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Motivation: Driven open many-body dynamics

• experimental many-body systems without particle number conservation

• polar molecules (Jun Ye Labs)

• open system Dicke models in cavity (Esslinger)/ circuit (Schoelkopf, 
Wallraff) QED, nanomechanical systems (Painter, Lehnert, Aspelmeyer)

• other platforms (light-matter): 

➡ polar molecules

➡ photon BECs

➡ trapped ions

• exciton-polariton systems in 
semiconductor quantum wells 5

interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.

• driven-open Dicke models2

the organized phase as a supersolid27–29 similar to those
proposed for two-component systems30.

THEORETICAL DESCRIPTION AND THE
DICKE MODEL

Let us first consider a single two-level atom of mass m
interacting with a single cavity mode and the standing-
wave pump field. The Hamiltonian then reads31 in a
frame rotating with the pump laser frequency

Ĥ
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â†â. (1)

Here, the excited atomic state is adiabatically eliminated
which is justified for large detuning�

a

= !
p

�!
a

between
the pump laser frequency !

p

and the atomic transition
frequency !

a

. The first term describes the kinetic en-
ergy of the atom with momentum operators p̂

x,z

. The
pump laser creates a standing-wave potential of depth
V
0

= ~⌦2

p

/�
a

along the z-axis, where ⌦
p

denotes the
maximum pump Rabi frequency, and ~ the Planck con-
stant. Scattering between the pump field and the cav-
ity mode, which is oriented along x, induces a lattice
potential which dynamically depends on the scattering
rate and the relative phase between the pump field and
the cavity field. This phase is restricted to the values
0 or ⇡, for which the scattering induced light potential
has a �

p

/
p
2 periodicity along the x-z direction, with

�
p

= 2⇡/k denoting the pump wavelength (see Fig. 1c).
The scattering rate is determined by the two-photon Rabi
frequency ⌘ = g

0

⌦
p

/�
a

, with g
0

being the atom-cavity
coupling strength. The last term describes the cavity
field, with photon creation and annihilation operators â†
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For a condensate of N atoms, the process of

self-organization can be captured by a mean-field
description13. It assumes that all atoms occupy a sin-
gle quantum state characterized by the wave function
 , which is normalized to the atom number N . The
light-atom interaction can now be described by a dy-
namic light potential32 felt by all atoms. Since the
timescale of atomic dynamics in the motional degree
of freedom is much larger than the inverse of the cav-
ity field decay rate , the coherent cavity field ampli-
tude ↵ adiabatically follows the atomic density distri-
bution according to ↵ = ⌘⇥/(�
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B + i). The
order parameter describing self-organization is given by
⇥ = h | cos(kx) cos(kz)| i which measures the localiza-
tion of the atoms on either the even (⇥ > 0) or the odd
(⇥ < 0) sublattice of the underlying checkerboard pat-
tern defined by cos(kx) cos(kz) = ±1 (see Fig. 1c). The
sign of the order parameter determines which of the two
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FIG. 1. Concept of the experiment. A Bose-Einstein conden-
sate which is placed inside an optical cavity is driven by a
standing-wave pump laser oriented along the vertical z-axis.
The frequency of the pump laser is far red-detuned with re-
spect to the atomic transition line but close detuned to a par-
ticular cavity mode. Correspondingly, the atoms coherently
scatter pump light into the cavity mode with a phase depend-
ing on their position within the combined pump–cavity mode
profile. a, For a homogeneous atomic density distribution
along the cavity axis, the build-up of a coherent cavity field
is suppressed due to destructive interference of the individual
scatterers. b, Above a critical pump power Pcr the atoms
self-organize onto either the even or odd sites of a checker-
board pattern (c) thereby maximizing cooperative scattering
into the cavity. This dynamical quantum phase transition is
triggered by quantum fluctuations in the condensate density.
It is accompanied by spontaneous symmetry breaking both in
the atomic density and the relative phase between pump field
and cavity field. c, Geometry of the checkerboard pattern.
The intensity maxima of the pump and cavity field are de-
picted by the horizontal and vertical lines, respectively, with
�

p

denoting the pump wavelength.

• experimental systems on the interface of quantum optics and many-body physics

• coupled microcavity arrays
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Ritsch et al., RMP 2013

Koch et al., PRA 2010 
Houck, Türeci, Koch, Nat. Phys. 2012
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Kim et al., Nature 2010; Islam et 
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FIG. 1: Full counting statistics of on- and o↵-resonant Rydberg excitations. a, Schematic representation of the experimental
procedure. The cold rubidium atoms are excited to Rydberg states using two laser beams. The resulting Rydberg excitations are
detected on a channeltron after field ionization, and from the individual counts the histograms and full counting statistics (i.e.,
the moments of the counting distribution) are calculated. b-d, Resonant and o↵-resonant excitation processes for interacting
Rydberg atoms. For resonant excitation, c, the van-der-Waals interaction between the atoms shifts a second excitation out of
resonance, leading to the dipole blockade and the associated blockade sphere. O↵ resonance, interactions between pairs can
either lead to resonant pair excitation, d, or to strong suppression of excitations, b. In e, a plot of the mean number of Rydberg
excitations as a function of detuning reveals the interaction-induced resonances for positive detuning, which shows up as an
asymmetry of the lineshape. Here and throughout the paper we omit the subscript obs indicating the observed quantities (see
Methods). The excitation durations are 1µs (grey symbols, right vertical axis) and 20µs (black symbols, left vertical axis). f-h
The histograms of the counting distributions in the resonant and o↵-resonant regimes reflects the di↵erences in the excitation
process. For positive detuning �/2⇡ = +3.5MHz, h, the histogram exhibits a bimodal structure, whereas on resonance, g, it
has a single peak. For negative detuning (�/2⇡ = �3.5MHz), f, the mean number of excitations is considerably smaller than
in h. The dashed vertical lines indicate the mean number of excitations. The Rabi frequency is 2⇡ ⇥ 400 kHz, the interaction
volume 10�7 cm3 and the density 1.8⇥ 1011 cm�3.

experiment (⌦ ⇡ 2⇡ ⇥ 200 kHz, N
db

⇡ 50) we find ⌦
coll

⇡ 2⇡ ⇥ 1.4MHz and ⌦
off

⇡ 2⇡ ⇥ 10 kHz at a detuning
�/2⇡ = 2MHz, leading to an o↵-resonant excitation timescale of around 100µs (subsequent excitations mediated
by already excited atoms can occur on a shorter timescale). Finally, for a detuning with opposite sign to that of
the van-der-Waals interaction, neither single-particle nor pair excitations are resonant, leading to a strong overall
suppression of the excitation probability (Fig. 1b).

These three excitation regimes are summarized in Fig. 1e, where the mean number of Rydberg excitations is

• driven-dissipative Rydberg systems



Quantum Optics

“Thermodynamic”

Non-Equilibrium Physics with Driven Open Quantum Systems (DOQS)
• Interdisciplinary research area: physics at various length scales

Microscopic

Many-body physics Statistical mechanics 
coherent and driven-
dissipative dynamics 

on equal footing
continuum of spatial 
degrees of freedom

Long wavelength

Efficient theoretical tools ?

1 2

18 T. Gasenzer

Fig. 7. (Color online) Classical vs. quantum
mechanics. The classical path for given bound-
ary conditions at tini and/or tfin is shown as
thick (red) line. The thin (black) paths would
require, e.g., different initial values for ϕ, ϕ̇.
In the microscopic world, the thin (black)
paths add constructively to the path integral
if their action S[ϕ] deviates less than h̄ from
the extremal value corresponding to the classi-
cal path. Also tunneling processes as indicated
by the thick (yellow) line would add construc-
tively to the integral.

which leads to the Euler-Lagrange, i.e., the sought dynamic equation for ϕ.4 For instance, given
particular initial values for the position and velocity of the child on the slide shown in Fig. 7
at t = tini, this equation has the thick solid (red) path as solution. Different paths require in
general different initial conditions to be imposed.

On scales where quantum effects become relevant, the real world is somewhat more intricate.
Fluctuations around the classical path as depicted by the thin (black) solid lines in Fig. 7 imply
the action S[ϕ] to deviate from its classical extremal value, and, only if this deviation is larger
than h̄, the phase factor exp{iS[ϕ]/h̄} suppresses the contributions of such paths to the integral
through destructive interference. Qualitatively new effects are in order like the “quantum child”
which can tunnel through the edge of the slide as along the (yellow) path in Fig. 7.

