j)^m e^{-\sum_i |z_i|^2}$
- Quasiparticles labeled by $q = 0, \frac{1}{m}, \frac{2}{m}, \dots, 1 \frac{1}{m}$
- Fusion rule $q_1 + q_2$ braiding $R_{q_1q_2}^{q_1+q_2} = \exp\left[i\pi \frac{q_1q_2}{m}\right]$ • Spin $h_q = \frac{q^2}{2m}$
- 2. Z_2 gauge theory (toric code)
- Quasiparticles include charge e, flux m and their boundstate $\psi = e \times m$.
- Nontrivial braiding $R_{em}^{\psi} = i$
- Goal of this work: understanding 3D topological states from 2D ones

Part I: Layer construction

- 2D topological states can be constructed from coupled 1D chains (Sondhi&Yang '01, Kane et al '02, Teo&Kane, '10)
- Weakly coupled chains as a controlled limit that can realize these topological states.
- Both integer and fractional quantum Hall states can be realized.

Layer construction of 2D topological states

- Example 1: integer quantum Hall (Sondhi&Yang '01)
- Electron tunneling between edge states of each strip: $\langle c_{nL}^+ c_{n+1,R} \rangle \neq 0$,
- Electron tunneling can be equivalently viewed as exciton condensation

- Condensation of the exciton (particle-hole pair) leads to coherent tunneling between quasi-1D strips
- The strips are glued to a quantum Hall state

Layer construction of 2D topological states

- Example 2: Laughlin 1/3 state (Kane et al '02)
- Electron tunneling between $\nu = 1/3$ edges of chiral Luttinger liquids $e = 3 \times \frac{e}{3}$, $c_{nL}^+ c_{n+1,R} = \left(e^{i(\phi_{nL} - \phi_{n+1,R})}\right)^3$,

- Electron tunneling effectively generates coherent quasiparticle tunneling → 2D topological order.
- The coherent tunneling can be understood as a "boson condensation" of the quasiparticle exciton with charge $\left(\frac{e}{3}, -\frac{e}{3}\right)$

Generalization of the layer construction to 3D

 General principle: Inter-layer coupling by boson condensation Wang&Senthil '2013

• Abelian states: Chern-Simons theory and K matrix (Wen)

$$\mathcal{L} = \frac{1}{4\pi} K^{IJ} a_{I\mu} \epsilon^{\mu\nu\tau} \partial_{\nu} a_{J\tau} - l^{I} a_{I\mu} j^{\mu}$$

- Quasiparticles labeled by integer vectors l
- Equation of motion $j^{\mu}l^{I} = \frac{1}{2\pi}K^{IJ}\epsilon^{\mu\nu\tau}\partial_{\nu}a_{J\tau}$ A quasiparticle carries flux $\nabla \times a^{I} = 2\pi(K^{-1}l)^{I}$

Examples of K-matrix theory

- Mutual statistics of l_1 , l_2 given by $\theta_{12} = 2\pi l_1^T K^{-1} l_2$
- Local particles given by $\lambda = Kl$ (bosons or fermions)
- Examples:
- Laughlin 1/m state K = m. Quasiparticle braiding $\theta_{12} = \frac{2\pi q_1 q_2}{m}$. Local particle (electron) q = m
- Z_N gauge theory $K = \begin{pmatrix} 0 & N \\ N & 0 \end{pmatrix}$ • Charge $e = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, m = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Quasiparticle braiding $\theta_{em} = 2\pi [K^{-1}]_{12} = \frac{2\pi}{N}$

General setting of the layer construction

- L layers of 2D Abelian states, each with a K matrix
- Find quasiparticles p_i , q_i in each layer, so that the bound state are bosonic and mutually bosonic.
- In 2D language,
- Requirements $p_{i}^{T}K^{-1}p_{j} + q_{i}^{T}K^{-1}q_{j} = 0,$ $p_{i}^{T}K^{-1}q_{j} = 0.$

- Number of condensed particles: i = 1, 2, ..., N when dim K = 2N.
- This is an "almost complete" set of *null vectors*. (Haldane '95, Levin '13, Barkeshli et al '13) There may be remaining particles, responsible for the topological order.
- With open boundary, q_i at top surface is always deconfined.

