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Introduction: Cold Atoms vs. Condensed Matter

• New models of own interest
- Bose-Hubbard model
- Strongly interacting continuum systems: BCS-BEC Crossover; Efimov effect
- long range interactions other than Coulomb; SU(N) Heisenberg models with variable N...

• Quantum Simulation: clean/ controllable realization of model Hamiltonians which are 
- less clear to what extent realized in condensed matter 
- extremely hard to analyze theoretically 

• Nonequilibrium Physics, time dependence: 
- Condensed matter: thermodynamic equilibrium and ground state physics. 
- Cold atoms: e.g. creation of excited many-body states, study their dynamic behavior

• Scalability: 
- Study crossover from systems with few- to (thermodynamically) many degrees of freedom: 

Change of concepts?

• Integrate quantum optics concepts and many-body theory, coherent-dissipative 
manipulation, non-equilibrium stationary states

Q: What can cold atoms add to many body physics?

e.g. 2d  Fermi-
Hubbard model
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A Brief History of cold atoms 
and BEC research



1925

1908

A Brief History of cold atoms and BEC research
4He liquified by K. Onnes

Bose/Einstein predict condensation
of a noninteracting atomic Bose gas

1924Bose studies statistical 
Properties of photons

1938
Kapitza / Allen & Misener
discover superfluidity of 4He

Allen & Jones discover fountain effect

1938 London makes first connection
between 4He superfluidity and BEC

1941 Landau produces first 
phenomenological theory of superfluids

1947 Bogoliubov produces microscopic
theory of weakly interacting Bose gas

1949 Onsager predicts quantized vortices
in liquid 4He  (+ Feynman 1955)

1951 Landau & Lifshitz / Penrose link BEC
and off-diagonal long range order.



1985
Neutral Atom traps:
Gaithersburg (Magnetic)
AT&T Bell Labs 

1976 Stwalley and Nosanow (following Hecht,
1959) argue spin polarised 1H would be
Superfluid BEC (Realised MIT 1998).

1987 Simultaneous Cooling and Trapping in
Magneto-Optical Trap (AT&T Bell labs)

1995 BEC in dilute gases: 
 JILA (87Rb), MIT (23Na), Rice (7Li)

1997
W. D. Phillips, S. Chu, and 
C. Cohen-Tannoudji: Nobel 
Prize for Laser Cooling

2001
E. Cornell, C. Wieman, 
W. Ketterle: Nobel Prize for 
BEC in dilute gases

A Brief History of cold atoms and BEC research



+ Yb (2004), Cr (2005) 

A Brief History of cold atoms and BEC research

Earth alkaline atoms: Ca (2009), Sr (2009)

Molecules:  Li2 (2003), K2 (2003)

Strongly dipolar atoms: Dy (2011), Er (2012)



• Further milestone experiments:

1999

Tunable interations:
Feshbach resonance

Ketterle Group, MIT

Bosonic Sodium

Haensch Group, Munich

Optical Lattices:
Mott insulator-superfluid 

quantum phase transition

2002

2004

Innsbruck, 2004 

pairing gap 

vortices MIT, 2005 

JILA, 2005 

pair correlations 

Degenerate and strongly interacting fermions

A Brief History of cold atoms and BEC research



• Liquid 4He “BEC”
• Typical density 1022 cm-3

• Condensation temperature ~ 2.17 K
• Strongly Interacting
• Small Condensate Fraction

• BEC in dilute gases
• Typical density 1013 – 1015 cm-3 (cf. density of air: 3x1019 cm-3)
• Condensation temperature < 10-5 K (cf. CMB radiation: ~ 2.7K)
• Weakly interacting
• Much larger condensate fraction

Absolute Scales in Condensed Matter vs. Cold Atoms

• Compare the absolute scales in of liquid 4He and cold atom BEC



Modelling in Condensed Matter vs. Cold Atoms 

• Compare the way of constructing microscopic models in these systems

➡ Direct experimental access to both micro- and macrophysics
➡ Challenge to theorists to make the connection
➡ Many disciplines and theoretical techniques are involved: 

Atomic physics, Quantum optics, Condensed matter physics 

• Cold Atoms• Condensed Matter
- microscopic parameters from 

scattering physics (n=T=0)
- many body physics in separate 

experiments

- given chunk of matter
- have to guess the 

microscopic Hamiltonian
- ex: Fermi-Hubbard model

Control:
• tune microscopic parameters,
• modify lattice structure
• choose effective dimensionality

Clean system:
• No (uncontrollable) disorder 
• Weak dissipation (>1s) (cf. 
phonons in solid state)

Measurements:
• (quasi-)momentum distribution, noise 
correlations by releasing atoms.
• Spectroscopy (e.g., lattice 
modulations / Bragg scattering). 

