

Berry Curvature, Spin, and Anomalous Velocity

Michael Stone

Institute for Condensed Matter Theory University of Illinois

Michael Stone (ICMT Illinois)

Spin and Velocity

Talk based on:

Motivation

M.A.Stephanov, Y.Yin, *Chiral Kinetic Theory*, Phys. Rev. Lett. **109** 162001 (2012).

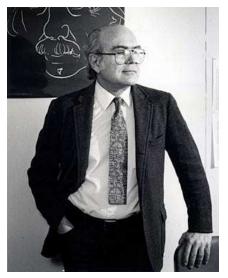
Our Work

MS, V.Dwivedi, A Classical Version of the Non-Abelian Gauge Anomaly Phys. Rev. **D88** 045012 (2013). V.Dwivedi, MS, Classical chiral kinetic theory and anomalies in even space-time dimensions, J. Phys. A **47** 025401 (2014). MS, V.Dwivedi, T.Zhou, Berry Phase, Lorentz Covariance, and Anomalous Velocity for Dirac and Weyl Particles, arXiv:1406.0354

Also important

J.Y.Chen, D.T.Son, M.A.Stephanov, H.U.Yee, Y.Yin, *Lorentz Invariance in Chiral Kinetic Theory*, arXiv:1404.5963

Michael Stone (ICMT Illinois)



Bruno Zumino 1923-2014

Michael Stone (ICMT Illinois)

Spin and Velocity

ESI Vienna, August 11th 2014 4

↓□> ↓@> ↓E> ↓E> E

Outline

Covariant Berry Connection

- Anomalous Velocity
- WKB and Berry
- Berry, Thomas, and Pauli-Lubanski

Relativistic Mechanics of Spinning Particles

- Mathisson-Papatrou-Dixon equations
- Anomalous velocity
- Meaning of Conditions on Spin Tensor

3 Massless Case

- A Gauge Invariance?
- Wigner Translations
- Physical Meaning of Wigner Translations

Conclusions

Outline

- Anomalous Velocity
- WKB and Berry
- Berry, Thomas, and Pauli-Lubanski

Relativistic Mechanics of Spinning Particles

- Mathisson-Papatrou-Dixon equations
- Anomalous velocity
- Meaning of Conditions on Spin Tensor

3 Massless Case

- A Gauge Invariance?
- Wigner Translations
- Physical Meaning of Wigner Translations

Conclusions

Luttinger, Blount, Niu, and others show that a Berry phase in the equations of motion of a Bloch quasiparticle \Rightarrow anomalous velocity:

$$egin{array}{rcl} \dot{\mathbf{k}} &=& -rac{\partialarepsilon(\mathbf{k},\mathbf{x})}{\partial\mathbf{x}} + e(\dot{\mathbf{x}} imes\mathbf{B}), \ \dot{\mathbf{x}} &=& rac{\partialarepsilon(\mathbf{k},\mathbf{x})}{\partial\mathbf{k}} - (\dot{\mathbf{k}} imes\mathbf{\Omega}). \end{array}$$

7

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Luttinger, Blount, Niu, and others show that a Berry phase in the equations of motion of a Bloch quasiparticle \Rightarrow anomalous velocity:

$$egin{array}{rcl} \dot{\mathbf{k}} &=& -rac{\partialarepsilon(\mathbf{k},\mathbf{x})}{\partial\mathbf{x}} + e(\dot{\mathbf{x}} imes\mathbf{B}), \ \dot{\mathbf{x}} &=& rac{\partialarepsilon(\mathbf{k},\mathbf{x})}{\partial\mathbf{k}} - (\dot{\mathbf{k}} imes\mathbf{\Omega}). \end{array}$$

- Many applications!
- Want to use for Dirac and Weyl particles
- Can we make these equations covariant?

