
Toric-code model – Z2 topological order, Z2 gauge theory
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• The Hamiltonian to enforce the dancing rules:
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• Ground state wave function Φ(X ) = const.
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Stable ground state degeneracy and topo. order

• The hamiltonian is a sum of commuting operators
[Fp,Fp� ] = 0, [QI,QI� ] = 0, [Fp,QI] = 0. F 2

p = Q2
I = 1

• Ground state |Ψgrnd�: Fp|Ψgrnd� = QI|Ψgrnd� = |Ψgrnd� ,
Egrnd = −2UNcell − gNcell

• Quasiparticle excitation energy gap
ΔQ
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p = 2g
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Ground state degeneracy

• Identities
�

IQI = 1,
�

p Fp = 1.

• Number of independent quantum
numbers Fp = ±1, QI = ±1 on torus: Nlabel = 22Ncell2Ncell/4
Number of states on torus: Nlabel = 22Ncell2Ncell

• H is a function of Fp,QI. The degeneracy of any eigenstates is 4.

• On genus g surface, ground state degeneracy Dg = 4g

• The above degenerate ground states form a “code”, which has a
large “code distance” of order L (the linear size of the system).
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Stable gapped ground state → gapped quantum phase
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- Second-order transition point = gapless state
- First-order transition point = unstable gapped state

→ gapped quantum phase = stable gapped ground state

• Stable ground state degeneracy → Gapped quantum phase

However, for a long time, we thought that
• without symmetry, the stable ground state degeneracy always = 1
• with symmetry, the stable ground state degeneracy �= 1,

→ symmetry breaking = emergence of ground state degeneracy
which is stable against any perturbation that repect the symmetry.
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Stable gapped ground state → gapped quantum phase

EE

ε

Δ
Δ

g g

E E

g g

- Second-order transition point = gapless state
- First-order transition point = unstable gapped state

→ gapped quantum phase = stable gapped ground state

• Stable ground state degeneracy → Gapped quantum phase

However, for a long time, we thought that
• without symmetry, the stable ground state degeneracy always = 1
• with symmetry, the stable ground state degeneracy �= 1,

→ symmetry breaking = emergence of ground state degeneracy
which is stable against any perturbation that repect the symmetry.

• The above topology-dependent ground state degeneracy Dg ,
is stable against any perturbations:
→ a new kind of order topo. order
Wen 89; Wen-Niu 90 Deg.=D Deg.=D1 2Deg.=1

g=0

g=1

g=2
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Double-semion theory

Dancing rules:

Φstr

� �
= Φstr

� �
, Φstr

� �
= −Φstr

� �

• The Hamiltonian to enforce the dancing rules:
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• Ground state wave function Φ(X ) = (−)Xc , where Xc is the
number of loops in the string configuration X .
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More general patterns of long-range entanglement

Generslize the Z2/double-semion dancing rule:

Φstr

� �
= Φstr

� �
, Φstr

� �
= ±Φstr

� �

Graphic state:
• More general wave functions are defined
on graphs, with N + 1 states on links
and Nv = N ij

k states on vertices:
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More general local rule: F-move Levin-Wen, 2005; Chen-Gu-Wen, 2010
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The matrix F ijk
l → (F ijk

l )mαβ
nχδ = local unitary transformation
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Consistent conditions for F ijk ;mαβ
l ;nχδ : the pentagon identity
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The two paths should lead to the same LU trans.:�

t,η,ϕ,κ

F ijk;mαβ
n;tηϕ F itl ;nϕχ

p;sκγ F jkl ;tηκ
s;qδφ =

�

�

Fmkl ;nβχ
p;qδ� F ijq;mα�
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Such a set of non-linear algebraic equations is the famous
pentagon identity.

Thier solution N ij
k ,F

ijk;mαβ
l ;nχδ → Unitary fusion category (UFC)

→ string-net states
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A complete characterization of 2+1D topological order

• Both Z2 topological order and double-semion topological order
have the same degeneracy 4g on genus g surfaces.

Do they have the same topological order and belong to the
same phase?
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A complete characterization of 2+1D topological order

• Both Z2 topological order and double-semion topological order
have the same degeneracy 4g on genus g surfaces.