• Further general properties and features:



Units

• In these lecture series, we will often work in “natural units”: 

E = ~!➡ Measure energy and frequency in the same unit,

~ = 1
• Quantum mechanical problem:

• Many-Body problem:

kB = 1

➡ Measure energy and temperature in the same unit, E = 1
2kBT

• Nonrelativistic problem: (we often indicate the mass explicitly)

E =
~p 2

2M

2M = 1

➡ Measure energy and momentum square in the same unit,

• Optical problem:

! = ck

c = 1
➡ Measure frequency an wave number in the same unit,



Lecture Outline
The lecture series consists of two parts: 

Part I: Introduction to the theory of ultracold atomic 
           quantum gases

• Continuum systems: 
• Scales and interactions, Effective theories
• Weakly interacting Bosons, Bose-Einstein condensation 
• Weakly interacting Fermions, BCS superfluidity
• Strong interactions, the BCS-BEC crossover

• Lattice systems:
• Quantum phase transitions
• Microscopic derivation of the Bose-Hubbard model
• Phase Diagram of the Bose-Hubbard model, Mott insulator - 

    superfluid transition

vortices MIT, 2005 

Bose-Einstein Condensation

Fermion Superfluidity

Mott insulator - superfluid 
transition

• Physics:

• Methods:

• Second quantization vs. functional integral techniques 



The lecture series consists of two parts: 

Lecture Outline

Part II: Selected Topics

• Advanced field theoretical techniques
• (Functional) Renormalization Group
• Application to ultracold atoms: e.g. Efimov effect, quantum 

criticality in Bose-Hubbard model, Tan effect, ...

• Many-Body Physics with Open Atomic Systems
• Dissipation engineering, driven-dissipative BEC
• Nonequilibrium phase transitions: open Dicke model, competing 

unitary and dissipative dynamics, ...

• Tutorial on Topological Insulators

• Suggestions welcome!
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Literature
• General BEC/BCS theory:

- C. J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge 
University Press (2002)

- L. Pitaevski and S. Stringari, Bose-Einstein Condensation, Oxford University Press 
(2003)
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- I. Boettcher, J. M. Pawlowski, S. Diehl, Ultracold Atoms and the Functional 

Renormalization Group, Nucl. Phys. Proc. Suppl. 228, 63 (2012) arxiv:1204.4394

• Many-Body Physics (with and without cold atoms)
- J. Negele, H. Orland, Quantum Many-particle Systems, Westview Press (1998)
- A. Altland and B. Simons, Condensed Matter Field Theory, Cambridge University 

Press (2006, second edition 2010)
- S. Sachdev, Quantum Phase Transitions, Cambridge University Press (1999)
- K. B. Gubbels and H. C. T. Stoof, Ultracold Quantum Fields, Springer Verlag (2009)



Basic BEC theory

Eq

q

-- scales in ultracold quantum 
systems



Statistical Mechanics of Noninteracting Bosons 

• The Hamiltonian for free particles in occupation number representation (“second 
quantization”)

• Free particles in occupation number representation = 
collection of independent harmonic oscillators with energy

H =
�

q

q2

2m
a†qaq

Example: Na atom (Alkali atoms)

• Microscopic scattering physics: Lennard-Jones (LJ) potential
- 1/r12 hard core repulsion: repulsion of electron clouds rrep = O(aB)

- 1/r6 attraction: van der Waals (induced dipole-dipole interaction)
rvdW = (50...200)aB for alkalis: typ. order of magnitude for interaction length scale

• Simplifications:
- T = 0, no interactions: whole density sits in the condensate: ψ0 =

√
N

- T = 0, weak interactions (a/d ≪ 1): expect ψ0 ≈
√

N
- we can formalize this:
- The operator a†

q creates a particle in the momentum mode q : a†N
q |vac⟩ =

p

(N + 1)!|nq = N⟩.
Similarly, aq annihilates a particle in the mode q.

