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Plan:

1. Topoloqgical defects in quantum field theories
- Relation to symmetries and dualities
- Some applications of surface defects in 3d TFT

2. Defects in 3d topological field theories: Dijkgraaf-Witten theories
- Defects from relative bundles

- Relation to (categorified) representation theory

- Brauer-Picard groups as symmetry groups




1. Topological defects in guantum field theories

Central insight:

Defects and boundaries are important parts of the structure of a quantum field theory

Particularly important subclass of defects: topological defects

topological = correlators do not change under small deformations of the defect
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1.1 Symmetries from invertible topoloqgical defects (2d RCFT [FFRS '04])
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Example: critical Ising model
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Important for this talk:

symmetry: T &> §

Insight:
In two-dimensional theories:

Group of invertible topological line
defects acts as a symmetry group

critical Ising model
3-state Potts model P.¢ (6*) -
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Similar statements apply to codimension-one topological defects

in higher dimensional field theories.



1.2 T-dualities and Kramers-Wannier dualities from topological defects

General situation: Defect D creates a disorder field

can be undone by D if
DV®D = @ Ba.
%G 1

e.q. ‘15%3 e®& = 186 ¢

[
=

invertible defect

Action on correlators:
Order / disorder duality

@ x x & e &  x¥ For critical Ising model:
_ A O\ remnant of
& G Tody ’ « & Kramers-Wannier duality
<@ at critical point

Defects for T-dualities
€ of free boson can be
JA ifinesesnms W constructed from twist fields

I




1.3 Defects in 3d TETS

Topological codimension one defects also occur in other dimensions.
This talk: Topological surface defects in 3d TFT of Reshetikhin-Turaev type.

(Examples: abelian Chern-Simons, non-abelian Chern-Simons with
compact gauge group, theories of Turaev-Viro type ~toric code)

Motivation:

- A local two-dimensional rational conformal field theory can be described
as a theory on a topological surface defect
in a 3d TFT of Reshetikhin-Turaev type [FRS, Kapustin-Saulina].
Example: construction of (rationally) compactified free boson using abelian
Chern-Simons theory

- Topological phases
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A general theory for such defects involving "categorified algebra”
(e.g. fusion categories, (bi-)module categories) emerges.
This talk: rather a case study in the class of Dijkgraaf-Witten theories

(example: ground states of toric code), including the relation between defects and
symmetries



2. Defects and boundaries in topological field theories

2.1 Construction of Dijkgraaf-Witten theories from G-bundles G finite group

M closed oriented 3-manifold

g, (W)= | DA = | Bt

B (1)
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It is even a local invariant.
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G finite group

M closed oriented 3-manifold

g, (W)= | DA = | Bt
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N 1
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Trivially, fcgfc(—) is a 3-mfd invariant.
It is even a local invariant.

ZJ" closed oriented 2-manifold

Quoose M 3l vk M= D)

Consider for Pe EWé (2 ) function defined by

’L{/

“

P+ IBWLG(MJPB i

This is a (gauge invariant) function on Bw‘é (2)

s ST
Hee (B)=Jrum  (Bun (30 )

* A 3d TFT assigns vector spaces to 2-mfds

* In DW theories, vector spaces are obtained
by linearization from gauge equivalence
classes of bundles



2.2 DW Theory as an extended TFET

Idea: implement even more locality by cutting surfaces along circles

§ oriented 1-mfg.

Forany 233 = S:
‘\(/z . g"’"‘a LS\ — \l-ea{'

P o S ¥ (Run (3,7))

“"Pair of pants decomposition™



2.2 DW Theory as an extended TFET

Idea: implement even more locality by cutting surfaces along circles

§ oriented 1-mfg.

Forany 233 = S:
‘\FZ . g‘”"‘a LS\ — \l-ea{'

P o S ¥ (Run (3,7))

This is a vector bundle over the space of field configurations on S.

To al-mfd S associate thus the collection of vector bundles over

the space of G-bundles on §.

Bundles come with gauge transformations. Keep them! %Two-layered structure.

“"Pair of pants decomposition™

Two-layered structure: Is category. TFT associates to S the category
B"'"a

)

t f
-(“V:C—( (S\ "= [&MGKS)’ "Wt’} H’ " V}\llﬁ)lzzr?lines
TP
|

: . : _ |
Interpretation: category of Wilson lines: ao‘- C=C ¢ pointlike insertions




Exercise: compute this category!

