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Hall viscosity in quantum systems: 
 
Avron, Seiler, and Zograf, 1995          -- general set-up, filled lowest LL 
Levay, 1995                                         -- single ptcle, any LL 
 
Tokatly and Vignale, 2007                   -- “any LLL state” 
 
Read, 2008/09                                     -- paired states and frac qu Hall states, 
                                                                relation with orbital spin and shift 
 
Tokatly and Vignale, 2009                   -- rederivation for Laughlin state 
Haldane, 2009 (unpublished)              -- general discussion and rederivation 
 
Read and Rezayi, 2010/11                  -- general explication, numerics, 
                                                                and quantization arguments 
 
Hughes, Leigh, and Fradkin, 2011      -- Dirac fermions/topological insulator  
 
Dam Son and coworkers, 2011           -- effective field theory approaches,     
                                                                conductivity relation 
 
Bradlyn, Goldstein, and NR, 2012       -- Kubo formulas, general conductivity relation                                                         



Viscosity is a fourth rank tensor 
 
 
Momentum density                                                    obeys continuity: 
 
 
 
---defines stress tensor                  . 
In a solid, we have for expectation of stress 
 
 
where the local strain is                                         ,  
      is displacement field,             are elastic coefficients (moduli),  
and             is the viscosity tensor.         and        are both symmetric tensors 
if rotational invariance holds.  
                           
In a fluid with local velocity    , elastic part becomes          (pressure), we 
replace 
 
 
 
and also add                 (momentum flux) to stress tensor.    

Landau and Lifshitz, “Elasticity” 

@ga=@t + @b¿ba = 0

¿ab = ¡¸abefuef ¡ ´abef@uef=@t + : : : ;

uab = 1
2

(@bua + @aub)

@uab=@t = 1
2

(@bva + @avb)

¿ab(x; t)

¿ab



Rate of loss of mechanical energy, or rate of entropy production, is                          
 
 
 
 
 
 
Symmetric and antisymmetric parts: 
 
 
 
 
 
---at zero frequency, only symmetric part gives dissipation; if rotation invariant,  
it reduces to usual bulk and shear viscosities,     and  
 
---antisymmetric part vanishes if time reversal is a symmetry; if rotation invariant, 
it reduces to one number         in two dimensions (odd under reflections), i.e.  
                                                 ; none in higher dimensions 

Avron, Seiler, and Zograf (1995) 

Hall viscosity          is analog of Hall conductivity 
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Avron et al.: framework of calculating          in a quantum fluid by adiabatic transport  
(Berry phase), varying aspect ratio of periodic boundary conditions. 
 
 
 
N.R. (2009): extended to gapped paired superfluids and fractional quantum Hall  
fluids, discovered general form 
 
 
 
 
where     is number density, and     is (minus) mean “orbital spin” per particle, e.g. 
              for p-ip superfluid (and also for filled LLL in Avron et al.). 
 
 
Further, if the ground state for      particles on a sphere requires        quanta  
of magnetic flux, and 
 
 
then the “shift” is 
 
Quantized if translation and rotation invariance are preserved 
---then characteristic of a topological phase.   

Wen and Zee (1992) 
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N.R. and Rezayi (2011) 



Ways to calculate viscosity in quantum fluids 
 
---adiabatic transport:   antisymmetric             part in gapped systems only  
    ---first part 
 
 
---Kubo formula for stress-stress response:   any kind of system or frequency 
    ---second part  
 
 
---momentum-momentum response:   relation with conductivity (Gal inv case) 
    ---third part 
 
 
---effective action approach 
    ---fourth part 

! = 0



Strain is geometric 
 
 
 
 
 
 
 
 
Relate                   .                            
Then metric in two systems is                                  or usual  
 
 
 
 
 
In terms of    , aspect ratio and boundary conditions are fixed. Volume is           .  
    or       describe strain: 
Group of all invertible matrices       is                 .      

Avron, Seiler, and Zograf (1995) 
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Stress is variation with respect to metric 
 
 
In    coordinates, stress                            (analog of electric current                    )  
 
 
Time-varying       is “gravitational field”     (                 is electric field)  
 
 
So 
 
 
and we examine adiabatic response to slowly-varying spatially-uniform              
(analog of slowly-varying uniform     , or boundary condition). 
 