Do they have the same topological order and belong to the
same phase?

• Non-Abelian geometric phases Wilczek-Zee 84 of the degenerate
ground state by deforming the torus: (1) |Ψα� → |Ψ�

α� = Tαβ |Ψβ�
T̂ :

(2) 90◦ rotation Ŝ : |Ψα� → |Ψ�
α� = Sαβ |Ψβ�

• T̂ , Ŝ generate the MCG SL(2,Z) of torus
• Tαβ , Sαβ , c → complete characterization
of topological order
- Dg=1 → number quasiparticle types
- Eigenvalues of Tαβ → quasiparticle

fractional statistics
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Measure topo. order: Universal wavefunction overlap

• Consider the ground states |Ψα� on torus T 2, and
two maps, Ŝ = 90◦ rotation and T̂ = Dehn twist.
The non-Abelian geometric phases S ,T via overlap

Sαβe
−fSL

2+o(L−1) = �Ψα|Ŝ |Ψβ�
Tαβe

−fT L
2+o(L−1) = �Ψα|T̂ |Ψβ�

TS
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Measure topo. order: Universal wavefunction overlap

• Consider the ground states |Ψα� on torus T 2, and
two maps, Ŝ = 90◦ rotation and T̂ = Dehn twist.
The non-Abelian geometric phases S ,T via overlap

Sαβe
−fSL

2+o(L−1) = �Ψα|Ŝ |Ψβ�
Tαβe

−fT L
2+o(L−1) = �Ψα|T̂ |Ψβ�

TS

• For the first topo. order:
Ψ1( ) = g string-length

Ψ2( ) = (−)Wxg str-len

Ψ3( ) = (−)Wy g str-len

Ψ4( ) = (−)Wx+Wy g str-len
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Measure topo. order: Universal wavefunction overlap

• Consider the ground states |Ψα� on torus T 2, and
two maps, Ŝ = 90◦ rotation and T̂ = Dehn twist.
The non-Abelian geometric phases S ,T via overlap

Sαβe
−fSL

2+o(L−1) = �Ψα|Ŝ |Ψβ�
Tαβe

−fT L
2+o(L−1) = �Ψα|T̂ |Ψβ�

TS

• For the first topo. order:
Ψ1( ) = g string-length

Ψ2( ) = (−)Wxg str-len

Ψ3( ) = (−)Wy g str-len

Ψ4( ) = (−)Wx+Wy g str-len

• g < 0.8 small-loop phase
|Ψα� are the same state

• g > 0.8 large-loop phase
|Ψα� are four diff. states

g
g=0.802

(a) (b)

(c)
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Measure topo. order: Universal wavefunction overlap

• Consider the ground states |Ψα� on torus T 2, and
two maps, Ŝ = 90◦ rotation and T̂ = Dehn twist.
The non-Abelian geometric phases S ,T via overlap

Sαβe
−fSL

2+o(L−1) = �Ψα|Ŝ |Ψβ�
Tαβe

−fT L
2+o(L−1) = �Ψα|T̂ |Ψβ�

TS

• For the first topo. order:
Ψ1( ) = g string-length

Ψ2( ) = (−)Wxg str-len

Ψ3( ) = (−)Wy g str-len

Ψ4( ) = (−)Wx+Wy g str-len

• g < 0.8 small-loop phase
|Ψα� are the same state

• g > 0.8 large-loop phase
|Ψα� are four diff. states

g
g=0.802

(a) (b)

(c)

• For the second topo. order: S =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1


 ,T =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0


 .
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Local and topological quasiparticle excitations

In a system: H =
�

�x H�x

• a particle-like excitation:
energy density = �Ψexc |H�x |Ψexc�

ground state
excitation

engergy density
engergy density  

|Ψexc� is the gapped ground state of H + δHtrap(�x).

• Local quasiparticle excitation: |Ψexc� = Ô(�x)|Ψgrnd�
• Topological quasiparticle excitations |Ψexc� �= Ô(�x)|Ψgrnd� for any
local operators Ô(�x)

• Topological quasiparticle types:
if |Ψ�

exc� = Ô(�x)|Ψexc�, then |Ψ�
exc� and |Ψexc� belong to the same

type.