We generalise this path-integral formulation to QFT, where the coordinates ϕ become fields
ϕ(x) defined over time and space. Moreover, we introduce external classical, i.e., non-fluctuating
sources J(x) to turn the path integral into a generating functional for correlation functions,
similarly as in the (grand) canonical partition function in equilibrium physics. This generating
functional reads

Z[J ] =

∫
Dϕ ei(S[ϕ]+

R
Jϕ) (45)

Here and in the following we shall use, if not explicitly stated otherwise, natural units, with
h̄ = 1. We use the short-hand notation

∫
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dx0

∫
ddxJ(x)ϕ(x),

C = [tini, tfin]. For instance, it allows the field expectation value φ = ⟨Φ⟩ to be written as
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δJ(x)

∣∣∣∣
J=0

= Z−1

∫
Dϕϕ(x) eiS[ϕ], (46)

where W [J ] = −i lnZ[J ] is the Schwinger functional. We introduce the quantum effective action
Γ [φ] by demanding that the full quantum dynamics of the field expectation value φ is given by

4 In deriving the Euler-Lagrange equation the variation of the coordinate ϕ is usually taken to vanish
at the boundaries of the time interval [tini, tfin]. This procedure applies to systems with differential
evolution equations of second order in time. For dynamic equations of first order in time, as the GPE,
care needs to be taken when using the path integral for initial value problems, see, e.g., Ref. [136]

Novel universal phenomena ?

Experimental platforms ?

perform the transition form micro-to 
macrophysics:

quantum field theory out of equilibrium

cold atoms, light-driven semiconductors, microcavity 
arrays, trapped ions ...

• Questions and Challenges:

gc

?



Non-equilibrium dynamical criticality Phase structure of driven open 
quantum systems

Order by DissipationInteracting open system dynamics

• Questions: 

• universality out of equilibrium?

• relation to equilibrium dynamical criticality?

• classical vs. quantum?

• Questions: 

• fate of algebraic order & superfluidity?

• fate of Kosterlitz-Thouless transition?

• new phase transitions w/o equilibrium counterpart?

• Questions: 

• universal features in time evolution?

• identification of characteristic dynamical regimes?

• short vs. long time behavior?

• Questions: 

• efficient cooling protocols?

• topological order out of equilibrium?

• potential for quantum information applications?

Overview: Non-equilibrium Phenomena in DOQS @ Cologne



Non-equilibrium dynamical criticality Phase structure of driven open 
quantum systems

Overview: Non-equilibrium Phenomena in DOQS

• Questions: 

• universality out of equilibrium?

• relation to equilibrium dynamical criticality?

• classical vs. quantum?

• Questions: 

• fate of algebraic order & superfluidity?

• fate of Kosterlitz-Thouless transition?

• new phase transitions w/o equilibrium counterpart?

How much “quantum” remains at large distances?

How much “non-equilibrium” remains at large distances?
• guiding 

questions:

Driven Markovian Quantum Criticality 
in Microcavity Arrays

New Absorbing State Phase Transition 
in Driven Rydberg Ensembles

J. Marino, SD, PRL (2016) M. Marcuzzi, M. Buchhold, SD, I. Lesanovsky, arxiv (2016)



“What is Non-Equilibrium About It?”
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interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.
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value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
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on the signal and idler modes acquires a long-range co-
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theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
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FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.

An Example: Exciton-Polariton Systems

• phenomenological description: stochastic driven-dissipative Gross-Pitaevskii-Eq
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microscopic derivation and linear fluctuation analysis:                  
Szymanska, Keeling, Littlewood PRL (04, 06); PRB (07)); 
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physics soon exits the regime of weakly interacting bosons that
describes ultracold atoms; second, the lifetime is short enough that
we must confront the role of non-equilibrium physics25. Never-
theless, the principal experimental characteristics expected for BEC
are clearly reported here: condensation into the ground state arising
out of a population at thermal equilibrium; the development of
quantum coherence, indicated by long-range spatial coherence, and
sharpening of the temporal coherence of the emission.

Experimental procedure
The sample we studied consists of a CdTe/CdMgTe microcavity
grown by molecular beam epitaxy. It contains 16 quantum wells,

displaying a vacuum field Rabi splitting of 26meV (ref. 26). The
microcavity was excited by a continuous-wave Ti:sapphire laser,
combined with an acousto-optic modulator (1-ms pulse, 1% duty
cycle) to reduce sample heating. The pulse duration is sufficiently
long (by four orders of magnitude) in comparison with the charac-
teristic times of the system to guarantee a steady-state regime. The
laser beam was carefully shaped into a ‘top hat’ intensity profile
providing a uniform excitation spot of about 35 mm in diameter on
the sample surface, as shown in Fig. 4i. The excitation energy was
1.768 eV, well above the polariton ground state (1.671 eV at cavity
exciton resonance), at the first reflectivity minimum of the Bragg
mirrors, allowing proper coupling to the intra-cavity field. This
ensures that polaritons initially injected in the system are incoherent,
which is a necessary condition for demonstrating BEC. In atomic
BEC or superfluid helium, the temperature is the parameter driving
the phase transition. Here the excitation power, and thus the injected
polariton density, is an easily tunable parameter, and so we chose it as
the experimental control parameter. The large exciton binding
energy in CdTe quantum wells (25meV), combined with the large
number of quantum wells in the microcavity, is crucial in maintain-
ing the strong coupling regime of polaritons at high carrier density.
The far-field polariton emission pattern was measured to probe the
population distribution along the lower polariton branch. The
spatially resolved emission and its coherence properties are accessible
in a real-space imaging set-up combined with an actively stabilized

Figure 1 |Microcavity diagram and energy dispersion. a, A microcavity is a
planar Fabry–Perot resonator with two Bragg mirrors at resonance with
excitons in quantum wells (QW). The exciton is an optically active dipole
that results from the Coulomb interaction between an electron in the
conduction band and a hole in the valence band. In microcavities operating
in the strong coupling regime of the light–matter interaction, 2D excitons
and 2D optical modes give rise to new eigenmodes, called microcavity
polaritons. b, Energy levels as a function of the in-plane wavevector kk in a
CdTe-based microcavity. Interaction between exciton and photon modes,
with parabolic dispersions (dashed curves), gives rise to lower and upper
polariton branches (solid curves) with dispersions featuring an anticrossing
typical of the strong coupling regime. The excitation laser is at high energy
and excites free carrier states of the quantum well. Relaxation towards the
exciton level and the bottom of the lower polariton branch occurs by
acoustic and optical phonon interaction and polariton scattering. The
radiative recombination of polaritons results in the emission of photons that
can be used to probe their properties. Photons emitted at angle v correspond
to polaritons of energy E and in-plane wavevector kk ¼ ðE="cÞsinv:

Figure 2 | Far-field emission measured at 5K for three excitation
intensities. Left panels, 0.55P thr; centre panels, P thr; and right panels,
1.14P thr; where P thr ¼ 1.67 kWcm22 is the threshold power of
condensation. a, Pseudo-3D images of the far-field emission within the
angular cone of^238, with the emission intensity displayed on the vertical axis
(in arbitrary units).With increasing excitation power, a sharp and intensepeak
is formed in the centre of the emission distribution ðvx ¼ vy ¼ 08Þ;
corresponding to the lowest momentum state kk ¼ 0. b, Same data as in a
but resolved in energy. For such a measurement, a slice of the far-field
emission corresponding to vx ¼ 08 is dispersed by a spectrometer and
imaged on a charge-coupled device (CCD) camera. The horizontal axes
display the emission angle (top axis) and the in-plane momentum (bottom
axis); the vertical axis displays the emission energy in a false-colour scale
(different for each panel; the units for the colour scale are number of counts
on the CCD camera, normalized to the integration time and optical density
filters, divided by 1,000 so that 1 corresponds to the level of dark counts:
1,000). Below threshold (left panel), the emission is broadly distributed in
momentum and energy. Above threshold, the emission comes almost
exclusively from the kk ¼ 0 lowest energy state (right panel). A small blue
shift of about 0.5meV, or 2%of the Rabi splitting, is observed for the ground
state, which indicates that the microcavity is still in the strong coupling
regime.
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• Bose condensation seen despite non-equilibrium conditions

Kasprzak et al., Nature 2006

• stochastic driven-dissipative Gross-Pitaevskii-Eq

 Szymanska, Keeling, Littlewood PRL (04, 06); 
PRB (07)); Wouters, Carusotto PRL (07,10)i@t� =


�r2

2m
� µ+ i(�p � �l) + (�� i) |�|2

�
�+ ⇣

Sneak preview

I Key physical features: driven-dissipative stochastic Gross-Pitaevskii Equation

I stochastic PDE with Markovian noise: hx(t, x)i = 0 and

hx(t, x)x⇤(t0 , x

0)i = gd(t � t0)d(x � x

0)

I Bose-Einstein condensation phase transition

I mean-field: neglect noise

I homogeneous condensate f(t, x) = f0

) |f0|2 =
gp � gl

k

for gp > gl

) chemical potential µ = l |f0|2

I 2nd order phase transition

• mean field

• neglect noise

• homogeneous solution �(x, t) = �0

• naively, just as Bose condensation in equilibrium!

• Q: What is “non-equilibrium” about it?