 
 
 
Use             square in     space. Avron, Seiler, and Zograf (1995) 

(w. periodic boundary conditions) 
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Adiabatic response and Berry phase 
 
Suppose Hamiltonian           depends on parameters                                                
 
and that                                  is some “current” operator. 
 
Also                                 for each value of      (ignore “persistent currents”)  
and             is gapped.   
 
Then as              , using quantum adiabatic theorem, 
 
 
 
 
 
where                               and                                      are Berry or adiabatic  
 
“connection” and “curvature”.  Or                  is a Berry phase. 
 
For us,                    and               as matrices, then   
 
 
(Analog of “Chern number” approach to quantized Hall conductivity.) 

Avron and Seiler (1985) 

Avron, Seiler, and Zograf (1995) 
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Geometry of shear: 
 
Two independent area-preserving shears in two dimensions: 
 
 
 
                                                                           
                                                                           or 
 
 
These moves don’t commute: if undo in reverse order, we get a net rotation: 
 
 
 
 
 
 
 
 
 
 
 
 



The transformations are described by                  transformations of coordinates, 
 
 
 
Pure shears are symmetric matrices, e.g.: 
 
 
 
 
 
 
 
 
and 
 
 
  
  
 
 
 
is a small rotation. If the state has angular momentum (“spin”), then it picks up a  
phase related to the spin. This is the Berry phase we will calculate. 



Single-particle toy model 
 
Consider Hamiltonian in infinite two dimensional space 
 
 
 
and non-degenerate eigenstate            . Rotational invariance of         (in     ) 
implies that                                    .    
 
Again view in terms of                                         , states                                 .   
Now                                       
                                                          ,   where in coord rep                            
 
are generators of GL(2,R). 
Adiabatic curvature:  
 
 
 
 
(at any    , in terms of      coords). 
---commutation of two pure shears gives rotation.  
Similar to Berry phase when dragging orientation of a quantum spin—group SU(2)  

N.R. and Rezayi (2011) 

← Angular momentum! 



BCS paired states 
 
Think of     as relative coordinate in a pair of particles, bound by            , 
zero center of mass momentum. 
 
Generalize further to many such pairs (BCS wavefunction,    -wave pairs, spinless). 
Use periodic boundary condition: unfortunately breaks the invariance properties. 
 
But if pairs small compared with system size, this effect drops out. 
 
Find as                , with                     fixed, 
      
                                                                    ,  where                                          .   
 
 
Alternative derivation:                                                  , depends on      through 
 
discrete      in finite size. 
Calculate adiabatic curvature in thermo limit, result is same. 
 
Note we see the full angular momentum     of every pair, even at weak coupling. 
C.f.  resolution of “intrinsic angular momentum” controversy.    

N.R. (2009) 
N.R. and Rezayi (2011) 

(Independent of shape, as should be for a fluid.) 



Magnetic field case --- non-interacting particles 
 
Several ways to do it. 
 
Hamiltonian, one particle in infinite plane: 
 
 
 
Define 
 
 
Then for            , 
 
 
Each Landau level                           has “extensive” degeneracy; must transport 
the subspace (see below), not single states. 
 
Find by similar calculation  
 
      ---angular momentum (“spin”) is that of the cyclotron motion only 
 

Avron, Seiler, and Zograf (1995) 
Levay (1995) 
N.R. and Rezayi (2011) 

(times identity matrix in degeneracy space) 

(B = 1)

← Angular momentum 
    of cyclotron motion! 



Non-interacting gas:                                                 
 
 
 
--- e.g. for filled LLL 
 
 
At high T, we recover classical plasma result 
 
 
 
 
 

Lifshitz and Pitaevskii, “Physical Kinetics” 
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Fractional quantum Hall states 
 
A droplet of QH fluid in plane for “special” (soluble) Hamiltonians  
has infinite multiplicity of degenerate edge states. 
 
For transport of a degenerate subspace, the curvature evaluated 
in ground state is (the non-Abelian/Yang-Mills curvature) 
 
 
 
 
where        is projector onto degenerate subspace. (See below for J’s.) 

 
First term is related to total angular momentum                               . 
 
With some effort, for “nice” trial wavefunctions, the last two terms give 
                                       .  
 
Remaining angular momentum is                      per particle,  
and Hall viscosity is therefore       
 
as claimed.        