Luttinger, Blount, Niu, and others show that a Berry phase in the equations of motion of a Bloch quasiparticle \Rightarrow anomalous velocity:

$$egin{array}{rcl} \dot{\mathbf{k}} &=& -rac{\partialarepsilon(\mathbf{k},\mathbf{x})}{\partial\mathbf{x}} + e(\dot{\mathbf{x}} imes\mathbf{B}), \ \dot{\mathbf{x}} &=& rac{\partialarepsilon(\mathbf{k},\mathbf{x})}{\partial\mathbf{k}} - (\dot{\mathbf{k}} imes\mathbf{\Omega}). \end{array}$$

- Many applications!
- Want to use for Dirac and Weyl particles
- Can we make these equations covariant?

$$\dot{\mathbf{k}} = e(\mathbf{E} + \dot{\mathbf{x}} \times \mathbf{B}) \to \dot{k}_{\mu} = eF_{\mu\nu}\dot{x}^{\nu}, \quad \mu = 0, 1, 2, 3. \quad \checkmark$$

Luttinger, Blount, Niu, and others show that a Berry phase in the equations of motion of a Bloch quasiparticle \Rightarrow anomalous velocity:

$$egin{array}{rcl} \dot{\mathbf{k}} &=& -rac{\partialarepsilon(\mathbf{k},\mathbf{x})}{\partial\mathbf{x}} + e(\dot{\mathbf{x}} imes\mathbf{B}), \ \dot{\mathbf{x}} &=& rac{\partialarepsilon(\mathbf{k},\mathbf{x})}{\partial\mathbf{k}} - (\dot{\mathbf{k}} imes\mathbf{\Omega}). \end{array}$$

- Many applications!
- Want to use for Dirac and Weyl particles
- Can we make these equations covariant?

$$\dot{\mathbf{k}} = e(\mathbf{E} + \dot{\mathbf{x}} \times \mathbf{B}) \to \dot{k}_{\mu} = eF_{\mu\nu}\dot{x}^{\nu}, \quad \mu = 0, 1, 2, 3. \quad \checkmark$$

$$\dot{\mathbf{x}} = \mathbf{v}_{\varepsilon} - (\dot{\mathbf{k}} \times \mathbf{\Omega}) \rightarrow \dot{x}_i = v_{i,\varepsilon} + \Omega_{ij} \dot{k}^j, \quad i = 1, 2, 3.$$

Covariant WKB for Dirac

Look for WKB solution of Dirac equation

$$(i\hbar\gamma^{\mu}(\partial_{\mu} + ieA_{\mu}/\hbar) - m)\psi = 0.$$

as

$$\psi(x) = a(x)e^{-i\varphi(x)/\hbar}, \quad a = a_0 + \hbar a_1 + \hbar^2 a_2 + \dots,$$

where

 $a_0(x) = u_\alpha(k(x))C^\alpha(x)$

and $u_{lpha}(k)$ (and later $v_{lpha}(k)$) are solutions to

$$\begin{aligned} (\gamma^{\mu}k_{\mu}-m)u_{\alpha}(k) &= 0\\ (\gamma_{\mu}k^{\mu}+m)v_{\alpha}(k) &= 0 \end{aligned}$$

covariantly normalized so that

$$\bar{u}_{\alpha}u_{\beta} = \delta_{\alpha\beta} = -\bar{v}_{\alpha}v_{\beta}$$

8

イロト 人間ト イヨト イヨト

Spin Transport Equation

Plug WKB solution into Dirac. Find that

$$\left[\delta_{\alpha\beta}\left(V^{\mu}\frac{\partial}{\partial x^{\mu}}+\frac{1}{2}\frac{\partial V^{\mu}}{\partial x^{\mu}}\right)+\frac{ie}{2m}S^{\mu\nu}_{\alpha\beta}F_{\mu\nu}-i\mathfrak{a}_{\alpha\beta,\nu}\dot{k}^{\nu}\right]C^{\beta}(x)=0.$$

where

$$\frac{ie}{2m}S^{\mu\nu}_{\alpha\beta}F_{\mu\nu}$$

gives Larmor precession, and

$$\mathfrak{a}_{\alpha\beta,\nu}=i\bar{u}_{\alpha}\frac{\partial u_{\beta}}{\partial k^{\nu}},\quad\nu=0,1,2,3$$

is an unconventional, but covariant Berry connection.