Example 1: 3D Z_p gauge theories

- Starting from layers of 2D Z_p gauge theories $K = \begin{bmatrix} 0 & p \\ p & 0 \end{bmatrix}$, $\mathcal{L} = \frac{p}{2\pi} a_\mu \epsilon^{\mu\nu\tau} \partial_\nu b_\tau + a_\mu j_e^\mu + b_\mu j_m^\mu$,
- Coupling the neighbor layers by condensation of $\binom{e}{-e}$ pair

•
$$p = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $q = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$

- Particles with nontrivial braiding with the condensed particle are confined.
- Particles different by a condensed particle are identified
- Deconfined particles: *e* in 3D, and *m* string (flux tube) → 3D Z_p gauge theory

Example 2: Surface and bulk topological order

- • Z_p toric code with tri-layer coupling
- A variation of the construction in Wang&Senthil '13
- $p \neq 3n$

All bulk particles are confined. purely 2D topological order

- Surface central charge c = 4 for p = 3n 1. (p = 2: surface theory of a 3D bosonic TI Vishwanath&Senthil '13)
- p = 3n

Bulk deconfined particles coexisting with surface particles. Z_3 bulk topological order

• Surface central charge c = 2

General criteria of surface-only topological order

- *p_i*, *q_i* expand all quasiparticles in a layer →

 ^(*p_i*)
 _(*q_i*) condensation leads to surface-only topological order.

 Surface particles are *q_i* at top surface, *p_i* at bottom surface
- Surface K matrix $K_S = [q_i^T K^{-1} q_j]^{-1}$
- The same topological order at the side surfaces
- Bulk has nontrivial particle when $\{p_i\} \cap \{q_i\} \neq \phi$
- Relation to Walker-Wang model (K Walker & Z Wang, '12): modular tensor category
 Surface-only topological order Pre-modular tensor category
 Bulk nontrivial topological order

Example 3: String-String braiding

- Z_{4n} toric code theories with 4-layer coupling
- Condensed particles: hybridization of the red and blue layers
- Bulk deconfined
 particles: 2 point particles,
 2 strings
- String-particle braiding
- String-string braiding phase $\omega_{em} = \frac{2\pi L}{4n}$ proportional to the number of layers

String-String braiding and dislocations

- Strings wraping around z direction have braiding proportional to system size
- Contractible strings have trivial braiding
- The more fundamental process of string braiding can be defined at presence of an edge dislocation
- Braiding at presence of the dislocation

 $\omega_{em}^d = \frac{2\pi}{4n} b_z$, proportional to the Burgers vector b_z

Topological field theory description

 A generalized BF theory can be written down to characterize the string-particle braiding and string-string braiding

$$= \frac{Q_{IJ}}{2\pi} \epsilon^{\mu\nu\sigma\tau} b^{I}_{\mu\nu} \partial_{\sigma} a^{J}_{\tau} + \frac{\Theta}{8\pi^{2}} R_{IJ} \epsilon^{\mu\nu\sigma\tau} \partial_{\mu} a^{I}_{\nu} \partial_{\lambda} a^{J}_{\sigma} + j^{I}_{\mu} a^{\mu}_{I} + J^{I}_{\mu\nu} b^{\mu\nu}_{I} \sum_{\Gamma} \sum_{\Gamma}$$

- j_{μ}^{I} : particle current; $J_{\mu\nu}^{I}$: string current
- Q_{IJ} : string-particle braiding
- R_{IJ} : string-string braiding when strings are linked with Θ vortex loop.
- Difference from BF theory for TI (Cho&Moore '11, Vishwanath&Senthil '12, Keyserlingk et al '13): Θ is a dynamical field
- Winding number $2\pi n$ of $\Theta \rightarrow$ Chern-Simons term of a with $K = nR \rightarrow$ String braiding $\omega_{IJ}^n = 2\pi n (Q^{-1T} R Q^{-1})_{IJ}$

Topological field theory description

- Ordinary Z_p gauge theory: Q = p, R = 0
- Example 3: $Q = \begin{pmatrix} 2n & 0 \\ 0 & 2 \end{pmatrix}$, $R = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- General structure of string braiding: two strings braid nontrivially only if they are not contractible.
- Consistent with other recent works on 3-string braiding (Wang&Levin 1403.7435, Jiang et al 1404.1062, Wang&Wen 1404.7854, Moradi&Wen 1404.4618)
- The dislocation is described by a Θ vortex string, which is an extrinsic defect.
- Intrinsic 3-string braiding can possibly be realized by deconfinement of the dislocations.