N.R. and Rezayi (2011) 
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The “shift”: For QH states and for paired states on a sphere, in ground state need  
        magnetic flux quanta, 
 
 
In “conformal block” states,                                  , and               holds even more 
generally (e.g. under particle-hole conjugation). 
E.g.                                  for Moore-Read state 
 
 
If                    and            have no common factors, then        is an integer. 
Assuming             , it follows that           is integer, which was not obvious initially. 
 
(            for BCS paired states, in which             ;                 is an integer.) 
 

s = 1
2
º¡1 + 1=2

p-ip paired state! 



Quantization/robustness arguments 
 
No “Chern number” arguments here. 
 
Suppose we have a rotationally-invariant perturbation of a rotationally-invariant 
Hamiltonian. For sufficiently small pert, gap is still non-zero. Work at fixed     . 
 
Return to             for pure shear,                    coefficients of perturbations. 
Consider adiabatic transport in all these.            for                  is the  
(traceless) stress, and              vanishes by rotational invariance as system size  
               , even for slowly varying                    .  Then 
 
 
 
so                        for                                      .  But   
 
 
 
so                          ,  which says that         is unchanged by the perturbation. 
 
Translation and rotation invariance (no disorder) appears to be essential here. 

N.R. and Rezayi (2011) 
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Kubo formulas --- B=0 
 
In     variables (but write as   ), a time-dependent strain yields modified Hamiltonian 
 
 
 
 
 
and again                                             is the strain generator                         .  
 
Moreover, from continuity for momentum,                                                     
 
 
Fourier transform on     and expand in     to first order, find 
 
 
 
 
Now for viscosity, we want response of stress          to applied rate of strain 
                           , as frequency goes to zero. 
 
We should extract stress response to static strain, which gives elastic moduli 
(not a pole in bulk viscosity at zero frequency). 

Bradlyn, Goldstein, NR (2012) 
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For response:  
 
 
Stress-strain form:  
 
 
 
Stress-stress form: 
 
 
 
 
Strain-strain form: 
 
 
 
 
 
To get viscosity, we must extract the change in the expectation  
so finally 

� “contact term”                            � as expected! 

---reduces to adiabatic approach as freq -> 0 
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Kubo formulas –- B > 0     (two dimensions) 
 
Now 
 
                                                                                            (Lorentz force) 
 
For  
 
 
 
(symmetric gauge), which obey gl(2,R) commutation relations, we recover 
 
 
 
and three forms of response function as before. 
 
Example: non-interacting electrons 
 
 
 
 
 
---Hall and (at non-zero frequency) shear viscosity; no bulk viscosity  
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Relation with conductivity 
 
In Galilean-invariant systems, number current density is                    . 
 
Use                                                         to relate: 
 
 
 
 
 
 
 
For B=0, relation is well-known (e.g. Taylor and Randeria 2010) usually without Hall viscosity.  

For B>0, we obtain  (      is Hall conductivity) 
 
 
 
 
 
which generalizes the result of Hoyos and Son (2012). 
Maybe this can be measured? 
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Effective action approach for quantum Hall cases 
 
Integrate out matter in presence of U(1) gauge field and gravitational background 
to obtain effective (induced) action---Chern-Simons etc 
 
Shift is due to 1st Wen-Zee term 
 
 
 
which involves spin connection (rotations in space only): 
 
 
 
Varying with respect to                           gives stress response---Hall viscosity 
---as above. 
 
 
 
Not the integral of a gauge-invariant local expression, so this response cannot be 
renormalized by a perturbation as long as trans & rotation invariance is maintained 
(“Chern-Simons-like”). 
 
Not from a torsion term---see Bradlyn and N.R. (2014). 
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Use as numerical diagnostic tool 
 
In QH numerics, usually determine      for a state at given     by looking for best     
           ground state on sphere. Prey to “aliasing”. 
 
Much better to numerically measure a parameter in periodic b.c. geometry 
---unbiased, no aliasing. 
 
Now being used widely in numerics on QH states performed by “matrix product  
state” methods.         Zaletel, Mong, and others 
 
E.g. 2/5 state,           , as expected.  Also Hansson  et al  
 

N.R. and Rezayi (2011) 
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Conclusion 

• Hall viscosity: a non-dissipative transport coefficient: 
 
 

• Orbital spin per particle,    , is a true emergent property --- quantized 
 

• Use as numerical diagnostic tool 
 

• Experimental detection: quantum Hall systems, superfluids, cold atoms…?  
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