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IQHE and FQHE

The Integer Quantum Hall Effect can essentially be understood in
terms of single particle physics and the Pauli principle for the
electrons. In a magnetic field B there is a maximal number, B

2π , of
fermions per unit area that can be accommodated in a given Landau
level, corresponding to a filling factor 1.

In the Fractional Quantum Hall Effect, on the other hand, the
correlations induced by strong repulsive interactions are essential and
reduce the particle density in the ground state. The filling factor(s) in
the state(s) introduced by Laughlin is 1/3 (more generally 1/`).

This talk concerns estimates for the 1-partice density, and also some
higher marginals of the N -particle density, in correlated many-body
states in the lowest Landau level (LLL), related to the Laughlin state.
The results apply also to bosons, that may show features of the FQHE
under rapid rotation.

Upper bounds on the density are a manifestation of the
incompressibility of the quantum fluid.
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Landau levels

Magnetic Hamiltonian:

H = −1
2 (∇⊥ + iA(r))2

with A(r) = B
2 (−y, x). Choose units so that B = 2. (For rotating

systems B = 2Ω.)

Complex coordinates: z = x+ iy, z̄ = x− iy, ∂ = d
dz , ∂̄ = d

dz̄ .

We can write
H = a†a+ 1

2

with
a =

(
∂̄ + 1

2z
)
, a† =

(
−∂ + 1

2 z̄
)
, [a, a†] = 1.

The Spectrum of H is εn = 2(n+ 1
2), n = 0, 1, 2, . . . .
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H commutes with another set of creation and annihilation operators

b = (∂ + 1
2 z̄) and b† =

(
−∂̄ + 1

2z
)

and hence also with the angular momentum operator

L = b†b− a†a = z∂ − z̄∂̄.

The joint eigenfunctions of H and L have the form

ψn,l(z, z̄) = Pn,l(z, z̄)e
−|z|2/2

with associated Laguerre polynomials Pn,l(z, z̄).

The LLL, characterized by aψ = (∂̄ + 1
2z)ψ = 0, is generated by

ψ0,l(z, z̄) = (πl!)−1/2 zle−|z|
2/2.
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Maximum density droplet

The density |ψ0,l(z, z̄)|2 is concentrated around the maximum at radius

rl =
√
l.

Thus, if l� 1, then l is the number of orthonormal states whose wave
functions can be accommodated within a disc of area πr2

l = πl, so the
density of states per unit area in the LLL is π−1. The same holds for
the higher Landau levels.

The “Maximum density droplet” (MDD) in the LLL is the Slater
determinant

ΨMDD = (N !)−1/2ψ0,0 ∧ · · · ∧ ψ0,N−1

The 1-particle density
∑

l |ψ0,l|2 is essentially π−1 up to radius
√
N ,

i.e., the filling factor is 1.
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The Laughlin wave function(s)

The wave function of the MDD is, apart from the gaussian factor, a
Vandermonde determinant and can be written as

ΨMDD = (N !)−1/2
∏
i<j

(zi − zj)e−
∑N

i=1 |zi|2/2.

The Laughlin wave function(s), on the other hand, have the form

Ψ
(`)
Laugh = CN,`

∏
i<j

(zi − zj)`e−
∑N

i=1 |zi|2/2

with ` odd ≥ 3 and CN,` a normalization constant. For Bosons ` is even
and ≥ 2.

In his 1983 paper Laughlin claims that the 1-particle density of Ψ
(`)
Laugh

within its support is close to (`π)−1.
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Methaphoric picture; plasma analogy

Methaphoric picture of the N -particle density (not due to Laughlin!):

The particles “move” in a correlated way, as tightly packed as the
factors (zi − zj)` allow, like huddling emperor penguins during an
Antarctic winter. Each “penguin” claims on the average an area of
radius

√
`.
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Laughlin’s argument for the density (`π)−1 is more mathematical. It is
based on the “plasma analogy”:

The N -particle density |Ψ(`)
Laugh|

2 can be interpreted as the
Boltzmann-Gibbs factor at temperature T = N−1 of classical 2D
jellium, i.e., a 2D Coulomb gas in a uniform neutralizing background. A
mean field approximation leads to the claimed density.

