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Covariant Berry Connection Anomalous Velocity

Anomalous Velocity
Luttinger, Blount, Niu, and others show that a Berry phase in the
equations of motion of a Bloch quasiparticle ⇒ anomalous velocity:

k̇ = −
∂ε(k,x)

∂x
+ e(ẋ × B),

ẋ =
∂ε(k,x)

∂k
− (k̇ × Ω).
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Covariant Berry Connection Anomalous Velocity

Anomalous Velocity
Luttinger, Blount, Niu, and others show that a Berry phase in the
equations of motion of a Bloch quasiparticle ⇒ anomalous velocity:

k̇ = −
∂ε(k,x)

∂x
+ e(ẋ × B),

ẋ =
∂ε(k,x)

∂k
− (k̇ × Ω).

� Many applications!

� Want to use for Dirac and Weyl particles

� Can we make these equations covariant?

k̇ = e(E + ẋ× B) → k̇µ = eFµν ẋ
ν , µ = 0, 1, 2, 3. X

ẋ = vε − (k̇× Ω) → ẋi = vi,ε + Ωij k̇
j, i = 1, 2, 3. ?

Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 7



Covariant Berry Connection WKB and Berry

Covariant WKB for Dirac
Look for WKB solution of Dirac equation

(i~γµ(∂µ + ieAµ/~) −m)ψ = 0.

as
ψ(x) = a(x)e−iϕ(x)/~, a = a0 + ~a1 + ~

2a2 + . . . ,

where
a0(x) = uα(k(x))Cα(x)

and uα(k) (and later vα(k) ) are solutions to

(γµkµ −m)uα(k) = 0

(γµk
µ +m)vα(k) = 0

covariantly normalized so that

ūαuβ = δαβ = −v̄αvβ
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Covariant Berry Connection WKB and Berry

Spin Transport Equation

Plug WKB solution into Dirac. Find that

[

δαβ

(

V µ ∂

∂xµ
+

1

2

∂V µ

∂xµ

)

+
ie

2m
Sµν

αβFµν − i aαβ,ν k̇
ν

]

Cβ(x) = 0.

where
ie

2m
Sµν

αβFµν

gives Larmor precession, and

aαβ,ν=iūα
∂uβ

∂kν
, ν = 0, 1, 2, 3

is an unconventional, but covariant Berry connection.
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Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski

Covariant Berry Curvature

Matrix-valued connection form

aαβ,ν dk
ν=iūα

∂uβ

∂kν
dkν .

Curvature form
F = da − ia2.

Use Dirac equation to find

Fαβ =
1

2m2
(Sµν)αβ dk

µ ∧ dkν ,

where

(Sµν)αβ = ūα

(

i

4
[γµ, γν ]

)

uβ = iūασµνuβ.

Note that Dirac ⇒ kµSµν = 0.
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Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski

Pauli-Lubanski Tensor

Use mass-shell condition E2 ≡ k2
0 = k

2 +m2 to eliminate k0 and find that

Fαβ =
1

2m2

(

Sij −
ki

E
S0j − Si0

kj

E

)

αβ

dki ∧ dkj ,
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Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski

Pauli-Lubanski Tensor

Use mass-shell condition E2 ≡ k2
0 = k

2 +m2 to eliminate k0 and find that

Fαβ =
1

2m2

(

Sij −
ki

E
S0j − Si0

kj

E

)

αβ

dki ∧ dkj ,

Expression in parentheses is a skew-symmetric tensor generalization of the
Pauli-Lubanski vector
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Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski

Berry versus Llewellyn Thomas

Explicitly, in 3+1 dimensions we have

F =
1

2m2γ

{

1

2

(

σ +
(k · σ)k

m2(1 + γ)

)}

· (dk × dk).
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Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski

Berry versus Llewellyn Thomas

Explicitly, in 3+1 dimensions we have

F =
1

2m2γ

{

1

2

(

σ +
(k · σ)k

m2(1 + γ)

)}

· (dk × dk).

What does this mean this physically? Look at connection

aαβ,ik̇
i =

1

m2(1 + γ)
(k× k̇) ·

(σ

2

)

αβ

=
γ2

1 + γ
(β × β̇) ·

(σ

2

)

αβ
, β = k/E = k/mγ

= −ωThomas ·
(σ

2

)

αβ
.
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Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski

Berry versus Llewellyn Thomas

Explicitly, in 3+1 dimensions we have

F =
1

2m2γ

{

1

2

(

σ +
(k · σ)k

m2(1 + γ)

)}

· (dk × dk).