An Example: Exciton-Polariton Systems



 -- Liouvillian operator

dissipative evolution

Lindblad operators

coherent evolution

• Quantum master equation:

( )
bathsystem

@t⇢ = �i[H, ⇢] + 
X
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Li⇢L
†
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†
iLi, ⇢}

Microscopic Description: Quantum Master Equation

• Lindblad form: most general time-local evolution of density matrix

• validity: Born-Markov and rotating wave approximations -> driven systems

⌘ L[⇢]

|g⟩

|e⟩

Γ

• single-body example: driven-dissipative two-level system

coupling to 
radiation field

• simple fact: drive essential to access upper level

• Implications:
• no guarantee for detailed balance
• no obedience of the second law of thermodynamics (state purification)

Li = |gihe| = ��
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Microscopic Description: Many-Body Systems

• generic microscopic many-body model:

@t⇢ = �i[H, ⇢] +D[⇢] ⌘ L[⇢]

• quantum description of XP systems

• long wavelength limit of microcavity arrays: driven 
open Bose-Hubbard model (w/ incoherent pump)

Hartmann et al. 
Koch et al., PRA 2010 

Houck, Türeci, Koch, Nat. Phys. 2012

➡ Methods to efficiently deal with 
these equations are scarce!



• generic microscopic many-body model:

single-, two-, ... body loss

single particle pump

many-body 
system

Theoretical Approach

@t⇢ = �i[H, ⇢] +D[⇢] ⌘ L[⇢]

Many-Body Master Equation Microscopic Markovian 
Dissipative Action

translation 
table

• Many-body problem: evaluation strategy

many-body master equation Keldysh real time functional integral

Opens up toolbox of quantum 
field theory to DOQS

,
• symmetries 
• control of IR fluctuations in 

many-body problem, eg. (F)RG
• flexible choice of degrees of 

freedom
• versatile: bosons, fermions, 

spins

Review: L. Sieberer, M. Buchhold, SD, Keldysh Field Theory 
for Driven Open Quantum Systems, arxiv (2015)

@t⇢ = �i[H, ⇢] +D[⇢] Z =

Z
D(�+,��)e

iSM [�+,��]

M. Maghrebi, A. V. Gorshkov, PRB (2016)



• absence of number conservation

➡ compatible with thermal equilibrium (Caldeira-Leggett Models)

many-body system

single-, two-, ... body loss

single particle pump5

interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.

“What is non-equilibrium about it?”

even in stationary state!

• typical differences to closed equilibrium systems:

• absence of energy conservation

➡ driven system, incompatible with thermal equilibrium 



“What is non-equilibrium about it?”: Absence of energy conservation

• Energy conservation: equilibrium dynamics generated by a time-independent Hamiltonian 

• compact functional formulation of KMS boundary condition 

• implies equilibrium conditions: quantum Fluctuation-Dissipation relations of all orders

• non-equilibrium detector: master equation action violates this symmetry explicitly

• offers a geometric interpretation

➡ formally: symmetry of Keldysh action under
L. Sieberer, A. Chiochetta, U. Tauber, 
A. Gambassi, SD, PRB (2015)

T��±(t,x) = �⇤
±(�t± i�/2,x) �± =

✓
�±
�⇤
±

◆

previously: classical limit; H. K. Janssen 
(1976); C. Aron et al, J Stat. Mech (2011)

S. Jakobs, M. Pletyukhov, H. Schoeller, J. 
Phys. A Math. Theor. (2010).



Geometric Interpretation

Im

Re

• couplings spanning the Keldysh action lie in the complex plane

coherent/ reversible 
dynamics

incoherent/ irrev. 
dynamics

example: two-body processes �

Re�

Im�

elastic two-body collisions

inelastic two-body losses

Z =

Z
D(�+,��)e

i(SH [�+,��]+SD [�+,��])@t⇢ = �i[H, ⇢] +D[⇢]

, SH

, SH , SD

, SD



equilibrium dynamics

Im

Re

non-equilibrium dynamics

Re

Im

Equilibrium vs. Non-Equilibrium Dynamics

• coherent and dissipative dynamics may 
occur simultaneously

• but they are not independent

• coherent and dissipative dynamics do occur 
simultaneously

• they result from different dynamical resources

Review: L. Sieberer, M. Buchhold, SD, Keldysh Field Theory 
for Driven Open Quantum Systems, arxiv (2015)
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➡ what are the physical consequences of the spread in the complex plane?
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interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.

clever workaround: symmetry in decoupled subsystems, Hafezi, Adhikari, Taylor, PRB (2015)



Dynamical Markovian Quantum Criticality

J. Marino, SD, PRL (2016)

Microscopic
Quantum Optics

“Thermodynamic”
Many-body physics

Long wavelength
Statistical mechanics 



Critical Phenomena and Universality 
(Equilibrium)

'



Critical Phenomena and Universality (Equilibrium)

'
at the critical point

• Universality: The art of systematically forgetting about details

Bose-Einstein Condensate planar magnets

⌧ = T�Tc
T ! 0

• The experimental witnesses: Critical exponents, e.g.
correlation length

⇠ ⇠ |⌧ |�⌫ ! 1

• The exponents:

⌫
⌘

“mass/gap exponent”

“anomalous dimension”

nontrivial statement: 
no more independent exponents * 

than these!
* finite T equilibrium

h�⇤(r)�(0)i ⇠ e�r/⇠

rd�2+⌘



'
• The physical picture: universality induced by divergent correlation length

Bose-Einstein Condensate planar magnets

Critical Phenomena and Universality (Equilibrium)

• Universality: The art of systematically forgetting about details

h�⇤(r)�(0)i

r
non-universal short distance universal scaling

⇠ r�2+d�⌘ ⇠ e�r/⇠

scaling cut off by finite 
correlation length

⇠(T � Tc) ⇠(T & Tc)
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• The physical picture: universality induced by divergent correlation length

Bose-Einstein Condensate planar magnets

Critical Phenomena and Universality (Equilibrium)

• Universality: The art of systematically forgetting about details

r

T ! Tc

non-universal short distance universal scaling

⇠ r�2+d�⌘ ⇠ e�r/⇠

scaling cut off by finite 
correlation length

h�⇤(r)�(0)i

⇠(T � Tc) ⇠(T & Tc)
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Wilson-Fisher fixed point

• The description: Renormalization group

Bose-Einstein Condensate planar magnets
other systems...

UV: microscopic physics

IR: long-wavelength 
physics

C
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ai

ni
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crucial difference:

interacting systems = WF fixed point

non-int. systems = Gaussian fixed point 

⌫ = 1/2, ⌘ = 0

⌫, ⌘ non-rational

Critical Phenomena and Universality (Equilibrium)

• Universality: The art of systematically forgetting about details



Universality Classes (Equilibrium)

'
• Universality classes: Memory of symmetries is kept

Bose-Einstein Condensate planar magnets

C
oa

rs
e 

gr
ai

ni
ng

6=
• Symmetries: U(1) ' O(2)

phase rotations in BEC

“O(2) universality class” “Ising universality class”

Z2

trapped ions liquid-gas transition 
in carbon-dioxide

Digital Innsbruck
ion-trap quantum simulator

Blatt group (Innsbruck)
!"#$%

+ + +

complementary to analog QS with ions: 
Schätz, Monroe, Bollinger, Ospelkaus ...

theory: Porras, Cirac (2004), ...
Dienstag, 11. September 2012

'
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Classical vs. Quantum Criticality

• generic quantum phase diagram

g (eg. potential vs. kinetic energy)

T

gc

Ordered,
symmetry 
breaking 

(possibly) ordered, 
no symmetry breaking

Disordered

quantum critical 
region 

• quantum critical scaling for 

T ⌧ ! ⌧ !G

non-gaussianquantum

• double fine tuning, temperature is relevant perturbation to the quantum critical point

�g ! 0 : spectrally critical

T ! 0

quantum critical

statistical fluctuations 
overwrite 
quantum fluctuations



From Micro- to Macrophysics: Functional RG

@k�k =
i

2
Tr

⇣
�(2)
k +Rk

⌘�1
@kRk

�

Wetterich, 93

closed system Keldysh: 
Gasenzer, Pawlowski,PLB 08; 

Berges, Hoffmeister, Nucl. Phys. B, 09

Many-Body Master Equation Keldysh functional 
integral

1-1 
mapping

operator representation functional integral representation

@t⇢ = �i[H, ⇢] +D[⇢] ei�[�] =

Z
D��eiSM [�+��]

1-1 
mapping

Keldysh Functional 
Renormalization Group

functional differential equation rep. 

open system Keldysh review
Sieberer, Buchhold, SD, arxiv (2015)

microphysics macrophysics



A glimpse of the calculation

I Effective system dynamics: trace out baths

I 2nd quantized formalism not adequate to FRG!

I Keldysh functional integral approach

I Powerful field theory tools for
non-equilibrium systems

I FRG: introduce infrared cutoff k,
integrate out fast modes q > k

I Approach to critical point:
follow RG flow for k ! 0

I Critical exponents from
scaling behavior l ⇠ k�h

l

for k ! 0

From Micro- to Macrophysics: Functional RG

second field variation

@k�k =
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2
Tr

⇣
�(2)
k +Rk

⌘�1
@kRk

�

infrared regulator

full effective action

Markovian dissipative 
action

coarse graining in real space = 
integrating out high modes in 

momentum space
mode elimination induces RG flow of 

coupling of effective action

�k=⇤ = S

�k=0 = �

microphysics macrophysics

• how does it work? 
Smooth interpolation 



Driven Classical Criticality 

L. Sieberer, S. Huber, E. Altman, SD, 
PRL 110, 195301 (2013) and PRB 89, 134310 (2014);

U. C. Tauber, SD, PRX 4, 021010 (2014)
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interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.