Number of topological quasiparticle types is an important
topological invariant that characterizes the topological order.

Only topological quasiparticles can carry fractional statistics and
fractional quantum numbers.
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The string operators in the Z2 topologically ordered state:
the creation operator of topological quasiparticle

• Toric code model:
H = −U

�
IQI − g

�
p Fp

QI =
�

legs of I σ
z
i ,

Fp =
�

edges of p σ
x
i

• Topological excitations:
QI = 1 → QI = −1
Fp = 1 → Fp = −1

σ

σ
σ

σ
x

x

xσ
z

z

z
σ i

p

I

• Type-I string operator WI =
�

string σ
x
i

• Type-II string operator WII =
�

string* σ
z
i

• Type-III string op. WIII =
�

string σ
x
i

�
legs σ

z
i

• [H,W closed
I ] = [H,W closed

II ] = [H,W closed
III ] = 0.

W closed
I |Ψgrnd� = W closed

II |Ψgrnd� = W closed
III |Ψgrnd� = |Ψgrnd�

• Fp: closed type-I string opertors. QI: closed type-II string opertors.
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The string operators in the Z2 topologically ordered state:
the creation operator of topological quasiparticle

• Toric code model:
H = −U

�
IQI − g

�
p Fp

QI =
�

legs of I σ
z
i ,

Fp =
�

edges of p σ
x
i

• Topological excitations:
QI = 1 → QI = −1
Fp = 1 → Fp = −1

σ

σ
σ

σ
x

x

xσ
z

z

z
σ i

p

I

• Type-I string operator WI =
�

string σ
x
i → e-type. e × e = 1

• Type-II string operator WII =
�

string* σ
z
i → m-type. m ×m = 1

• Type-III string op. WIII =
�

string σ
x
i

�
legs σ

z
i → �-type = e ×m

• [H,W closed
I ] = [H,W closed

II ] = [H,W closed
III ] = 0.

W closed
I |Ψgrnd� = W closed

II |Ψgrnd� = W closed
III |Ψgrnd� = |Ψgrnd�

• Fp: closed type-I string opertors. QI: closed type-II string opertors.

• Open string operators create topological excitations.
Open string operators are hopping operators of topo. excitations
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Emergence of fractional spin/statistics

• Why electron carry spin-1/2 and Fermi statistics?
• Ends of strings (type-I) are point-like excitations,
which can carry spin-1/2 and Fermi statistics?
Fidkowski-Freedman-Nayak-Walker-Wang 06

• Φstr

� �
= 1 string liquid Φstr

� �
= Φstr

� �

360◦ rotation: → and = → : R360◦ =

�
0 1
1 0

�

+ has a spin 0 mod 1. − has a spin 1/2 mod 1.

• Φstr

� �
= (−)# of loops string liquid Φstr

� �
= −Φstr

� �

360◦ rotation: → and = − → − : R360◦ =

�
0 −1
1 0

�

+ i has a spin −1/4 mod 1. − i has a spin 1/4 mod 1.
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Spin-statistics theorem

(a) (b) (c) (d) (e)

• (a) → (b) = exchange two string-ends.

• (d) → (e) = 360◦ rotation of a string-end.

• Amplitude (a) = Amplitude (e)

• Exchange two string-ends plus a 360◦ rotation of one of the
string-end generate no phase.

→ Spin-statistics theorem
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Statistics of ends of strings

• The statistics is determined by particle hopping operators Levin-Wen 03:

1
2

3

4
c

d

a
b

b

c

a d

a d

b

a d

c

b

c

tbd tcb tba

tcbtba tbd

tcb

tba

tbd

• An open string operator is a hopping operator of the ‘ends’.
The algebra of the open string operator determine the statistics.

• For type-I string: tba = σx
1 , tcb = σx

3 , tbd = σx
2

We find tbd tcbtba = tbatcbtbd
The ends of type-I string are bosons

• For type-III strings: tba = σx
1 , tcb = σx

3σ
z
4 , tbd = σx

2σ
z
3

We find tbd tcbtba = −tbatcbtbd
The ends of type-III strings are fermions
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