Numerical calculations (O. Ciftja) show, however, that the density may
be considerably larger than (`π)−1 close to the edge. The result can
thus only hold in a suitable weak sense in the limit N →∞.
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A proof of Laughlin’s claim amounts to a rigorous study of the mean
field limit of the jellium model, including error estimates. More
generally, we consider Laughlin’s “quasi hole” states of the form

Ψ
(`,m)
qh = Cm

N∏
i=1

zmi Ψ
(`)
Laugh

where m may depend on N .

We denote (z1, . . . , zN ) by Z for short and consider the scaled N
particle probability density (normalized to 1)

µ(N)(Z) = NN
∣∣∣Ψ(`,m)

qh (
√
NZ)

∣∣∣2 .
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The density as a Boltzmann-Gibbs factor

We can write

µ(N)(Z) = Z−1
N exp

 N∑
j=1

(
−N |zj |2 + 2m log |zj |

)
+ 2`

∑
i<j

log |zi − zj |


= Z−1

N exp

(
− 1

T
HN (Z)

)
,

with T = N−1 and

HN (Z) =

N∑
j=1

(
|zj |2 −

2m

N
log |zj |

)
− 2`

N

∑
i<j

log |zi − zj |.
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Mean field limit

The Hamiltonian HN (Z) defines a classical 2D Coulomb gas
(‘plasma’) in a uniform background of opposite charge and a point
charge (2m/N) at the origin, corresponding respectively to the |zi|2
and the −2m

N log |zj | terms.

The probability measure µ(N)(Z) minimizes the free energy functional

F(µ) =

∫
HN (Z)µ(Z) + T

∫
µ(Z) logµ(Z)

for this Hamiltonian at T = N−1.

The N →∞ limit is in this interpretation a mean field limit where at the
same time T → 0. It is thus not unreasonable to expect that for large
N , in a suitable sense

µ(N) ≈ ρ⊗N

with a one-particle density ρ minimizing a mean field free energy
functional.
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Mean field limit (cont.)

The mean field free energy functional is defined as

EN [ρ] =

∫
R2

W ρ− `
∫ ∫

ρ(z) log |z − z′|ρ(z′) +N−1

∫
R2

ρ log ρ

with
W (z) = |z|2 − 2

m

N
log |z|.

It has a minimizer ρN among probability measures on R2 and this
minimizer should be a good approximation for the scaled 1-particle
probability density of the trial wave function, i.e.,

µ
(1)
N (z) =

∫
R2(N−1)

µ(N)(z, z2, . . . , zN )d2z2 . . . d
2zN .
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Properties of the Mean Field Density

The picture of the 1-particle density arises from asymptotic formulas
for the mean-field density: If m . N2, then ρN is well approximated by
a density ρ̂N that minimizes the mean field functional without the
entropy term.

The variational equation satisfied by this density is:

|z|2 − 2(m/N) log |z| − 2`ρ ∗ log |z| − C ≥ 0

with “=” where ρ > 0 and “>” where ρ = 0.

Applying the Laplacian gives

1− π(m/N)δ(z)− `π ρ(z) = 0

where ρ > 0. Hence ρ takes the constant value (`π)−1 on its support.
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Using the radial symmetry and the maximum principle for the
electrostatic potential one deduces that the support of ρ̂N is an
annulus with inner and outer radia

R− = (m/N)1/2 and R+ = (2 +m/N)1/2

and is zero otherwise.

For m & N2 the entropy term dominates the interaction term∫ ∫
ρ(z) log |z − z′|ρ(z′).