Classical driven criticality: Schematic RG flow

non-linear initial flow

Im
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K

uu3

• initial values: �k⇡⇤0 ⇡ S

• Flow in the complex plane of couplings 

Re
fixed point

Im

FP action purely 
dissipative

➡ universal decoherence (new independent critical exponent)
➡ asymptotic thermalization
➡ reveals equilibrium vs. non-equilibrium fine structure

• key results (classical): 

linearized IR flow
Re

Im

• universal domain encoding 
universality class

• scaling of running couplings

g = ak⌘a + ibk⌘b

crit. exponent

L. Sieberer, S. Huber, E. 
Altman, SD,  PRL (2013)



• decoherence <=> purely imaginary fixed point action

• global thermal equilibrium is ensured by symmetry: 

equilibrium dynamics
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non-equilibrium dynamics

➡ equilibrium and driven systems are in different universality classes
➡ physical reason: independence of coherent and dissipative dynamics
➡ asymptotic thermalization: all couplings aligned on Im axis

Im

initial flow 

u uIm
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• eigenvalue of flow speed
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infrared flow 
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Universal decoherence, fine structure, and thermalization



Driven Quantum Criticality 

4

Figure 1. Schematics of a coupled array of photonic cavities (represented in
gray). The photons in each cavity are tunnel-coupled to neighboring sites with
amplitude J and decay with rate 0. The cavities are driven with an external
coherent field of strength |�|. This external driving compensates for losses and
ensures a finite stationary photon population.

physics scenario, the bosons here can decay, and under experimentally relevant conditions
!c � J, U, kBT (where T is the temperature and kB the Boltzmann constant), the equilibrium
state of this model is simply the vacuum state. Therefore, in photonic many-body systems we
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the energy of the modes.
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Non-equilibrium analogue of quantum criticality (1D)

• Lindblad Master equation with additional strong quantum diffusion (1D)
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amplitude J and decay with rate 0. The cavities are driven with an external
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D[ĉ`]⇢ +L⇢, (2)
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• possible realization: microcavity arrays
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cf. D. Marcos et al., NJP (2012)
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Non-equilibrium analogue of quantum criticality (1D)

• Lindblad Master equation with additional strong quantum diffusion (1D)
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†(x)ra(x), ⇢}]

• physical interpretation: Dark state number conserving variant: SD et al., Nature Phys. (2008)

many-body system

single-, two-, ... body loss

single particle pump

Z

q
�q[aq ⇢ a

†
q � 1

2{a
†
qaq, ⇢}]

• in Fourier space
�q = �dq

2

q

➡  noiseless “dark” state at q=0
➡  favors accumulation of bosons at q=0 (“BEC”)
➡  competition w/ interactions yields phase transition

dark state



“What is quantum about it?”

T !

PK
(!) ⇠ ! coth

!
2T

• analogy to an equilibrium system: noise level

classical/markovian

quantum/non-markovian

• two regimes

➡  scaling of the noise level
➡  existence of one noiseless mode

!/2T ⌧ 1 : PK(!) ⇡ 2T, PK(t� t0) ⇠ �(t� t0)

!/2T � 1 : PK(!) ⇡ |!|, PK(t� t0) ⇠ (t� t0)�2

bathsystem

Temperature T Temperature T
global equilibrium



• strongly momentum dependent noise level

PK(q)

q

diffusion noise

markovian non-equilibrium: 
weak noise at long wavelength

PK
(!) ⇠ ! coth

!
2T

!

equilibrium: 
weak noise at long timescales

• identical canonical scaling to quantum problem for z = 2 (! ⇠ q2)

• but spatial vs. temporal noise

Non-equilibrium analogue of quantum criticality

T⇤M

⇤G

Ginzburg scale
two-body loss

rescaled Markov noise 
at FP

• non-gaussian critical scaling for ⇤M ⌧ ⇤G

Markov scale⇤G ' 

�d

• anomalous scaling regime: two scales 

integration of one-loop flow 
cf. Chiochetta, Mitra, Gambassi, arxiv (2014)

one-loop perturbative

a⇤ ⇡ 0.3

b⇤ ⇡ 0.2

⇤G

⇤M ' ⇤G

 
�̃⇤ +

b⇤
2+a⇤

2 + b⇤
2+a⇤

! 1
2+a⇤

non-eq variant: cf. 
Dalla Torre et al., Nat 

Phys. (2010) 



• new fixed point with more repulsive directions (fine tuning of loss rate)

• results for critical exponents

thermal-like 
1 repulsive direction

Gaussian
all directions repulsive

quantum-like 
2 repulsive directions

g1

g2

g3

(1) No quantum-classical correspondence

4

Crit. Exps. ⌫ ⌘KR ⌘KI ⌘ZR ⌘ZI ⌘�d ⌘�

DD Quantum 0.405 -0.025 -0.025 0.08 0.04 -0.26 ⇥
DD SC 0.72 -0.22 -0.12 0.16 0 ⇥ -0.16

TABLE I. Comparison between the critical exponents of the
quantum and semi-classical DD models. In the SC scaling
� ⇠ k0, and the Markovian noise can acquire an anomalous
dimension, ⌘� .

r ⇠ k�⌘KR
+⌘KI . It is thus fully consistent with the find-

ing of finite ratios discussed above, and in particular it
indicates absence of decoherence at long distances: This
is a hallmark of persistence of quantum mechanical facets
at criticality (see Fig. 1). Survival of quantum coher-
ence at scales shorter than ⇤�1

M

, is a common feature
between our FP and equilibrium quantum critical points
[41, 47, 48].

(iii) Absence of asymptotic thermalization– The
anomalous dimension of the di↵usive noise coupling, ⌘

�d ,
provides complementary information to the anomalous
dimensions, ⌘

KI,R , related to the spectral sector (R/A):
it is of primary importance in establishing the persistence
of the NEQ character of the system at macroscales.

A convenient diagnostic tool for thermal equilibrium in
quantum many body systems, is the presence of a sym-
metry of the Keldysh functional integral, which combines
quantum-mechanical time reversal and the Kubo-Martin-
Schwinger condition [49]. Even if such symmetry is ex-
plicitly violated at the microscopic level by driven Marko-
vian evolution, it is remarkably recovered at the SC FP
of driven-dissipative (DD) systems [16]. The FD relation
– a Ward-Takahashi identity of this symmetry – demands
that the e↵ective temperature T

C

= |Z|�, extracted from
the infrared bosonic distribution function F

C

(!, k) ⇠ TC
!

,
is scale-invariant. This expresses the principle of detailed
balance of thermal equilibrium states (invariance of tem-
perature under the system partition) in an RG language.
Such circumstance occurs at the SC FP via the emer-
gent exponent degeneracy ⌘

�

= �⌘
ZR

(cf. Tab. I) – the
system thermalizes asymptotically.

In the same spirit, if thermalization were to ensue close
to the quantum FP, scale-invariance of the low-frequency
distribution function, F

Q

(!, k) ⇠ TQ(k)
!

(1 + �̃⇤/2), must
be expected as a necessary condition. Specifically, replac-
ing the bare scaling of the frequency ! ⇠ kz in F

Q

(!, k),
insensitivity to system’s partition would manifest in the
exact scaling relation F

Q

⇠ k0. The absence of exponent
degeneracy, ⌘

�d 6= �⌘
ZR

(cf. Tab. I), signals scaling vi-
olation in the infrared behaviour of F

Q

⇠ k⌘�d
+⌘ZR , and

accordingly the absence of infrared thermalization at the
quantum FP.