What does this mean this physically? Look at connection

aαβ,ik̇
i =

1

m2(1 + γ)
(k× k̇) ·

(σ

2

)

αβ

=
γ2

1 + γ
(β × β̇) ·

(σ

2

)

αβ
, β = k/E = k/mγ

= −ωThomas ·
(σ

2

)

αβ
.

Covariant Berry-transport is Thomas precession
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Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski

Nishina, Thomas, Hund

Yoshio Nishina, Llewellyn Thomas, Friedrich Hund
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Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski

Thomas versus Lobachevsky
Thomas precession is parallel transport on the positive-energy mass-shell:

P

Q
X

Z

R−R

Embedding of three-dimensional Lobachevsky space into four-dimensional
Minkowski space. The arrow shows the sterographic parametrization of the

embedded space by the Poincaré ball x2
1 + x2

2 + x2
3 < R2.
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Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski

Non-covariant WKB
With u†αuβ = δαβ = v†αvβ, have

{

δαβ

(

∂

∂t
+ v · ∇ +

1

2
divv

)

+Nαβ

}

Cβ(x, t) = 0,

with

Nαβ = −i

(

e

mγ2

)

B ·

{

1

2

(

σ +
1

m2

(k · σ)k

γ + 1

)

αβ

}

−iAαβ,ik̇
i,

Aαβ,i=iu
†
α

∂uβ

∂ki
, i = 1, 2, 3

and

Fαβ = −
1

2m2γ3

{

(

σ +
1

m2

(k · σ)k

γ + 1

)

αβ

}

· (dk × dk).
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Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski

Non-covariant WKB
With u†αuβ = δαβ = v†αvβ, have

{

δαβ

(

∂

∂t
+ v · ∇ +

1

2
divv

)

+Nαβ

}

Cβ(x, t) = 0,

with

Nαβ = −i

(

e

mγ2

)

B ·

{

1

2

(

σ +
1

m2

(k · σ)k

γ + 1

)

αβ

}

−iAαβ,ik̇
i,

Aαβ,i=iu
†
α

∂uβ

∂ki
, i = 1, 2, 3

and

Fαβ = −
1

2m2γ3

{

(

σ +
1

m2

(k · σ)k

γ + 1

)

αβ

}

· (dk × dk).

Berry curvature has opposite sign!
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Relativistic Mechanics of Spinning Particles Mathisson-Papatrou-Dixon equations

Classical action for spinning particle in GR

Let λ be a Lorentz transformation in Dirac representation, eµa and e∗aµ a
frame and co-frame, and define

ka = tr {κλ−1γaλ}, κ = κaγa

Sab = tr{Σλ−1σabλ}, Σ = 1
2Σabσab

where [κ,Σ] = 0, so that kaSab = 0 (Tulczyjew-Dixon condition)
Action

S[x, λ] =

∫

{

kae
∗a
µ dx

µ − tr{Σλ−1(d+ ω)λ}
}

.

where
ω = 1

2σab ω
ab

µdx
µ

is spin connection one-form.
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Relativistic Mechanics of Spinning Particles Mathisson-Papatrou-Dixon equations

Mathisson-Papapetrou-Dixon equations

� Varying xµ gives us

Dkc

Dτ
+ 1

2SabR
ab

cdẋ
d = 0
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Relativistic Mechanics of Spinning Particles Mathisson-Papatrou-Dixon equations

Mathisson-Papapetrou-Dixon equations

� Varying xµ gives us

Dkc

Dτ
+ 1

2SabR
ab

cdẋ
d = 0

� Varying λ gives

DSab

Dτ
+ ẋakb − kaẋb = 0

� Need additional condition such as kaSab = or naSab = 0 for closed
system.
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Relativistic Mechanics of Spinning Particles Anomalous velocity

Anomalous velocity
Use kaSab = 0 to get

−
Dka

Dτ
Sab = k2ẋb − kb(ẋ · k).

or

ẋa =
1

m2

(

ka(ẋ · k) + Sac
Dkc

Dτ

)

.
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Relativistic Mechanics of Spinning Particles Anomalous velocity

Anomalous velocity
Use kaSab = 0 to get

−
Dka

Dτ
Sab = k2ẋb − kb(ẋ · k).

or

ẋa =
1

m2

(

ka(ẋ · k) + Sac
Dkc

Dτ

)

.