The density is then well approximated by a gaussian

ρth(z) ∼ |z|2m exp(−N |z|2)

that in the radial variable is centered around
√
m/N .
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General states in the Laughlin phase

Consider now general states in the Laughlin phase of the form

Ψ(z1, . . . , zN ) = φ(z1, . . . , zN )
∏
i<j

(zi − zj)`e−
∑N

j=1 |zj |2/2

with ` even ≥ 2 for bosons, or ` odd ≥ 3 for fermions, and φ(z1, . . . , zN )
a symmetric holomorphic function.
These states constitute the kernel ker IN of

IN =
∑

i<jδ(zi − zj)

that is well defined (even a bounded operator) in the LLL. In fact,
”δ(zi − zj)” is equivalent to

(δijϕ)(zi, zj) =
1

2π
ϕ
(

1
2(zi + zj),

1
2(zi + zj)

)
.

For other repulsive potentials peaked at the origin, e.g. |zi − zj |−1, the
interaction is not zero, but suppressed by the (zi − zj)` factors.
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Define as before

µ(N)(Z) = NN |Ψ(
√
NZ)|2,

and the n-marginal

µ(n)(z1, . . . , zn) =

∫
CN−n

µ(N)(z1, . . . , zn; zn+1, . . . , zN )dzn+1 · · · dzN .

We would like to prove that in a suitable sense, for N →∞ but n� N ,

µ(n) ≈ (µ(1))⊗n

and that the density µ(1) satisfies the “incompressibility bound”

µ(1)(z) ≤ 1

`π
.
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Comparison with ‘bathtub energy’

An “incompressibility bound” leads to a lower bound to the potential
energy (and hence to the ground state energy in the Laughlin phase!)
in an external potential, ∫

V (z)µ(1)(z)dz,

in terms of the ‘bathtub energy’

Ebt(V ) = inf

{∫
V (z)ρ(z)dz : 0 ≤ ρ ≤ (`π)−1,

∫
ρ = 1

}
.

The ‘bathtub minimizer’ is

ρbt(z) =

{
(`π)−1 if V (z) ≤ λ
0 if V (z) > λ
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We have proved that the potential energy is, indeed, bounded below by
this bathtub energy, with (`π)−1 as bound on the dentisty, in the limit
N →∞ if φ has the special form

N∏
j=1

f1(zj)
∏

(i,j)∈{1,...,N}

f2(zi, zj) . . .
∏

(i1,...,in)∈{1,...,N}

fn(zi1 , . . . , zin).

with fixed n (or n not growing too fast with N ).
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Consider the special case

N∏
j=1

f1(zj)
∏

(i,j)∈{1,...,N}

f2(zi, zj).

The proof has two parts:
Comparison of the free energy with the energy defined by the
functional (MF energy functional without entropy term)

Ê [ρ] =

∫
R2

(
|z|2 − 2

N
log |g1(z)|

)
ρ(z)dz

+

∫
R4

ρ(z)
(
− ` log |z − z′| − log |g2(z, z′)|

)
ρ(z′)dzdz′

where g1(z) = f1(
√
Nz), g2(z, z′) = f2(

√
Nz,
√
Nz′).

Bound on the density of the minimizer of the MF functional.
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Bound on the MF density

The variational equation for the modified MF functional is

|z|2 − 2

N
log |g1(z)| − 2

∫
log |g2(z, z′)|ρ(z′)dz′ − 2`ρ ∗ log |z| − C = 0

on the support of ρ.

1− (1/2N)∆ log |g1(z)| − 1
2

∫
∆z log |g2(z, z′|)ρ(z′)dz′ − `π ρ(z) = 0.

But ∆ log |g1(z)| ≥ 0 and ∆z log |g2(z, z′| ≥ 0, so

ρ(z) ≤ 1

`π
.
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Justification of the mean field approximation

The first step, however, i.e., the justification of the mean field
approximation, is less simple.