- The operators satisfy bosonic commutation relations, [aq, a†
q′ ] = δ(q−q′) (cf. harmonic oscillator ladder

operators, but with an index label q).
- The operator nq = a†

qaq measures the particle number in the momentum mode q. The total particle
number is N̂ =

P

q a†
qaq.

- The dispersion relation is Eq = !ω = q2

2m . This is the energy of a single particle in the mode q.

The Sodium atom has one valence electron outside a closed shell.

The ground state has the configuration 1s2 2s2 2p6 3s.

We order the interactions according to the importance:

Eq =
q2

2m

Eq

q



Statistical Mechanics of Noninteracting Bosons 

• Statistical properties described by the Free Energy: 

• Trace easily carried out in occupation number basis: H is diagonal:

• Consider low temperature behavior of equation of state: 

temperature chemical potential

continuum limit
Bose-Einstein 

distribution 

U = kBT logZ, Z = tr exp� 1
kBT (H � µ ˆN)

U = kBT log

Y

q

1X

nq=0

e
� 1

kBT ( q2

2m�µ)nq
= kBT log

Y

q

�
1� e

� 1
kBT ( q2

2m�µ)��1
= �kBT

X

q

log

�
1� e

� 1
kBT ( q2

2m�µ)�

N = �@U

@µ
= h

X

q

a†qaqi =
X

q

ha†qaqi =
X

q

1

e
1

kBT ( q2

2m�µ) � 1
! V

Z
ddq

(2⇡)d
1

e
1

kBT ( q2

2m�µ) � 1



Bose-Einstein Condensation, 3D

n =
N

V
=

�
ddq

(2�)d

1

e
1

kBT ( q2
2m�µ) � 1

 Polygamma 
function

g�(z) =
��

n=1

zn

n�
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P
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- The dispersion relation is Eq = !ω = q2

2m . This is the energy of a single particle in the mode q.

• Lower T and study the behavior of µ at fixed n (3D):
• At a finite T , µ hits zero: below this Tc the equation of state has no solution
• Bose and Einstein (1925): Equation below Tc needs modification due to macroscopic
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occupation of zero mode:

n = ⟨a†
0a0⟩ +

ddq

(2π)d

1

e
q^2

2mkBT − 1

• macroscopic: N0 = ⟨a†
0a0⟩ = O(N/V ), i.e. extensive

• plausible: Bosons can populate single quantum state with arbitrary number
• critical temperature: determined by

nλ3
{dB} = g{3/2}(1) = ζ(3/2) ≈ 2.612 or λdB/d ! O(1)

\m

The ground state has the configuration 1s2 2s2 2p6 3s.

We order the interactions according to the importance:

Electron - nucleus and electron - electron interaction

Wave function of the atom as a many electron system:

Ψ = Φcore
unℓ(r)

r
Yℓm(θ, φ)

de Broglie wavelength �dB = (2⇥�2/mkBT )1/2 � d = n�1/3 interparticle 
spacing

T

µ

T = 0 

d = 3

Eq

q

• Lower T and study the behavior of µ at fixed n (3D):
• At a finite T , µ hits zero: below this Tc the equation of state has no solution
• Bose and Einstein (1925): Equation below Tc needs modification due to macroscopic

occupation of zero mode:
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q^2

2mkBT − 1

- plausible: Bosons can populate single quantum state with arbitrary number
- macroscopic: N0 = ⟨a†

0a0⟩ = O(N) ∝ V , i.e. extensive
- critical temperature: determined by

nλ3
dB = g3/2(1) = ζ(3/2) ≈ 2.612

- zero order O(N): homogenous mean field reproduced

- linear terms O(
√

N): vanishes upon proper choice of the chemical potential (equilibrium condition)
µ = gn0

- quadratic part O(1):

Electron - nucleus and electron - electron interaction

Wave function of the atom as a many electron system:

Ψ = Φcore
unℓ(r)

r
Yℓm(θ, φ)

= ��3
dB(T )g3/2(eµ/kBT )