Covariant Berry Curvature

Matrix-valued connection form

$$\mathfrak{a}_{\alpha\beta,\nu}\,dk^{\nu}=i\bar{u}_{\alpha}\frac{\partial u_{\beta}}{\partial k^{\nu}}\,dk^{\nu}.$$

Curvature form

$$\mathfrak{F}=d\mathfrak{a}-i\mathfrak{a}^2.$$

Use Dirac equation to find

$$\mathfrak{F}_{\alpha\beta} = \frac{1}{2m^2} (S_{\mu\nu})_{\alpha\beta} \, dk^{\mu} \wedge dk^{\nu},$$

where

$$(S_{\mu\nu})_{\alpha\beta} = \bar{u}_{\alpha} \left(\frac{i}{4} [\gamma_{\mu}, \gamma_{\nu}] \right) u_{\beta} = i \bar{u}_{\alpha} \sigma_{\mu\nu} u_{\beta}.$$

Note that Dirac $\Rightarrow k^{\mu}S_{\mu\nu} = 0.$

10

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Pauli-Lubanski Tensor

Use mass-shell condition $E^2 \equiv k_0^2 = \mathbf{k}^2 + m^2$ to eliminate k_0 and find that

$$\mathfrak{F}_{\alpha\beta} = \frac{1}{2m^2} \left(S_{ij} - \frac{k_i}{E} S_{0j} - S_{i0} \frac{k_j}{E} \right)_{\alpha\beta} dk^i \wedge dk^j,$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Pauli-Lubanski Tensor

Use mass-shell condition $E^2 \equiv k_0^2 = \mathbf{k}^2 + m^2$ to eliminate k_0 and find that

$$\mathfrak{F}_{\alpha\beta} = \frac{1}{2m^2} \left(S_{ij} - \frac{k_i}{E} S_{0j} - S_{i0} \frac{k_j}{E} \right)_{\alpha\beta} dk^i \wedge dk^j,$$

Expression in parentheses is a skew-symmetric tensor generalization of the Pauli-Lubanski vector

Explicitly, in 3+1 dimensions we have

$$\mathfrak{F} = \frac{1}{2m^2\gamma} \left\{ \frac{1}{2} \left(\boldsymbol{\sigma} + \frac{(\mathbf{k} \cdot \boldsymbol{\sigma})\mathbf{k}}{m^2(1+\gamma)} \right) \right\} \cdot (d\mathbf{k} \times d\mathbf{k}).$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Explicitly, in 3+1 dimensions we have

$$\mathfrak{F} = \frac{1}{2m^2\gamma} \left\{ \frac{1}{2} \left(\boldsymbol{\sigma} + \frac{(\mathbf{k} \cdot \boldsymbol{\sigma})\mathbf{k}}{m^2(1+\gamma)} \right) \right\} \cdot (d\mathbf{k} \times d\mathbf{k}).$$

What does this mean this physically?

э

Explicitly, in 3+1 dimensions we have

$$\mathfrak{F} = \frac{1}{2m^2\gamma} \left\{ \frac{1}{2} \left(\boldsymbol{\sigma} + \frac{(\mathbf{k} \cdot \boldsymbol{\sigma})\mathbf{k}}{m^2(1+\gamma)} \right) \right\} \cdot (d\mathbf{k} \times d\mathbf{k}).$$

What does this mean this physically? Look at connection

$$\begin{aligned} \mathbf{a}_{\alpha\beta,i}\dot{k}^{i} &= \frac{1}{m^{2}(1+\gamma)}(\mathbf{k}\times\dot{\mathbf{k}})\cdot\left(\frac{\boldsymbol{\sigma}}{2}\right)_{\alpha\beta} \\ &= \frac{\gamma^{2}}{1+\gamma}(\boldsymbol{\beta}\times\dot{\boldsymbol{\beta}})\cdot\left(\frac{\boldsymbol{\sigma}}{2}\right)_{\alpha\beta}, \quad \boldsymbol{\beta}=\mathbf{k}/E=\mathbf{k}/m\gamma \\ &= -\boldsymbol{\omega}_{\text{Thomas}}\cdot\left(\frac{\boldsymbol{\sigma}}{2}\right)_{\alpha\beta}. \end{aligned}$$

Michael Stone (ICMT Illinois)

3

Explicitly, in 3+1 dimensions we have

$$\mathfrak{F} = \frac{1}{2m^2\gamma} \left\{ \frac{1}{2} \left(\boldsymbol{\sigma} + \frac{(\mathbf{k} \cdot \boldsymbol{\sigma})\mathbf{k}}{m^2(1+\gamma)} \right) \right\} \cdot (d\mathbf{k} \times d\mathbf{k}).$$