This absence of infrared restoration of an equilibrium
FD relation constitutes the strongest evidence that the
quantum universality class found in this Letter cannot
be related to its SC driven Markovian counterpart in d+

FIG. 1. (Color online) Comparison between the FPs of
the NEQ quantum action and of the SC action for driven-
dissipative Markovian systems. The location of the couplings
in the complex plane is sketched. In the quantum problem the
RG flow freezes in the plane, while in the SC problem deco-
herence forces asymptotically all couplings onto the imaginary
axis.

z dimensions, or to an equilibrium FP. In other words,
there is no quantum-to-classical correspondence [47, 48]
familiar from equilibrium systems.
(iv) RG limit-cycle of Z– Finally, we consider the im-

pact of a non-vanishing imaginary part of ⌘
Z

at the
quantum FP, ⌘

ZI

= 0.04 – which is, in contrast, ex-
actly zero at the purely dissipative SC FP (cf. Tab
I). The peak of the spectral density (the imaginary
part of the retarded single particle dynamical response),

A(! = Re!(k)) = Re(Z)
|Z|2

1
Im!(k) , is sensitive to oscilla-

tions present in Z ⇠ k�⌘ZRe�i⌘ZIt, which are induced by
⌘
ZI

6= 0, where t = log(k/k
UV

) is the RG flow parameter.
Even if these limit-cycle oscillations occur with a huge pe-
riod, 2⇡

⌘ZI
, they are a remarkable signature of deviation

from equilibrium behaviour at macroscales, since they
prevent the possibility to have a real wave-function renor-
malization Z, contrary to what happens for the equilib-
rium MSR action of model A or in the vicinity of the
SC FP [16]. Remarkably, we find a twin FP of the one
discussed above (with r⇤ ! �r⇤, and the other rescaled
variables unchanged), which exhibits the same critical
exponents, except an opposite value of ⌘

ZI

= �0.04. It
thus displays counter-phase limit-cycle oscillations of Z.
Conclusions– We have shown that both quantum me-

chanical coherence and the microscopic driven nature of
open quantum systems can persist at the largest dis-
tances close to a critical point, in striking contrast with
classical equilibrium and SC NEQ critical points. The
techniques developed here pave the way for a system-
atic classification of driven open systems where genuine
quantum e↵ects play a role. In particular, in analogy to
the seminal Hohenberg-Halperin models [32], we expect
additional symmetries and conservation laws (e.g. par-

different degree of 
divergence of 

correlations length

1+2 dimensions

3 dimensions

⇠ ⇠ (t� tc)
�⌫

static dynamic noise

➡ new non-equilibrium universality class



➡ mixed fixed point with finite dissipative and coherent couplings 

(2) Absence of Asymptotic Decoherence

Im

Re

• coherent dynamics does not fade out:

• exponent degeneracy: ⌘A = ⌘D = �0.03 A ⇠ k⌘A , D ⇠ k⌘D

“effective mass” diffusion

quantum

Im

Re

classical

quantum T = 0



➡ microscopic and universal asymptotic violation of quantum FDR

Z ⇠ k⌘Zei⌘
0
Z log k/⇤, �d ⇠ k⌘�d

⌘Z = ⌘� = 0.16

Z ⇠ k⌘Z , � ⇠ k⌘�

⌘Z = 0.08, ⌘0Z = 0.03, ⌘�d = �0.26

(3) Absence of Asymptotic Thermalization

Im

Re

quantum
Im

Re

classical

• formally:

quasiparticle residue noise level

• symmetry as straightforward diagnostic tool for Schwinger-Keldysh actions

• symmetry explicitly violated microscopically by markovian quantum dynamics

• not emergent:

L. Sieberer, A. Chiochetta, U. Tauber, 
A. Gambassi, SD, PRB (2015)



• symmetry as straightforward diagnostic tool for Schwinger-Keldysh actions

• symmetry explicitly violated microscopically by markovian quantum dynamics

• not emergent:

Z ⇠ k⌘Zei⌘
0
Z log k/⇤, �d ⇠ k⌘�d

⌘Z = ⌘� = 0.16

Z ⇠ k⌘Z , � ⇠ k⌘�

⌘Z = 0.08, ⌘0Z = 0.03, ⌘�d = �0.26

(3) Absence of Asymptotic Thermalization

Im

Re

quantum
Im

Re

classical

• formally:

quasiparticle residue noise level

➡ limit-cycle like oscillations with (huge!) period 
(observable: spectral density)

kn+1

kn
= e

2⇡
⌘0
Z

L. Sieberer, A. Chiochetta, U. Tauber, 
A. Gambassi, SD, PRB (2015)



Observable consequences of driven criticality

• dynamical exponents: experiments probing the dynamical single-particle renormalized 
response (RF spectroscopy for ultracold atoms, homodyne detection)

distance from 
phase transition

peak position and widthmeasured independently

�(!,q) ⌘ GR(!,q) =
Z�1

! � !q

• static exponents: first order spatial coherence function

h�⇤(r)�(0)i ⇠ e�r/⇠

r1+⌘D
⇠ ⇠ |�|�⌫

!q ⇡ Aq2 � iDq2

complex dispersion 
at criticality

• with anomalous behavior

Z ⇠ |q|⌘Zei⌘
0
Z log |q|/⇤

A ⇠ |q|⌘A , D ⇠ |q|⌘D ⌘A = ⌘D
(absence of 

decoherence)



New Absorbing State Transitions 
in Rydberg Ensembles

M. Marcuzzi, M. Buchhold, SD, I. Lesanovsky, 
arxiv:1601.07305 (2016)

Microscopic
Quantum Optics

“Thermodynamic”
Many-body physics

Long wavelength
Statistical mechanics 



single-component  
order parameter:

density of active sites

 

 

A Classical Non-Equilibrium Phase Transition

• the contact process

• local dynamical rules:

decay

branching

etc.

no offspring from vacuum

• implications:

• violation of detailed balance

• unique absorbing state (no 
active sites)

“The Ising model of non-equilibrium physics”
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A Classical Non-Equilibrium Phase Transition
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Fig. 12: Directed bond percolation in 1+1 dimensions starting from random initial conditions (top) and
from a single active seed (bottom). Each horizontal row of pixels represents four updates. As can be seen,
critical DP is a reaction-limited process.

Associating active sites with particles A and inactive sites with vacancies Ø, a DP process
corresponds to the reaction-diffusion scheme

self-destruction: A → Ø ,
diffusion: Ø + A → A + Ø ,
offspring production: A → 2A ,
coagulation: 2A → A .

(81)

To understand this reaction-diffusion scheme, let us again consider the example of directed
bond percolation. Depending on the configuration of the bonds, each active site (particle)
may activate two neighboring sites of the subsequent row (next time step). If both bonds
are closed, the particle self-destructs. If only one bond is open, the particle will diffuse
to the left or to the right with equal probability, whereas an offspring is produced when
both bonds are open. On the other hand, if two particles reach the same target site, they
coalesce into a single particle, giving rise to the reaction 2A → A. This process limits the
maximal density of active sites. In fact, as will be shown below, the coagulation process is
the essential nonlinear ingredient of DP. In ‘fermionic’ models with an exclusion principle
it is automatically included. However, in ‘bosonic’ models allowing for an infinite number
of particles per site one would have to add this process explicitly.

3.2 Lattice models for directed percolation

In the literature there is a vast variety of DP models following the spirit of the above
reaction-diffusion scheme. As we will see below, they all exhibit the same type of critical
behavior at the transition. The common feature of all these models is the existence of an
absorbing state, i.e., a configuration that the model can reach but from where it cannot

37

H. Hinrichsen, 
Adv. Phys. (2000)

• numerical experiment: the wetting transition in gravitational field 
(driven system)

time

INACTIVE 
PHASE

ACTIVE 
PHASE

position

• phase transition:

   

evaporation branching

density of 
active sites

• physical processes

absorbing/dry 
state

critical 
state

wetted 
state



M. Marcuzzi et al., NJP (2015)

Directed Percolation with Rydberg Atoms

• implementation proposal with Rydberg atoms 

• phase transition in Directed Percolation universality class: “Ising model of non-equilibrium physics”

• currently no experimental realization except in 2D Takeuchi et al. PRL (2007)

• strong, rapidly decaying van-der-Waals interaction in Rydberg state

• no spatial dynamics on exp. timescales

• versatile platform:

Rydberg dressing and long 
range interactions 
(Pohl & Gorshkov groups)

Rydberg polaritons, light propagation in 
non-linear media Firstenberg et al., 
Nature (2012), Magrebi et al. PRL (2015)

Rydberg crystals 
Schauss et al. Nature (2012)
Schauss et al. Science (2015)

driven dissipative Rydberg gases 
Hoening et al. PRA (2014); Marcuzzi el 
al. PRL (2014); Weimer, PRL (2015)
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M. Marcuzzi et al., NJP (2015)

Directed Percolation with Rydberg Atoms

• implementation proposal with Rydberg atoms 

• phase transition in Directed Percolation universality class: “Ising model of non-equilibrium physics”

• currently no experimental realization except in 2D Takeuchi et al. PRL (2007)

• many-body excitation dynamics in two-level approximation

Hamiltonian (atoms at positions rk)

strong, rapidly decaying van-der-Waals interaction

Jump operators

decay

dephasing

Γ

Rydberg 
state
ground state

Rydberg 
occupation



M. Marcuzzi et al., NJP (2015)• implementation proposal with Rydberg atoms 

• phase transition in Directed Percolation universality class: “Ising model of non-equilibrium physics”

• currently no experimental realization except in 2D Takeuchi et al. PRL (2007)

• Effective classical dynamics of occupation probability for strong 
dephasing:

2

markably, our results show that even for relatively small
(mesoscopic) system sizes which compare to those cur-
rently studied in experiment [30–33], signatures of DP
are observable.