Chose “time” so that ẋ0 = 1, then

1 =
1

m2

{

(ẋ · k)E + S0c
Dkc

Dt

}

,
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Relativistic Mechanics of Spinning Particles Anomalous velocity

Anomalous velocity
Use kaSab = 0 to get

−
Dka

Dτ
Sab = k2ẋb − kb(ẋ · k).

or

ẋa =
1

m2

(

ka(ẋ · k) + Sac
Dkc

Dτ

)

.

Chose “time” so that ẋ0 = 1, then

1 =
1

m2

{

(ẋ · k)E + S0c
Dkc

Dt

}

,

Eliminate k0, then

ẋi =
ki

E
+

1

m2

(

Sij − Si0
kj

E
−
ki

E
S0j

)

Dkj

Dt
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Relativistic Mechanics of Spinning Particles Meaning of Conditions on Spin Tensor

Meaning of conditions on spin tensor

� Lab frame energy centroid Xi
L:

{
∫

x0=t
T 00d3x

}

Xi
L =

∫

x0=t
xiT 00d3x.
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Relativistic Mechanics of Spinning Particles Meaning of Conditions on Spin Tensor

Meaning of conditions on spin tensor

� Lab frame energy centroid Xi
L:

{
∫

x0=t
T 00d3x

}

Xi
L =

∫

x0=t
xiT 00d3x.

� Angular momentum about xµ
A:

Mµν
A =

∫

x0=t

{

(xµ − xµ
A)T ν0 − (xν − xν

A)T µ0
}

d3x
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Relativistic Mechanics of Spinning Particles Meaning of Conditions on Spin Tensor

Meaning of conditions on spin tensor

� Lab frame energy centroid Xi
L:

{
∫

x0=t
T 00d3x

}

Xi
L =

∫

x0=t
xiT 00d3x.

� Angular momentum about xµ
A:

Mµν
A =

∫

x0=t

{

(xµ − xµ
A)T ν0 − (xν − xν

A)T µ0
}

d3x

� Therefore

M i0
A =

∫

x0=t

{

(xi − xi
A)T 00 − (x0 − x0

A)T i0
}

d3x

= (Xi
L − xi

A)E.
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Relativistic Mechanics of Spinning Particles Meaning of Conditions on Spin Tensor

Meaning of conditions on spin tensor

� M i0 = 0 when xi
A = Xi

L, meaning that angular momentum is about
lab-frame energy centroid.
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Relativistic Mechanics of Spinning Particles Meaning of Conditions on Spin Tensor

Meaning of conditions on spin tensor

� M i0 = 0 when xi
A = Xi

L, meaning that angular momentum is about
lab-frame energy centroid.

� naM
ab = 0 for angular momentum about centroid in frame where

na = (1, 0, 0, 0).

Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 21



Relativistic Mechanics of Spinning Particles Meaning of Conditions on Spin Tensor

Meaning of conditions on spin tensor

� M i0 = 0 when xi
A = Xi

L, meaning that angular momentum is about
lab-frame energy centroid.

� naM
ab = 0 for angular momentum about centroid in frame where

na = (1, 0, 0, 0).

� Thus kaS
ab = 0 implies that Sab is the intrinsic angular momentum,

meaning angular momentum about energy centroid in rest frame
where ka = (m, 0, 0, 0).
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na = (1, 0, 0, 0).

� Thus kaS
ab = 0 implies that Sab is the intrinsic angular momentum,

meaning angular momentum about energy centroid in rest frame
where ka = (m, 0, 0, 0).

� kaS
ab = 0 implies that xµ(τ) in the M-P-D equation is trajectory of
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Relativistic Mechanics of Spinning Particles Meaning of Conditions on Spin Tensor

Meaning of conditions on spin tensor

� M i0 = 0 when xi
A = Xi

L, meaning that angular momentum is about
lab-frame energy centroid.

� naM
ab = 0 for angular momentum about centroid in frame where

na = (1, 0, 0, 0).

� Thus kaS
ab = 0 implies that Sab is the intrinsic angular momentum,

meaning angular momentum about energy centroid in rest frame
where ka = (m, 0, 0, 0).

� kaS
ab = 0 implies that xµ(τ) in the M-P-D equation is trajectory of

“centre of mass” — i.e. energy centroid in rest frame.

� Also see that Pauli-Lubansky “Berry curvature”

Sµν − Sµ0
kν

E
−
kµ

E
S0ν

is angular momentum about lab-frame centroid.
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Relativistic Mechanics of Spinning Particles Meaning of Conditions on Spin Tensor

Myron Mathisson explaining Spin
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Massless Case A Gauge Invariance?