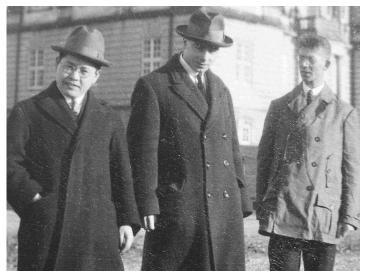
What does this mean this physically? Look at connection

$$\begin{aligned} \mathbf{\mathfrak{a}}_{\alpha\beta,i}\dot{k}^{i} &= \frac{1}{m^{2}(1+\gamma)}(\mathbf{k}\times\dot{\mathbf{k}})\cdot\left(\frac{\boldsymbol{\sigma}}{2}\right)_{\alpha\beta} \\ &= \frac{\gamma^{2}}{1+\gamma}(\boldsymbol{\beta}\times\dot{\boldsymbol{\beta}})\cdot\left(\frac{\boldsymbol{\sigma}}{2}\right)_{\alpha\beta}, \quad \boldsymbol{\beta}=\mathbf{k}/E=\mathbf{k}/m\gamma \\ &= -\boldsymbol{\omega}_{\text{Thomas}}\cdot\left(\frac{\boldsymbol{\sigma}}{2}\right)_{\alpha\beta}. \end{aligned}$$

Covariant Berry-transport is Thomas precession

Michael Stone (ICMT Illinois)

Nishina, Thomas, Hund



Yoshio Nishina, Llewellyn Thomas, Friedrich Hund

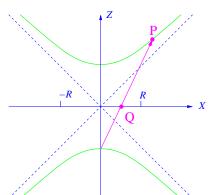
Michael Stone (ICMT Illinois)

13

・ロト ・四ト ・ヨト ・ヨト

Thomas versus Lobachevsky

Thomas precession is parallel transport on the positive-energy mass-shell:



Embedding of three-dimensional Lobachevsky space into four-dimensional Minkowski space. The arrow shows the sterographic parametrization of the embedded space by the Poincaré ball $x_1^2 + x_2^2 + x_3^2 < R^2$.

Non-covariant WKB With $u^{\dagger}_{\alpha}u_{\beta} = \delta_{\alpha\beta} = v^{\dagger}_{\alpha}v_{\beta}$, have

$$\left\{\delta_{\alpha\beta}\left(\frac{\partial}{\partial t} + \mathbf{v}\cdot\nabla + \frac{1}{2}\mathrm{div}\,\mathbf{v}\right) + N_{\alpha\beta}\right\}C^{\beta}(\mathbf{x},t) = 0,$$

with

$$N_{\alpha\beta} = -i\left(\frac{e}{m\gamma^2}\right) \mathbf{B} \cdot \left\{\frac{1}{2}\left(\boldsymbol{\sigma} + \frac{1}{m^2}\frac{(\mathbf{k}\cdot\boldsymbol{\sigma})\mathbf{k}}{\gamma+1}\right)_{\alpha\beta}\right\} - i\mathcal{A}_{\alpha\beta,i}\dot{k}^i,$$
$$\mathcal{A}_{\alpha\beta,i} = iu_{\alpha}^{\dagger}\frac{\partial u_{\beta}}{\partial k^i}, \quad i = 1, 2, 3$$

and

$$\mathcal{F}_{\alpha\beta} = -\frac{1}{2m^2\gamma^3} \left\{ \left(\boldsymbol{\sigma} + \frac{1}{m^2} \frac{(\mathbf{k} \cdot \boldsymbol{\sigma})\mathbf{k}}{\gamma + 1} \right)_{\alpha\beta} \right\} \cdot (d\mathbf{k} \times d\mathbf{k}).$$

3

15

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Non-covariant WKB With $u^{\dagger}_{\alpha}u_{\beta} = \delta_{\alpha\beta} = v^{\dagger}_{\alpha}v_{\beta}$, have

$$\left\{\delta_{\alpha\beta}\left(\frac{\partial}{\partial t} + \mathbf{v}\cdot\nabla + \frac{1}{2}\mathrm{div}\,\mathbf{v}\right) + N_{\alpha\beta}\right\}C^{\beta}(\mathbf{x},t) = 0,$$