The specific setup we consider [Fig. 1(a)] is an ensem-
ble of N atoms trapped in a lattice with spacing a [34].
We describe the internal level structure of the atoms with
two relevant levels: the ground state |#i and a Rydberg
state |"i [35, 36], coupled by a laser with Rabi frequency
⌦ and detuning �. When two atoms (at positions rk
and rm) are in the Rydberg state they experience an
interaction of strength Vkm which is parameterized as
Vkm = C↵/ |rk � rm|↵. We will focus here on Rydberg
s-states that interact via van-der-Waals (vdW) force and
thus ↵ = 6. Moreover, we consider here that the system
is subject to noise (or dissipation) that leads to spon-
taneous radiative decay from the Rydberg state to the
ground state at a rate � and the dephasing of atomic
superposition states at a rate � [37, 38].

In the limit of strong dephasing the dynamics of this
system is well described by a rate equation [37–40] for
the probability vector v whose components are the sta-
tistical weights of the classical spin configurations (e.g.,
|. . . ""# . . .i):

v̇ =
X

k

�k

⇥

�+
k � pk

⇤

v +
X

k

(�+ �k)
⇥

��
k � nk

⇤

v. (1)

This depicts a classical stochastic process in which the k-
th spin flips up with rate �k and down with rate �+ �k

[see Fig. 1(a)]. Here nk = 1 � pk = |"kih"k|, ��
k =

�

�+
k

�†
= |#kih"k| and

�k =
⌦2�

��
2

�2
+
⇣

�+
P

q 6=k Vkqnq

⌘2 . (2)

This rate, which depends on the state of all spins but the
k-th one, is analogous to those that appear in dynamical
facilitation models of glasses [41, 42] and is recovered
from a perturbative treatment (in the limit � � �,⌦) of
the full dissipative quantum dynamics [38]. In the final
section of this work we provide evidence of the validity
of this approach in the current case.
Emergent DP process. It has been conjectured that the
defining conditions for the emergence of DP universality
are: (i) a local dynamics with a unique absorbing state,
(ii) a continuous phase transition with a positive, one-
component order parameter and (iii) absence of symme-
tries [24, 43]. In a spin chain, these can be reformulated
in terms of two fundamental processes: flipping down
spins and flipping them up provided there is an up spin
in the neighborhood [see Fig. 1(b)]. While the former are
in our system provided by the radiative decay, the latter
emerge by fixing the detuning such that it cancels exactly
the nearest neighbor interaction V , i.e., � = �V . This
facilitates the excitation of atoms which are adjacent to
an already excited one [44, 45].

Let us now study the dynamical processes in our sys-
tem and the underlying rates in more detail. To this

end we introduce the projectors P(j)
k (j = 1 . . . z, with

z being the coordination number of the lattice) on the
subspaces where exactly j nearest neighbors of the k-
th atom are excited. As these projectors commute with

�k, we can decompose �k = �k
P

j P
(j)
k =

P

j �
(j)
k with

�(j)
k = P(j)

k �kP(j)
k , which yields

�(j)
k = P(j)

k

⌦2�
��
2

�2
+
h

�(1� j) +
P

q 6=k,{k̄} Vkqnq

i2P
(j)
k ,

(3)
where

�

k̄
 

denotes all sites included in the neighborhood
of site k. Since the interaction is quickly decaying with
the distance we have

P

q 6=k,{k̄} Vqk ⌧ � which allows us

to approximate �(1)
k ⇡ (4⌦2/�)P(1)

k . This represents the
rate at which a spin flips up if it has a single excited
neighbor [second row in Fig. 1(b)].

Correspondingly, �(0)
k provides an estimate of the rate

at which spins flip up when far away from excitations.
These processes can create isolated excitations, thereby
destroying the absorbing property of the “all-down”
state. They therefore constitute a relevant perturba-
tion away from the DP critical region [fourth row in Fig.
1(b)]. Using the fact that the Rydberg interaction is
quickly decaying, i.e.

P

q 6=k,{k̄} Vqk ⌧ V = |�|, the rate

of these processes can be estimated as

�(j 6=1)
k ⇡ 4⌦2

�

"

1

1 + (2�/�)2 |j � 1|2

#

P(j 6=1)
k . (4)

Hence, the magnitude of the “DP-breaking” processes is
strongly suppressed at large laser detuning: when |�| �
� one finds that k�(j 6=1)

k k  k�(0)
k k ⇡ ⌦2�

�2 ⌧ 4⌦2

� ⇡
k�(1)

k k where kAk denotes the largest eigenvalue of A in
modulus.
These considerations show that the main dynamical

processes of the Rydberg system (for large |�| and � =
�V ) are those displayed in Fig. 1(b). Their correspond-
ing rates depend on the two parameters � = 4⌦2/�� and
⌫ = 2 |�| /�. It is important to remark that the pres-
ence of next-to-nearest neighbor interaction of strength
⌘V imposes an additional constraint on the actual emer-
gence of DP universality. The reason is that processes
of the type ""###!"""## occur at a rate �/

⇥

1 + ⌘2⌫2
⇤

which is smaller than the one given in the second line of
Fig. 1(b). Hence, taking the limit of large detuning or,

equivalently, large ⌫, reduces the unwanted rate �(0)
k but

eventually hinders the growth of clusters of excitations.
To prevent this one needs to impose � & ⌘ |�| (⌘⌫ . 1).
In 1D and for a vdW potential we have ⌘ = 1/64 which
allows to make ⌫ reasonably large. In contrast, in higher
dimensions we find the more restrictive ⌘ = 1/8. Still,
this issue can be overcome, as we discuss at a later stage.

Emergence of directed percolation in the dynamics of dissipative Rydberg gases

M. Marcuzzi, E. Levi, W. Li, J.P. Garrahan, B. Olmos, and I. Lesanovsky
School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK

(Dated: December 1, 2014)

The directed percolation universality class possibly represents the simplest instance of a genuine
non-equilibrium phase transition from an absorbing state to a fluctuating active phase. It is often
thought to be as fundamental as the Ising universality class is for equilibrium. However, despite being
known for several decades, it has been challenging to find experimental systems that manifest this
transition. Here we show theoretically that signatures of the directed percolation universality class
emerge in ensembles of strongly interacting Rydberg atoms. We demonstrate that even mesoscopic
ensembles — which are currently studied experimentally — are su�cient to observe traces of this
non-equilibrium phase transition in one, two and three dimensions.

In strongly interacting systems, long-range correlations
can lead to the emergence of collective behaviors which
can be distinctively di↵erent from the single-body physics
governing the constituents. A remarkable example can
be found within the theory of continuous phase transi-
tions [1–3], which indeed predicts characteristic singular
behaviors of macroscopic observables, in contrast to the
usually smooth and continuous microscopic description.
At a so-called critical point, the correlation length of the
system diverges and the overall behavior is fundamen-
tally determined by certain properties — such as dimen-
sionality, range of interactions and symmetries — that
do not depend on the specific scale. All systems sharing
these few coarse-grained features display algebraic sin-
gularities of the same kind [4] and form a universality

class, which is in turn characterized by the correspond-
ing critical exponents [1–3, 5]. Phase transitions have
been extensively studied in equilibrium — both in the
classical regime [2, 3, 6, 7] and when quantum fluctua-
tions dominate [8, 9] — within a statistical mechanics
framework. Despite the lack of an analogous unified pic-
ture, critical phenomena are known to occur out of equi-
librium as well [10–17]. In particular, phase transitions
can take place in the properties of the steady state; this
typically leads to an enrichment of the stationary phase
diagram which depends upon the coarse-grained aspects
of the dynamics, such as symmetries and conservation
laws (see, e.g., [18, 19]). Equilibrium conditions, for ex-
ample, are specifically related to the microreversibility

symmetry [20–22]. Systems in which the latter is not re-
covered at large length and time scales undergo genuine
non-equilibrium phase transitions [23–25].

One of the most fundamental and well-studied univer-
sality classes of this kind is directed percolation (DP).
An intuitive description can be provided in terms of the
“contact process”, i.e., a classical stochastic process on
a chain of Ising spins in which an up spin (or excita-
tion) can always flip down, whereas a down spin can only
flip up if another up spin is present in its neighborhood.
At a critical ratio between the rates at which these two
processes occur the system switches from an absorbing
“all-down” steady state to a fluctuating active one with

FIG. 1. (a) Two-level description of Rydberg atoms driven
coherently by a laser field with Rabi frequency ⌦ and detun-
ing �. We also consider dephasing (at rate �) of coherent
superpositions between |"i and |#i and decay from |"i to |#i
with rate �. Two atoms interact only when simultaneously
excited to the Rydberg state |"i. The laser detuning � is
chosen such that it is the negative of the nearest neighbor in-
teraction V . (b) Rates (in units of �) of the main dynamical
processes occurring in the Rydberg gas (see main text). The
death and branching (first and second row, shaded in green)
of an excitation are fundamental processes of DP, while the
creation of an isolated excitation (fourth row, shaded in red)
is a relevant perturbation away from the DP critical region.
The remaining process (“coagulation”) does not modify the
critical properties.

a finite density of excitations, the defining feature of the
DP universality class. Despite its simplicity and robust-
ness [24], it has been very di�cult to identify clear signs
of DP universality in physical systems [26]. Only recently
an experiment focusing on two distinct topological phases
of nematic liquid crystals provided the first clean realiza-
tion of DP in a two-dimensional physical system [27, 28].