— bundle described by holonomy < ¢ G
! G/ . k.
. %m G (S 3 — /G. — gauge transformation
PG S _
3 T gt

® |inearize ca ~~> Vvector space V% ~D 5®6G \/'3
NnNA—~D |i -
2\ linear map \l% —> \I‘an'a !

e (5 - equivariant vector bundle on G

* Element in Drinfeld center Z ( ~oeck (CJ> :

Example: toric code: & = Z‘Z = ‘{ 4, X 71

4 simple Wilson lines @,ﬂ’ ) CCX ) mkwa Qr‘a + 1



2.3. Defects and boundaries in Dijkgraaf-Witten theories

ldea: keep the same 2-step procedure, but allow for more general field configurations

Ewc" '. Co-e-, 1,1 r> SFaM éi‘) —_ 2"\;(&

linearize

dea relative bundles Allow for a different gauge group on the defect or boundary

Given relative manlfold | = and group homomorphism v WD G
(e.g. a subgroup)

A _ G ~ X
K - :]~\J1* iz* — :3 fZ% ];

)

Bun Q\(—’Y\ = { Ff

~ & o
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Ewc" '. Cg-e-, — SFM éi() —_ 2"\;&*

'4 B linearize
Idea: relative bundles Allow for a different gauge group on the defect or boundary
Given relative manlfold | = and group homomorphism v WD G

(e.g. a subgroup)
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Additional datum in DW theories: twisted linearization from topolog. Lagrangian

co e 2} (&, )< Z%&Em&, C) (@) (¥; 9.,9.)

oo (4,90 )
twisted reo (g0, My, )

2 « wistie 9 o, 2)11‘]9
T(w) ¢ Z (G‘//G’, C ) linearization AR A ¥>

|
Transgress to B unm : (s > 2 &,




2.4 Cateqgories from 1-manifolds

Example: Interval L

6€x6xG xG
—_— G Bum () = N\ 2’//
. | th > & G, <G, HxB x W,
1 L quz _ G-’IKC—'L
G2.
e T & T I



2.4 Cateqgories from 1-manifolds

Example: Interval L

c;q'—— R
b Hy — G X G
GZ
—_—t C. - -
42. Hl
Data:

3
w € z (G.—a, @x> bulk Lagrangian
o, € C'(4,C")

suchthat A O = '1,*00
(- % (-5

bdry Lagrangian

z ¥
e'\‘l € C LH«?./G; ) - J
deqfl - C\J1 (w'l‘

such that

Bum () =

G

AN

T

66 x Glx G:. //
H, an “2.



2.4 Cateqgories from 1-manifolds

Example: Interval L

6€x6xG xG
~ 14 2,
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Data:

3
w € Z (G.—a, @x> bulk Lagrangian
(-
A
e“ c C (\-la)(\',*) bdry Lagrangian

suchthat A O = '1,*00
(- % (-5

z ¥
e'\‘l e C LH«?./G; ) ~! J
such that d 9,‘2 = W, wz )

Transgress to 2-cocycle on QM(T_’,\

Twisted linearization gives ¢€-linear category
for generalized boundary Wilson lines.
Here:




2.5 A glimpse of the general theory

Warmup: Open / closed 2d TFT [Lauda-Pfeiffer, Moore-Segal]

|Idea: associate vector spaces not only to circles, but also to intervals

\ *2
: O\ =S and E (\ boundary conditions
C/

(3
q
¢ . .
ac ?; with B to be determined

a
q .
JCQ 1 - A Frobenius algebra
o OCo : Q . .
(not necessarily commutative;
G

assume semisimple)

be

=r (JB san P~ module

b



Boundary conditions correspond to A -~ modules; moreover
O

‘EYE (.]::2 \ = H‘DMA—\M«:A (h"’ kl)

(intertwiners)

Algebra (-;Vc‘ R 1: 3 = EV.AA,"WA Uo)

IS Morita-equivalent to algebra Aa

C = %(@) = z@“i:}} = 2(A)

forall o e B . C is the center of A,,, .
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* Algebra (;Vc‘ K 1: 3 = EMAA,-wJ. Uo)

IS Morita-equivalent to algebra P\a

"= %(@} = z@khk}:)} = 2(n)

foral o e B . C isthecenterof Aa -
Dictionary 2d TFT 3d TFT of Turaev Viro type
one bc (semisimple) algebra P\“ fusion category (bdry Wilson lines) &~
for DW theories: A =axck (&)
other bc A_-modules & - module categories
defects bimodules bimodule categories
bulk center 2 ( Aa\ Drinfeld center 2 ( }\)




2.6 An example from Dijkgraaf-Witten theories

@ 3 ¥
e  Fusioncategoryis R = «eck(G) , with G finite group, w & 2 (&/@ )

Known: indecomposable A module categories ¢
HE G e C'(K,&") suchthat d6 = aw,

Module category M KH/ @) over veek (&) o

(G, )
The two ways to compute boundary Wilson lines agree:
H Q’L\ 1943 (H'“a‘)
-
= /O »
tw ( ‘{—f‘4 > F%V\\,x‘*(&\w K M (H‘laeq \’ M(HZ ’923) =

(computed from twisted bundles) (computed from module categories over fusion categories)

Twisted linearization of relative bundles exactly reproduces representation theoretic results.