with

$$N_{\alpha\beta} = -i\left(\frac{e}{m\gamma^2}\right) \mathbf{B} \cdot \left\{\frac{1}{2}\left(\boldsymbol{\sigma} + \frac{1}{m^2}\frac{(\mathbf{k}\cdot\boldsymbol{\sigma})\mathbf{k}}{\gamma+1}\right)_{\alpha\beta}\right\} - i\mathcal{A}_{\alpha\beta,i}\dot{k}^i,$$
$$\mathcal{A}_{\alpha\beta,i} = iu_{\alpha}^{\dagger}\frac{\partial u_{\beta}}{\partial k^i}, \quad i = 1, 2, 3$$

and

$$\mathcal{F}_{\alpha\beta} = -\frac{1}{2m^2\gamma^3} \left\{ \left(\boldsymbol{\sigma} + \frac{1}{m^2} \frac{(\mathbf{k} \cdot \boldsymbol{\sigma})\mathbf{k}}{\gamma + 1} \right)_{\alpha\beta} \right\} \cdot (d\mathbf{k} \times d\mathbf{k}).$$

Berry curvature has opposite sign!

Outline

Covariant Berry Connection

- Anomalous Velocity
- WKB and Berry
- Berry, Thomas, and Pauli-Lubanski

Relativistic Mechanics of Spinning Particles

- Mathisson-Papatrou-Dixon equations
- Anomalous velocity
- Meaning of Conditions on Spin Tensor

B Massless Case

- A Gauge Invariance?
- Wigner Translations
- Physical Meaning of Wigner Translations

Conclusions

Classical action for spinning particle in GR

Let λ be a Lorentz transformation in Dirac representation, e_a^{μ} and e_{μ}^{*a} a frame and co-frame, and define

$$k_{a} = \operatorname{tr} \{ \kappa \lambda^{-1} \gamma_{a} \lambda \}, \quad \kappa = \kappa^{a} \gamma_{a}$$
$$S_{ab} = \operatorname{tr} \{ \Sigma \lambda^{-1} \sigma_{ab} \lambda \}, \quad \Sigma = \frac{1}{2} \Sigma^{ab} \sigma_{ab}$$

where $[\kappa, \Sigma] = 0$, so that $k^a S_{ab} = 0$ (Tulczyjew-Dixon condition) Action

$$S[x,\lambda] = \int \left\{ k_a e_{\mu}^{*a} dx^{\mu} - \operatorname{tr} \left\{ \Sigma \lambda^{-1} (d+\omega) \lambda \right\} \right\}.$$

where

$$\omega = \frac{1}{2} \sigma_{ab} \, \omega^{ab}{}_{\mu} dx^{\mu}$$

is spin connection one-form.

Mathisson-Papapetrou-Dixon equations

Varying x^{μ} gives us

$$\frac{Dk_c}{D\tau} + \frac{1}{2}S_{ab}R^{ab}{}_{cd}\dot{x}^d = 0$$

э

Mathisson-Papapetrou-Dixon equations

Varying x^{μ} gives us

$$\frac{Dk_c}{D\tau} + \frac{1}{2}S_{ab}R^{ab}{}_{cd}\dot{x}^d = 0$$

Varying λ gives

$$\frac{DS_{ab}}{D\tau} + \dot{x}_a k_b - k_a \dot{x}_b = 0$$

э

Mathisson-Papapetrou-Dixon equations

Varying x^{μ} gives us

$$\frac{Dk_c}{D\tau} + \frac{1}{2}S_{ab}R^{ab}{}_{cd}\dot{x}^d = 0$$

Varying
$$\lambda$$
 gives

$$\frac{DS_{ab}}{D\tau} + \dot{x}_a k_b - k_a \dot{x}_b = 0$$

Need additional condition such as $k^a S_{ab} = \text{ or } n^a S_{ab} = 0$ for closed system.