Part II: General results on string-string braiding

- General structure of 3D topologically ordered states are not understood yet.
- In 2D, we know the braiding phase R_{ab}^d is not arbitrary. There are some identities satisfied by braiding and fusion, such as the hexagon identity.

• In 3D, some similar identities may exist as a property of the general structure of topologically ordered states

General results on string-string braiding

- Wang&Levin 1403.7435 proposed an identity of the 3-string braiding in twisted Z_p gauge theories $p(\omega_{ab}^c + \omega_{bc}^a + \omega_{ca}^b) = 0 \pmod{2\pi}$,
- Here we give a more general proof to a stronger identity ω^c_{ab} + ω^a_{bc} + ω^b_{ca} = 0 (mod 2π) with the general conditions 1) Strings can fuse and split without additional phase; 2) Strings are Abelian; 3) Strings are not marked
 - 3) Strings are not marked.

Step 1 of the proof: $\omega_{ab}^c = \Omega_{ab}^c$

String braiding ω_{ab}^c

String-particle braiding Ω_{ab}^c between link of a, b and string c

Step 2 of the proof: $\widetilde{\omega}_{ab}^c = \Omega_{ab}^c$

"linked" string braiding $\widetilde{\omega}_{ab}^{c}$, for 3 mutually-linked strings

String-particle braiding Ω_{ab}^c between link of a, b and string c

Step 3 of the proof: $\widetilde{\omega}_{ab}^c + \widetilde{\omega}_{bc}^a + \widetilde{\omega}_{ca}^b = 0$

- $\widetilde{\omega}_{ab}^{c}$: 2π rotation of a and b around c
- $\rightarrow \widetilde{\omega}_{ab}^{c} + \widetilde{\omega}_{bc}^{a} + \widetilde{\omega}_{ca}^{b} \simeq \text{global } 4\pi \text{ rotation} \simeq \text{trivial}$

String braiding identities

• Using this proof we obtain three identities

$$\widetilde{\omega}_{ab}^{c} + \widetilde{\omega}_{bc}^{a} + \widetilde{\omega}_{ca}^{b} = 0$$

$$\omega_{ab}^{c} + \omega_{bc}^{a} + \omega_{ca}^{b} = 0$$

$$\Omega_{ab}^{c} + \Omega_{bc}^{a} + \Omega_{ca}^{b} = 0$$

- A new feature of 3D topological order that is qualitatively distinct from 2D case
- Open question: In general, is it always possible to require the strings to be *unmarked*, i.e., translation invariant along the string direction?

A non-Abelian example of string-string braiding

- Little is known about non-Abelian strings.
- However, an example can be found in 3D topological superconductors

A non-Abelian example of string-string braiding

- Chiral vortex strings: vortex loops of θ_L or θ_R
- Each vortex string is an *axion string*, carrying a 1+1 Majorana-Weyl fermion (Callan&Harvey '85, XLQ&Witten&Zhang '12)
- Majorana zero modes carried by vortices with odd linking number. a b

• Non-Abelian braiding of a, b similar to (p + ip)Vortices (Read&Green '2000) (see also M Sato, Physics Letters

B 575 (2003) 126–130)

A non-Abelian example of string-string braiding

- Key difference from Abelian string: splitting/fusion of string is not adiabatic.
- Non-Abelian strings can fuse to Abelian strings.
- Braiding depends on the fusion channel.

2 zero modes on *a*, *b*

no zero mode

Summary

- Layer construction provides an explicit approach to 3D topological states.
- Different types of 3D topological states can be generated, with surface-only topological order and/or bulk topological order
- String-string braiding can be induced in system with periodic boundary condition or dislocations
- General identity proved for Abelian string-string braiding
- Non-Abelian 3D topological order: An example can be found in topological superconductors. There are a lot of open questions for more general cases.