2.7 Symmetries from defects

Recall: Symmetries €-> invertible topological defects
For 3d TFT of Turaev-Viro type (e.g. Dijkgraaf-Witten theories) based on fusion category A—

these are invertible ®-bimodule categories
(e.g. for DW-theories invertible w«(g)* -bimodule categories)

Bicategory ("categorical 2-group") B{-' ?LC (A) , the Brauer-Picard group
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"Symmetries can be detected
from action on bulk Wilson lines"
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Recall: Symmetries €=> invertible topological defects

For 3d TFT of Turaev-Viro type (e.g. Dijkgraaf-Witten theories) based on fusion category A—
these are invertible ®-bimodule categories
(e.g. for DW-theories invertible w«(g)* -bimodule categories)

Bicategory ("categorical 2-group") B{-' ?LC (A) , the Brauer-Picard group

o _ _ Explicitly computable for DW theories:
Important tool: Transmission of bulk Wilson lines

£ = E)-mod = & (Govect )

Braided equivalence,
D described by

if P invertible _
Linearize span of action groupoids
Be 1e 4) 5 Breu
tic [L ) = Bl \2W) y Y,
ingof-Nikshych-Ostri \
"Symmetries can be detected G v N C’//
from action on bulk Wilson lines" //Cr G



2.8 Symmetries for abelian Dijkgraaf-Witten theories

Relation to lattices ¥
Special case: : G= A abelian , w= 4 /C

Qhoose labkice U':’Q) st t
%T" ‘Plc. ( A"'CO{.) = 01 ( A@ A“ ) —‘-va\ comsideyr

L-Tol wh k=\7%
10, 0 =)

guadratic form

with



2.8 Symmetries for abelian Dijkgraaf-Witten theories

Relation to Iattiggs ¥
Special case: : G= A abelian , w=1 Choose Pabkice U_'Q) st L

. —Lzmcwsi.
Br Pic (A-vcd;) = 01 ( Ao Ag) ‘ ! - T_@dfrww K~ ca/
O\Q 9 ')@ ‘-’)Q(a\

guadratic form

with

Obvious symmetries:

1) Symmetries of Bum A

© € Auk ('&uMA\ = At (A)
Subgroup:

H(e—_ WYCA@A/ © =11

Braided equivalence:

¢ ® (Lfﬁ‘ . Ao A — Ae A




2.8 Symmetries for abelian Dijkgraaf-Witten theories

. = A abelian ,wz

O (Ao A")

)

Special case:

%T" ‘Plc. ( A uo’:)
with o\ Q 9 X)

guadratic form

Obvious symmetries:

1) Symmetries of Bum A

(f < Auk (%QMA\ =
Subgroup:

H‘(’__ WA% C A@A/

Braided equivalence:

€@ (¢

At (A)

I

Relation to Iattiggs o
Choose labkice U_ , K) s.t.

TLM considay

A@AX —s Ae A

T% <A
-
% o)

2) Automorphisms of CS 2-gerbe

L=Lol wh K=

1-gerbe on ’\%m "B-field"

W (A CY) = A&BHM(A c*)

(transgression)

P‘%C ABlk ©=%

Braided equivalence:

Subgroup:

Aon" — A® A
(ax) > (g, xrBlg.7)



3) Partial e-m dualities:

Example: A cyclic, fix §: A A*

Braided equivalence:
Ao A" — AB A
) = (SR 89)
Subgroup: A < ABA

&Caz
S ("'17 (ay)

@Ko‘—\,qp») = S\az)(a’,)

Theorem [FPSV]

These symmetries form a set of generators

f
o Bv’?(c &A'm&)



3. Conclusions

Topological defects are important structures in guantum field theories

- Topological defects implement symmetries and dualities

- Applications to relative field theories on defects and topological phases

Defects in 3d topoloqgical field theories: Dijkgraaf-Witten theories

- Defects from relative bundles

- Relation to (categorified) representation theory:
module categories over monoidal categories

- Brauer-Picard groups as symmetry groups