Use $k^a S_{ab} = 0$ to get

$$-\frac{Dk^a}{D\tau}S_{ab} = k^2 \dot{x}_b - k_b (\dot{x} \cdot k).$$

or

$$\dot{x}_a = \frac{1}{m^2} \left(k_a (\dot{x} \cdot k) + S_{ac} \frac{Dk^c}{D\tau} \right).$$

3

・ロト ・聞ト ・ヨト ・ヨト

Use $k^a S_{ab} = 0$ to get

$$-\frac{Dk^a}{D\tau}S_{ab} = k^2 \dot{x}_b - k_b (\dot{x} \cdot k).$$

or

$$\dot{x}_a = \frac{1}{m^2} \left(k_a (\dot{x} \cdot k) + S_{ac} \frac{Dk^c}{D\tau} \right).$$

Chose "time" so that $\dot{x}^0 = 1$, then

$$1 = \frac{1}{m^2} \left\{ (\dot{x} \cdot k)E + S_{0c} \frac{Dk^c}{Dt} \right\},\,$$

3

19

Use $k^a S_{ab} = 0$ to get

$$-\frac{Dk^a}{D\tau}S_{ab} = k^2 \dot{x}_b - k_b (\dot{x} \cdot k).$$

or

$$\dot{x}_a = \frac{1}{m^2} \left(k_a (\dot{x} \cdot k) + S_{ac} \frac{Dk^c}{D\tau} \right).$$

Chose "time" so that $\dot{x}^0 = 1$, then

$$1 = \frac{1}{m^2} \left\{ (\dot{x} \cdot k)E + S_{0c} \frac{Dk^c}{Dt} \right\},\,$$

Eliminate k^0 , then

$$\dot{x}_i = \frac{k_i}{E} + \frac{1}{m^2} \left(S_{ij} - S_{i0} \frac{k_j}{E} - \frac{k_i}{E} S_{0j} \right) \frac{Dk^j}{Dt}$$

Michael Stone (ICMT Illinois)

19

Image: 1

• Lab frame energy centroid $X_{\rm L}^i$:

$$\left\{\int_{x^0=t} T^{00} d^3 x\right\} X_{\mathrm{L}}^i = \int_{x^0=t} x^i T^{00} d^3 x.$$

э

20

・ 同 ト ・ ヨ ト ・ ヨ ト

Lab frame energy centroid $X_{\rm L}^i$:

$$\left\{\int_{x^0=t} T^{00} d^3x\right\} \, X_{\rm L}^i = \int_{x^0=t} x^i T^{00} d^3x.$$

Angular momentum about x_A^{μ} :

$$M_{\rm A}^{\mu\nu} = \int_{x^0=t} \left\{ (x^{\mu} - x_{\rm A}^{\mu})T^{\nu 0} - (x^{\nu} - x_{\rm A}^{\nu})T^{\mu 0} \right\} d^3x$$

Lab frame energy centroid $X_{\rm L}^i$:

$$\left\{\int_{x^0=t} T^{00} d^3x\right\} \, X^i_{\rm L} = \int_{x^0=t} x^i T^{00} d^3x.$$

Angular momentum about x_A^{μ} :

$$M_{\rm A}^{\mu\nu} = \int_{x^0=t} \left\{ (x^{\mu} - x_{\rm A}^{\mu})T^{\nu 0} - (x^{\nu} - x_{\rm A}^{\nu})T^{\mu 0} \right\} d^3x$$

Therefore

$$\begin{split} M_{\rm A}^{i0} &= \int_{x^0 = t} \left\{ (x^i - x_{\rm A}^i) T^{00} - (x^0 - x_{\rm A}^0) T^{i0} \right\} d^3 x \\ &= (X_{\rm L}^i - x_{\rm A}^i) E. \end{split}$$

• $M^{i0} = 0$ when $x_A^i = X_L^i$, meaning that angular momentum is about lab-frame energy centroid.

イロト イポト イヨト イヨト

- $M^{i0} = 0$ when $x_A^i = X_L^i$, meaning that angular momentum is about lab-frame energy centroid.
- $n_a M^{ab} = 0$ for angular momentum about centroid in frame where $n^a = (1, 0, 0, 0)$.

Meaning of conditions on spin tensor

- $M^{i0} = 0$ when $x_A^i = X_L^i$, meaning that angular momentum is about lab-frame energy centroid.
- $n_a M^{ab} = 0$ for angular momentum about centroid in frame where $n^a = (1, 0, 0, 0)$.
- Thus $k_a S^{ab} = 0$ implies that S^{ab} is the intrinsic angular momentum, meaning angular momentum about energy centroid in rest frame where $k^a = (m, 0, 0, 0)$.