Massless case

When m2 = 0 bad things happen!
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Massless Case A Gauge Invariance?

Massless case

When m2 = 0 bad things happen!

� Suppose that k2 = 0, and Sab satisfies Sabk
b = 0, then

S̃ab = Sab + (kaSpb − kbSpa)Θ
p

still satisfies S̃abk
b = 0.
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Massless Case A Gauge Invariance?

Massless case

When m2 = 0 bad things happen!

� Suppose that k2 = 0, and Sab satisfies Sabk
b = 0, then

S̃ab = Sab + (kaSpb − kbSpa)Θ
p

still satisfies S̃abk
b = 0.

� If Sab and xa satisfy M-P-D equation for k̇a = 0, and

x̃a = xa + SpaΘ
p,

then S̃ab, x̃a are also a solution of M-P-D for any time-dependent
Θp(τ).
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Massless Case A Gauge Invariance?

Massless case

When m2 = 0 bad things happen!

� Suppose that k2 = 0, and Sab satisfies Sabk
b = 0, then

S̃ab = Sab + (kaSpb − kbSpa)Θ
p

still satisfies S̃abk
b = 0.

� If Sab and xa satisfy M-P-D equation for k̇a = 0, and

x̃a = xa + SpaΘ
p,

then S̃ab, x̃a are also a solution of M-P-D for any time-dependent
Θp(τ).

A gauge invariance?
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Massless Case Wigner Translations

Wigner Translations

� Massless reference momentum κa = (1, 0, 0, . . . , 0, 1).

� Little group: σab with 0 < a, b,< d− 1. Generate SO(d− 2),
together with “translations”

πa = κbσba ≡ σ0a + σ(d−1)a, 0 < a < d− 1.

[πa, πb] = 0, [σab, πc] = ηbcπa − ηacπb.
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Massless Case Wigner Translations

Wigner Translations

� Massless reference momentum κa = (1, 0, 0, . . . , 0, 1).

� Little group: σab with 0 < a, b,< d− 1. Generate SO(d− 2),
together with “translations”

πa = κbσba ≡ σ0a + σ(d−1)a, 0 < a < d− 1.

[πa, πb] = 0, [σab, πc] = ηbcπa − ηacπb.

� Wigner says that the πa must have no physical effect...
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Massless Case Wigner Translations

Wigner Translations

� Massless reference momentum κa = (1, 0, 0, . . . , 0, 1).

� Little group: σab with 0 < a, b,< d− 1. Generate SO(d− 2),
together with “translations”

πa = κbσba ≡ σ0a + σ(d−1)a, 0 < a < d− 1.

[πa, πb] = 0, [σab, πc] = ηbcπa − ηacπb.

� Wigner says that the πa must have no physical effect...

� ...but

λ→ λ exp

(

d−2
∑

i=1

θiπi

)

, in Sab = tr{Σλ−1σabλ},

takes
Sab → Sab + (kaSpb − kbSpa)Θ

p, Θp = Λp
iθ

i.
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Massless Case Wigner Translations

Heisenberg, Wigner

Heisenberg and Eugene Wigner
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Massless Case Physical Meaning of Wigner Translations

Physical Meaning of Wigner Translations

SS

Head-on collision of massless spinning particles.
L = 0, S = 0 ⇒ J = 0.
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Massless Case Physical Meaning of Wigner Translations

Physical Meaning of Wigner Translations

S S

Run towards collision, top view.
J = 0, S 6= 0
⇒ L 6= 0.
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Massless Case Physical Meaning of Wigner Translations

Physical Meaning of Wigner Translations

S
S

Miss!

Boost towards collision, front view.
Miss by δx = L/k
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Massless Case Physical Meaning of Wigner Translations

Huh!

It’s not that weird:

� Any interaction that occurs in one frame still occurs when viewed
from another frame.

� Cross-sections depend on J = L+ S.

� For massless particles, cannot separate L from S.

� Means that particle “position” is frame dependent.

� A serious problem for any covariant mechanics!

Show some MathematicaTM plots to prove that frame dependence is a real
phenomenon
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Conclusions

Conclusions

� For massive particles, the Berry-phase equations of motion for
relativistic spinning particles are the 3-dimensional reduction of 3+1
Lorentz covariant equations

� The Berry phase equations of motion for massless particles are not
the m→ 0 limit of the massive-particle equations

� The Berry phase equations of motion for massless particles are not
the 3-dimensional reduction of covariant equations

� The lack of covariance arises because the position ascribed to a
massless particle is the lab-frame centroid, and is frame-dependent
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