In this work we show that strongly interacting ensem-
bles of Rydberg atoms [29] feature a dynamics which— in
a certain limit — is governed by the elementary rules of a
DP process [24]. Beyond revealing insights into the out-
of-equilibrium behavior of this currently much studied
system, it highlights an alternative approach for the ex-
perimental exploration of DP universal features not only
in two but in one and three dimensions as well. Re-
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markably, our results show that even for relatively small
(mesoscopic) system sizes which compare to those cur-
rently studied in experiment [30–33], signatures of DP
are observable.

The specific setup we consider [Fig. 1(a)] is an ensem-
ble of N atoms trapped in a lattice with spacing a [34].
We describe the internal level structure of the atoms with
two relevant levels: the ground state |#i and a Rydberg
state |"i [35, 36], coupled by a laser with Rabi frequency
⌦ and detuning �. When two atoms (at positions rk
and rm) are in the Rydberg state they experience an
interaction of strength Vkm which is parameterized as
Vkm = C↵/ |rk � rm|↵. We will focus here on Rydberg
s-states that interact via van-der-Waals (vdW) force and
thus ↵ = 6. Moreover, we consider here that the system
is subject to noise (or dissipation) that leads to spon-
taneous radiative decay from the Rydberg state to the
ground state at a rate � and the dephasing of atomic
superposition states at a rate � [37, 38].

In the limit of strong dephasing the dynamics of this
system is well described by a rate equation [37–40] for
the probability vector v whose components are the sta-
tistical weights of the classical spin configurations (e.g.,
|. . . ""# . . .i):

v̇ =
X

k

�k

⇥

�+
k � pk

⇤

v +
X

k

(�+ �k)
⇥

��
k � nk

⇤

v. (1)

This depicts a classical stochastic process in which the k-
th spin flips up with rate �k and down with rate �+ �k

[see Fig. 1(a)]. Here nk = 1 � pk = |"kih"k|, ��
k =

�

�+
k

�†
= |#kih"k| and

�k =
⌦2�

��
2

�2
+
⇣

�+
P

q 6=k Vkqnq

⌘2 . (2)

This rate, which depends on the state of all spins but the
k-th one, is analogous to those that appear in dynamical
facilitation models of glasses [41, 42] and is recovered
from a perturbative treatment (in the limit � � �,⌦) of
the full dissipative quantum dynamics [38]. In the final
section of this work we provide evidence of the validity
of this approach in the current case.
Emergent DP process. It has been conjectured that the
defining conditions for the emergence of DP universality
are: (i) a local dynamics with a unique absorbing state,
(ii) a continuous phase transition with a positive, one-
component order parameter and (iii) absence of symme-
tries [24, 43]. In a spin chain, these can be reformulated
in terms of two fundamental processes: flipping down
spins and flipping them up provided there is an up spin
in the neighborhood [see Fig. 1(b)]. While the former are
in our system provided by the radiative decay, the latter
emerge by fixing the detuning such that it cancels exactly
the nearest neighbor interaction V , i.e., � = �V . This
facilitates the excitation of atoms which are adjacent to
an already excited one [44, 45].

Let us now study the dynamical processes in our sys-
tem and the underlying rates in more detail. To this

end we introduce the projectors P(j)
k (j = 1 . . . z, with

z being the coordination number of the lattice) on the
subspaces where exactly j nearest neighbors of the k-
th atom are excited. As these projectors commute with

�k, we can decompose �k = �k
P

j P
(j)
k =

P

j �
(j)
k with

�(j)
k = P(j)

k �kP(j)
k , which yields

�(j)
k = P(j)

k

⌦2�
��
2

�2
+
h

�(1� j) +
P

q 6=k,{k̄} Vkqnq

i2P
(j)
k ,

(3)
where

�

k̄
 

denotes all sites included in the neighborhood
of site k. Since the interaction is quickly decaying with
the distance we have

P

q 6=k,{k̄} Vqk ⌧ � which allows us

to approximate �(1)
k ⇡ (4⌦2/�)P(1)

k . This represents the
rate at which a spin flips up if it has a single excited
neighbor [second row in Fig. 1(b)].

Correspondingly, �(0)
k provides an estimate of the rate

at which spins flip up when far away from excitations.
These processes can create isolated excitations, thereby
destroying the absorbing property of the “all-down”
state. They therefore constitute a relevant perturba-
tion away from the DP critical region [fourth row in Fig.
1(b)]. Using the fact that the Rydberg interaction is
quickly decaying, i.e.

P

q 6=k,{k̄} Vqk ⌧ V = |�|, the rate

of these processes can be estimated as

�(j 6=1)
k ⇡ 4⌦2

�

"

1

1 + (2�/�)2 |j � 1|2

#

P(j 6=1)
k . (4)

Hence, the magnitude of the “DP-breaking” processes is
strongly suppressed at large laser detuning: when |�| �
� one finds that k�(j 6=1)

k k  k�(0)
k k ⇡ ⌦2�

�2 ⌧ 4⌦2

� ⇡
k�(1)

k k where kAk denotes the largest eigenvalue of A in
modulus.
These considerations show that the main dynamical

processes of the Rydberg system (for large |�| and � =
�V ) are those displayed in Fig. 1(b). Their correspond-
ing rates depend on the two parameters � = 4⌦2/�� and
⌫ = 2 |�| /�. It is important to remark that the pres-
ence of next-to-nearest neighbor interaction of strength
⌘V imposes an additional constraint on the actual emer-
gence of DP universality. The reason is that processes
of the type ""###!"""## occur at a rate �/

⇥

1 + ⌘2⌫2
⇤

which is smaller than the one given in the second line of
Fig. 1(b). Hence, taking the limit of large detuning or,

equivalently, large ⌫, reduces the unwanted rate �(0)
k but

eventually hinders the growth of clusters of excitations.
To prevent this one needs to impose � & ⌘ |�| (⌘⌫ . 1).
In 1D and for a vdW potential we have ⌘ = 1/64 which
allows to make ⌫ reasonably large. In contrast, in higher
dimensions we find the more restrictive ⌘ = 1/8. Still,
this issue can be overcome, as we discuss at a later stage.

• occupation dependent rate:
quantum 
processes

classical limit

v̇ ⇡ 4⌦2

�

X

k,l

nl[�
+
k � pk]v +

X

k,l

(�/z + 4⌦2

� nl)[�
�
k � nk]v

• directed percolation limit: nn interaction

conditional excitation: 
branching

decay

� � � & � = �V

Directed Percolation with Rydberg Atoms



Quantum Variant of Directed Percolation Dynamics

• additional coherent dynamics

• new "quantum" scale

coherent
contact 
process

incoherent 
contact 
process

M. Marcuzzi, M. Buchhold, SD, I. Lesanovsky, arxiv (2016)

• Can we formulate a quantum analog of the DP processes?

• implementation:

• Quantum branching/coagulation: energetic constraint
              coherent pump laser, detuning 

• Classical branching/coagulation:
              now: weak spontaneous emission
              but: pump laser with strong phase noise

Walls, Milburn, PRA (1985)



Quantum Variant of Directed Percolation Dynamics

• additional coherent dynamics

• new "quantum" scale

coherent
contact 
process

incoherent 
contact 
process

M. Marcuzzi, M. Buchhold, SD, I. Lesanovsky, arxiv (2016)

• Can we formulate a quantum analog of the DP processes?

inactive phase

active phase

"classical" directed percolation

coherent 
axis

phase diagram

• additional axis in phase diagram

• non-universal modifications in arbitrary 
dimensions 

• relevant in d < 2: modified universality class 

• implications:



Field Theoretical Approach

Effective Spin Action

Heisenberg-Langevin
Equations

semiclassical
Langevin Equations

Long Wavelength 
Effective Density Action

integrate out 
coherences,

long wavelength

MSR
construction

classical processes coupling to 
coherences

quantum 
noise

• Heisenberg-Langevin introduces coupling of occupations to coherences

• Long wavelength occupation density action:

mean-field 
decoupling of 

spin correlators

Martin, Siggia, Rose, (1973),
Janssen, de Dominics (1976)

conventional field theory of directed percolation

new elements due to the quantum scale



Field Theoretical Approach

• Long wavelength occupation density action:

Martin, Siggia, Rose, (1973),
Janssen, de Dominics (1976)

• qualitatively new features due to quantum dynamics:

• potentially negative cubic non-linearity

• quartic terms             break rapidity inversion symmetry of DPu4, µ4

➡ physical consequences?

similar findings: 
M. Maghrebi, A. V. Gorshkov, PRB (2016)

n(t,x) $ �ñ(�t,x)



Mean-field phase diagram

inactive phase

active phase

• Neglect fluctuations in the action

effective 
potential

• Minima of effective potential determine stationary phase
inactive phase

active phase

critical point

• 1st order transition • 2nd order transition



Mean-field phase diagram

inactive phase

• Neglect fluctuations in the action

effective 
potential

• Minima of effective potential determine stationary phase
inactive phase

active phase

• 1st order transition

numerics: bimodal structure

= ⌦/�



A New Universality Class?