Meaning of conditions on spin tensor

- $M^{i0} = 0$ when $x_A^i = X_L^i$, meaning that angular momentum is about lab-frame energy centroid.
- $n_a M^{ab} = 0$ for angular momentum about centroid in frame where $n^a = (1, 0, 0, 0)$.
- Thus $k_a S^{ab} = 0$ implies that S^{ab} is the intrinsic angular momentum, meaning angular momentum about energy centroid in <u>rest frame</u> where $k^a = (m, 0, 0, 0)$.
- $k_a S^{ab} = 0$ implies that $x^{\mu}(\tau)$ in the M-P-D equation is trajectory of "centre of mass" *i.e.* energy centroid in <u>rest frame</u>.

Meaning of conditions on spin tensor

- $M^{i0} = 0$ when $x_A^i = X_L^i$, meaning that angular momentum is about lab-frame energy centroid.
- $n_a M^{ab} = 0$ for angular momentum about centroid in frame where $n^a = (1, 0, 0, 0)$.
- Thus $k_a S^{ab} = 0$ implies that S^{ab} is the intrinsic angular momentum, meaning angular momentum about energy centroid in <u>rest frame</u> where $k^a = (m, 0, 0, 0)$.
- k_aS^{ab} = 0 implies that x^μ(τ) in the M-P-D equation is trajectory of "centre of mass" *i.e.* energy centroid in <u>rest frame</u>.
- Also see that Pauli-Lubansky "Berry curvature"

$$S_{\mu\nu} - S_{\mu0} \frac{k_\nu}{E} - \frac{k_\mu}{E} S_{0\nu}$$

is angular momentum about lab-frame centroid.

Myron Mathisson explaining Spin

Michael Stone (ICMT Illinois)

Spin and Velocity

Outline

1 Covariant Berry Connection

- Anomalous Velocity
- WKB and Berry
- Berry, Thomas, and Pauli-Lubanski

2 Relativistic Mechanics of Spinning Particles

- Mathisson-Papatrou-Dixon equations
- Anomalous velocity
- Meaning of Conditions on Spin Tensor

3 Massless Case

- A Gauge Invariance?
- Wigner Translations
- Physical Meaning of Wigner Translations

Conclusions

When $m^2 = 0$ bad things happen!

3

24

イロト イポト イヨト イヨト

When $m^2 = 0$ bad things happen!

Suppose that $k^2 = 0$, and S_{ab} satisfies $S_{ab}k^b = 0$, then

$$\tilde{S}_{ab} = S_{ab} + (k_a S_{pb} - k_b S_{pa})\Theta^p$$

still satisfies $\tilde{S}_{ab}k^b = 0$.

3

イロト イポト イヨト イヨト

When $m^2 = 0$ bad things happen!

Suppose that $k^2 = 0$, and S_{ab} satisfies $S_{ab}k^b = 0$, then

$$\tilde{S}_{ab} = S_{ab} + (k_a S_{pb} - k_b S_{pa})\Theta^p$$

still satisfies $\tilde{S}_{ab}k^b = 0$. If S_{ab} and x_a satisfy M-P-D equation for $\dot{k}^a = 0$, and

$$\tilde{x}_a = x_a + S_{pa}\Theta^p,$$

then \tilde{S}_{ab} , \tilde{x}_a are also a solution of M-P-D for any time-dependent $\Theta^p(\tau)$.

24

イロト 不得下 イヨト イヨト 二日

When $m^2 = 0$ bad things happen!

Suppose that $k^2 = 0$, and S_{ab} satisfies $S_{ab}k^b = 0$, then

$$\tilde{S}_{ab} = S_{ab} + (k_a S_{pb} - k_b S_{pa})\Theta^p$$

still satisfies $\tilde{S}_{ab}k^b = 0$. If S_{ab} and x_a satisfy M-P-D equation for $\dot{k}^a = 0$, and

$$\tilde{x}_a = x_a + S_{pa}\Theta^p,$$

then \tilde{S}_{ab} , \tilde{x}_a are also a solution of M-P-D for any time-dependent $\Theta^p(\tau).$

A gauge invariance?