Note that − log |g2(z, z′)| can be much more intricate than − log |z − z′|
and is not of positive type in general so previous arguments for the
mean field limit do not apply.

Instead we use a theorem of Diaconis and Freedman. This is a
quantitative version of the Hewitt-Savage theorem.

The latter says essentially that the n-th marginals of a symmetric
probability measure on a SN can, for N →∞, be approximated by a
convex combination of pure tensor products, ρ⊗n.

The application to the problem at hand requires some regularizations
and is not entirely simple, but the result is the expected lower bound in
terms of the bathtub energy with density (`π)−1.
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General correlation factors

The approach via the Diaconis Freedman Theorem and mean field
limits does not work for functions of the general form

Ψ(z1, . . . , zN ) = φ(z1, . . . , zN )
∏
i<j

(zi − zj)`e−
∑N

j=1 |zj |2/2

Using a different method we can, however, prove:

Theorem
For V smooth and tending to∞ for |z| → ∞∫

V (z)µ(1)(z)dz ≥ Ebt(V )(1− o(1))

where

Ebt(V ) = inf

{∫
V (z)ρ(z)dz : 0 ≤ ρ ≤ 4(`π)−1,

∫
ρ = 1

}
.
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Lieb’s Lemma

A crucial ingredient is a lemma, that is a slight generalization of an
unpublished remark of Elliott Lieb:

Lemma

For every minimizing configuration (z0
1 , . . . , z

0
N ) of the Hamiltonian

function

HN (Z) =

N∑
j=1

|zj |2 −
2`

N

∑
i<j

log |zi − zj | −
2

N
log |φ(

√
NZ)|

we have
inf
i 6=j
|z0
i − z0

j | ≥ (`/N)1/2 .
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Corollary

Let (z0
1 , . . . , z

0
N ) be a minimizing configuration and

ρ0(z) =
1

N

N∑
j=1

δ(z − z0
j )

the corresponding 1-particle density. There exists a ρ̃ ∈ L∞(R2) with∫
R2

ρ̃ = 1, 0 ≤ ρ̃0 ≤
4

`π
(1−N−1)

such that for any smooth V∣∣∣∣∫
R2

(ρ0 − ρ̃0)V

∣∣∣∣ ≤ CN−1/2.

Jakob Yngvason (Uni Vienna) Incompressibility Estimates 25 / 28



The proof of the lemma relies on the subharmonicity in each variable
of the function

F (z1, . . . , zN ) =
2`

N

∑
i<j

log |zi − zj |+
2

N
log |φ(

√
NZ)|,

i.e.,

∆jF (z1, . . . , zN ) ≥ 0

for all j.

The corollary is obtained by smearing the measure ρ0 over a ball of
radius 1

2(`/N)1/2.
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The proof of the theorem is based on upper and lower bounds to the
free energy corresponding to a modified Hamiltonian function

HεN (Z) =

N∑
j=1

(
|zj |2+εV (zi)

)
− F (z1, . . . zN ).

with N−1 � ε� N−1/2. The subharmonicity of F is again essential.

For the estimate of the entropy term, positivity of the relative entropy of
the minimizer of the free energy w.r.t. a trial density derived by
smearing the minimizing configuration of the modified Hamiltonian is
used.
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Conclusions

Using a notion of incompressibility based on a lower bound to the
potential energy in terms of a ‘bath tub’ energy, we have shown that
this property holds for a large class of states derived from the Laughlin
state(s).

Open problem:

Show that for general external potentials V the variational problem of
minimizing the energy within the constrained class of functions
Ker(IN ) is, in the limit N →∞, solved by wave functions of the form

N∏
j=1

f1(zj)Ψ
(`)
Laugh(z1, . . . , zN ).

with ` = 2 for bosons and ` = 1 for fermions. For sufficiently strong
Coulomb repulsion ` = 3 should be favored for fermions.
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