• Fluctuations: Universal scaling behavior at 2nd order transition

inactive phase

active phase
critical point

gap vanishes

relevant in d < 2

relevant in d < 4

• d < 2: quantum terms relevant under RG
        symmetry explicitly broken

absorbing state transition w/o obvious symmetries

• d   2: quantum terms vanish under RG
        symmetry restored

classical directed percolation 

1st order   -expansion

bicritical point

• d   2: only trivial RG flow
            no effect of long wavelength fluctuations

mean-field critical exponents

• d < 2: all couplings relevant 
              no symmetries + 

further new universality class ?

equivalence?



Summary & Outlook

M. Marcuzzi, M. Buchhold, SD, I. Lesanovsky, arxiv (2016)

Driven open many-body systems provide an arena for non-equilibrium quantum statistical mechanics

J. Marino, SD, PRL (2016) and in prep.

• Platform: driven microcavity arrays

4

Figure 1. Schematics of a coupled array of photonic cavities (represented in
gray). The photons in each cavity are tunnel-coupled to neighboring sites with
amplitude J and decay with rate 0. The cavities are driven with an external
coherent field of strength |�|. This external driving compensates for losses and
ensures a finite stationary photon population.

physics scenario, the bosons here can decay, and under experimentally relevant conditions
!c � J, U, kBT (where T is the temperature and kB the Boltzmann constant), the equilibrium
state of this model is simply the vacuum state. Therefore, in photonic many-body systems we
are mainly interested in the out-of-equilibrium dynamics of Ĥc in the presence of losses and
external driving fields. In particular, in this work we model the resulting dissipative dynamics
for the system density operator ⇢ by a master equation (ME) of the form

⇢̇ = �i[Ĥc + Ĥ�(t), ⇢] + 0
X

`

D[ĉ`]⇢ +L⇢, (2)

where D[ĉ]⇢ ⌘ 2ĉ⇢ĉ† � ĉ†ĉ⇢ � ⇢ĉ†ĉ. In equation (2) the Hamiltonian Ĥ�(t) =P
` �`(e�i!dt ĉ†

` + ei!dt ĉ`) describes an external driving field of frequency !d which is
used to excite the system, and the second term accounts for photon losses in each cavity with
a field decay rate 0. While a finite driving field is required to counteract the losses, it will
in general also compete with Ĥc and, for strong driving fields, even dominate the system
dynamics. Therefore, in previous works it has been suggested to either study the transient
dynamics of an initially prepared photonic state [14, 16, 43] (where �` = 0 for times t > 0)
or use excitation spectroscopy [35, 44–47] in a weakly driven system (�` < 0) to probe the
single- and few-body spectrum of the Hamiltonian Ĥc.

In this work, we are interested in the opposite regime of a strongly and continuously driven
system, where the total photon number in the cavity array is large. We study the dynamics of
this system in the presence of an additional artificial thermalization mechanism, denoted by L

in equation (2). More precisely, we will show below how a non-local coupling of photons to
superconducting qubits can be engineered in an array of microwave cavities to implement a
dissipative photon scattering process of the form

L =
X

`



4
D[(ĉ†

` + ĉ†
`+1)(ĉ` � ĉ`+1)] +

 0

4
D[(ĉ†

` � ĉ†
`+1)(ĉ` + ĉ`+1)]. (3)

The interpretation of this term can be seen best in the case of just two cavities. Then, for
J > 0,4 the first term in equation (3) describes the scattering of photons from the asymmetric
(energetically higher) mode ĉa ⌘ (ĉ1 � ĉ2)/

p
2 into the symmetric (energetically lower) mode

4 Although for concreteness we assume J > 0 in this work, this is not essential for the results on condensation
presented below, since this is achieved ‘dissipatively’ through the Liouvillian (3), and therefore not determined by
the energy of the modes.

New Journal of Physics 14 (2012) 055005 (http://www.njp.org/)

� �+⌦ �⌦

• non-equilibrium persists:

• no emergent equilibrium 
symmetry for fixed point 
action

• no quantum-classical mapping

• quantum persists: no decoherence

• universal limit cycle for quasiparticle residue

Quantum non-equilibrium criticality (1D)
New non-equilibrium universality class

• Platform: driven Rydberg gases

Constrained microscopic quantum dynamics
New absorbing state transition

the tool: Keldysh field theory

• coherent dynamics 
gives new axis in 
phase diagram

Review: L. Sieberer, M. Buchhold, SD, Keldysh Field Theory 
for Driven Open Quantum Systems, arxiv (2015)

• Perspectives: 
• Open system quantum Hall effect

• Driven open fermion ensembles

• Keldysh symmetries and dynamical slow modes

• first order transition associated to quantum scale

• new universality class without DP symmetries?

Imamoğlu group, Science (2014)

Hafezi group, PRL (2014), arxiv (2105)





1st order absorbing transition

• 1st order: gap remains finite
                spatial fluctuations irrelevant 

inactive phase

active phase

• Effective description: uniform density

spatial volume effective 
potential

fluctuation
strength

• Fluctuations increase with density
                 optimal path:

optimal phase space 
trajectories

optimal path
distribution

• Phase boundaries: minima of OPA potential

different from equilibrium prediction

numerical
results



Experimental implementation

quantum classical

• Rydberg atoms on a lattice

• Effective two level system
ground state Rydberg state

• Neighboring Rydberg states repel each other            

for Rydberg s-states

• Quantum branching/coagulation:
               coherent pump laser, detuning 

• Classical branching/coagulation:
               pump laser with strong phase noise

• Incoherent decay:
               spontaneous emission

enables
coherent + incoherent

suppresses

negligible at small n
RG irrelevant

Walls, Milburn, PRA (1985)



• quantum master equation: 

Keldysh functional integral

�± =

✓
�±
�⇤
±

◆

SM [�+,��] =

Z
dt(�⇤

+i@t�+ � �⇤
�i@t�� � iL[�+,��])

Z =

Z
D(�+,��)e

i(SM [�+,��]

• equivalent Keldysh functional integral:

@t⇢ = �i[H, ⇢] +D[⇢] = L[⇢]

Keldysh functional integral approach

I given initial density matrix r̂(t�)
I time ordered correlation function, t+ > t > t0 > t�

iGC (X, X0) = tr
n

TC
⇣

ŷ(X)ŷ†(X0)
⌘

r̂(t�)
o

= tr
n

Û(t�, t+)Û(t+, t)ŷ(x)Û(t, t0)ŷ†(x0)Û(t0, t�)r̂(t�)
o

=
Z

D(y⇤, y)y(X)y(X0)eiS[y⇤ ,y]

I ±-basis

y ) (y+, y�)

S =
Z

C
dt

Z

x

L[y⇤, y] ) S =
Z t+

t�
dt

Z

x

(L[y⇤
+, y+]�L[y⇤

�, y�])

GC )
✓

G++ G+�
G�+ G��

◆

L. V. Keldysh, Sov. Phys. JETP 20,1018-26 (1965)

+ contour

- contour

• two fields: track left/right action of operators

t ⇢(t0) t

Z = tr⇢(t)• partition function:

⇢(t0 ! �1)t ! 1

+ contour - contour



• quantum master equation: 

Keldysh functional integral

�± =

✓
�±
�⇤
±

◆

SM [�+,��] =

Z
dt(�⇤

+i@t�+ � �⇤
�i@t�� � iL[�+,��])

Z =

Z
D(�+,��)e

i(SM [�+,��]

• equivalent Keldysh functional integral:

L[�+,��] = �i (H+ �H�)� 
X

i

⇣
Li,+L

†
i,� � 1

2L
†
i,+Li,+ � 1

2L
†
i,�Li,�

⌘

Keldysh functional integral approach

I given initial density matrix r̂(t�)
I time ordered correlation function, t+ > t > t0 > t�

iGC (X, X0) = tr
n

TC
⇣

ŷ(X)ŷ†(X0)
⌘

r̂(t�)
o

= tr
n

Û(t�, t+)Û(t+, t)ŷ(x)Û(t, t0)ŷ†(x0)Û(t0, t�)r̂(t�)
o

=
Z

D(y⇤, y)y(X)y(X0)eiS[y⇤ ,y]

I ±-basis

y ) (y+, y�)

S =
Z

C
dt

Z

x

L[y⇤, y] ) S =
Z t+

t�
dt

Z

x

(L[y⇤
+, y+]�L[y⇤

�, y�])

GC )
✓

G++ G+�
G�+ G��

◆

L. V. Keldysh, Sov. Phys. JETP 20,1018-26 (1965)

➡ recognize Lindblad structure
➡ simple translation table (for normal ordered Liouvillian)

• operator right of density matrix -> - contour

• operator left of density matrix -> + contour

+ contour

- contour

H± = H(�±) etc.

= �i(H⇢� ⇢H) + 
X

i

(Li⇢L
†
i � 1

2L
†
iLi⇢� 1

2⇢L
†
iLi)

@t⇢ = �i[H, ⇢] +D[⇢] = L[⇢]