24

イロト 不得下 イヨト イヨト 二日

Wigner Translations

- Massless reference momentum $\kappa^a = (1, 0, 0, \dots, 0, 1)$.
- Little group: σ_{ab} with 0 < a, b, < d 1. Generate SO(d 2), together with "translations"

$$\pi_{a} = \kappa^{b} \sigma_{ba} \equiv \sigma_{0a} + \sigma_{(d-1)a}, \quad 0 < a < d-1.$$
$$[\pi_{a}, \pi_{b}] = 0, \quad [\sigma_{ab}, \pi_{c}] = \eta_{bc} \pi_{a} - \eta_{ac} \pi_{b}.$$

Wigner Translations

- Massless reference momentum $\kappa^a = (1, 0, 0, \dots, 0, 1)$.
- Little group: σ_{ab} with 0 < a, b, < d 1. Generate SO(d 2), together with "translations"

$$\pi_{a} = \kappa^{b} \sigma_{ba} \equiv \sigma_{0a} + \sigma_{(d-1)a}, \quad 0 < a < d-1.$$
$$[\pi_{a}, \pi_{b}] = 0, \quad [\sigma_{ab}, \pi_{c}] = \eta_{bc} \pi_{a} - \eta_{ac} \pi_{b}.$$

Wigner says that the π_a must have no physical effect...

Wigner Translations

- Massless reference momentum $\kappa^a = (1, 0, 0, \dots, 0, 1)$.
- Little group: σ_{ab} with 0 < a, b, < d 1. Generate SO(d 2), together with "translations"

$$\pi_a = \kappa^b \sigma_{ba} \equiv \sigma_{0a} + \sigma_{(d-1)a}, \quad 0 < a < d-1.$$
$$[\pi_a, \pi_b] = 0, \quad [\sigma_{ab}, \pi_c] = \eta_{bc} \pi_a - \eta_{ac} \pi_b.$$

Wigner says that the π_a must have no physical effect...
...but

$$\lambda \to \lambda \exp\left(\sum_{i=1}^{d-2} \theta^i \pi_i\right), \quad \text{in} \quad S_{ab} = \mathrm{tr}\{\Sigma \lambda^{-1} \sigma_{ab} \lambda\},$$

takes

$$S_{ab} \to S_{ab} + (k_a S_{pb} - k_b S_{pa})\Theta^p, \quad \Theta^p = \Lambda^p{}_i \theta^i.$$

Heisenberg, Wigner

Heisenberg and Eugene Wigner

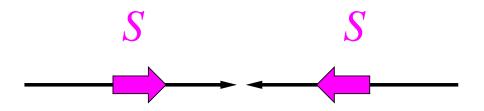
Michael Stone (ICMT Illinois)

Spin and Velocity

26

日本《圖》《圖》《圖》

Physical Meaning of Wigner Translations



Head-on collision of massless spinning particles. $L=0,\ S=0 \Rightarrow J=0.$

Michael Stone (ICMT Illinois)

Physical Meaning of Wigner Translations

Run towards collision, top view. $J = 0, S \neq 0$ $\Rightarrow L \neq 0.$

Michael Stone (ICMT Illinois)

- A - E - N

Physical Meaning of Wigner Translations

Boost towards collision, front view. Miss by $\delta x = L/k$

Huh!

It's not that weird:

- Any interaction that occurs in one frame still occurs when viewed from another frame.
- Cross-sections depend on J = L + S.
- For massless particles, cannot separate L from S.
- Means that particle "position" is frame dependent.
- A serious problem for any covariant mechanics!

Show some Mathematica $^{\rm TM}$ plots to prove that frame dependence is a real phenomenon

28

イロト イポト イヨト イヨト

Outline

D Covariant Berry Connection

- Anomalous Velocity
- WKB and Berry
- Berry, Thomas, and Pauli-Lubanski

2 Relativistic Mechanics of Spinning Particles

- Mathisson-Papatrou-Dixon equations
- Anomalous velocity
- Meaning of Conditions on Spin Tensor

3 Massless Case

- A Gauge Invariance?
- Wigner Translations
- Physical Meaning of Wigner Translations

Conclusions

Michael Stone (ICMT Illinois)

Conclusions

- For massive particles, the Berry-phase equations of motion for relativistic spinning particles are the 3-dimensional reduction of 3+1 Lorentz covariant equations
- The Berry phase equations of motion for massless particles are not the $m \to 0$ limit of the massive-particle equations
- The Berry phase equations of motion for massless particles are not the 3-dimensional reduction of covariant equations
- The lack of covariance arises because the position ascribed to a massless particle is the lab-frame centroid, and is frame-dependent