=1 above



Role of Dimension: No BEC in 2D

• Remark: More general result
- No spontaneous breaking of continuous symmetries at finite temperature 

(Mermin-Wagner Theorem)
- quasi long range order possible: Kosterlitz-Thouless transition

T = 0 

µ
d = 2 d = 3

T
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➡ EoS without condensate can be 
fulfilled for all T: 

➡ No BEC in (homogeneous) 2d 
space

• Reason: Infrared (low momentum) divergence due to smaller phase space
d2q

(2⇥)2
⇤n̂q⌅ =

d2q

(2⇥)2
1

e( q2
2m�µ)/kBT � 1

⇥ dqq

q2 � µ

low momenta, 
small mu logarithmic 

divergence



Summary

• BEC is statistical effect, no interaction needed
• BEC is macroscopic population of a single quantum 

state, the q=0 mode
• quantum degeneracy condition: 
• True BEC at finite temperature only in d=3

Eq

q

• Now: more realistic description of ultracold Bose systems
- Trapping potential
- Interactions

�dB = (2⇥�2/mkBT )1/2
d = n�1/3

�dB � d



Trapping Potential and Weak Interactions

• Now we aim at a more realistic description of cold atomic gases:

- Trapping potential: the local density experiences a local potential energy 

• So far: free particles in homogeneous space, continuum limit : 

- Local two-body interactions: 

Remark: this is just a collection of local harmonic oscillators: exactly solvable

• Our workhorse Hamiltonian is  

H0 = H � µN̂ =
⇤

q
a†q

� q2

2m
� µ

⇥
aq =

⇤

x
a†x

�
� ⇥

2m
� µ

⇥
ax

aq =
�

x
eiqxax; [ax, a†y] = �(x� y)after Fourier transform

Htrap =
�

x
V (x)n̂x, V (x) = 1

2m�2x2

Hint =
�

x,y
g�(x� y)n̂xn̂y = g

�

x
n̂2
x

H = H0 + Htrap + Hint

V (x)

d

contact interaction



Microscopic Origin of the Interaction Term

• General properties of LJ type potentials at low energies:
- isotropic s-wave scattering dominates; the scattered wave function behaves asymptotically as 
- a is the scattering length. Knowledge of this single parameter is sufficient to describe low 

energy scattering!
- within Born approximation, it can be calculated as 

➡very different interaction potentials may have the same scattering length!

Example: Na atom (Alkali atoms)

• Microscopic scattering physics: Lennard-Jones (LJ) potential
- 1/r12 hard core repulsion: repulsion of electron clouds rrep = O(aB)

- 1/r6 attraction: van der Waals (induced dipole-dipole interaction)
rvdW = (50...200)aB for alkalis: typ. order of magnitude for interaction length scale

The Sodium atom has one valence electron outside a closed shell.

The ground state has the configuration 1s2 2s2 2p6 3s.

We order the interactions according to the importance:

Electron - nucleus and electron - electron interaction

Wave function of the atom as a many electron system:

Ψ = Φcore
unℓ(r)

r
Yℓm(θ, φ)

with core wave function (filled shell) and u(r) the radial wave function of the valence elec-
tron.

The antisymetrization of the wave function can be ignored (core wave function and valence
electron wave function do not overlap).The description of the valence electron becomes a
single electron problem.

�(x) � a/x

aBorn �
�

x
U(x)

interatomic potential

true interatomic 
potential U(x)

x

model potential with 
same scattering length



• Efficient description by an effective Hamiltonian with few parameters.

• For ultracold bosonic alkali gases, a single parameter, the scattering length a, is 
sufficient to characterize low energy scattering physics of indistinguishable particles : 
Effective interaction

• A typical order of magnitude for the scattering length is 

• The validity of the model Hamiltonian is restricted to length scales 

• For bosons, we must restrict to repulsive interactions a > 0 (else: bosons seek solid 
ground state, collapse in real space)

• So far: microscopic description; now: many body scales!

The Model Hamiltonian as an Effective Theory

H =
⇧

x

⇤
a†x

�
� ⇥

2m
� µ + V (x)

⇥
ax + gn̂2

x

⌅

a = O(rvdW ), rvdW (50...200)aB

g =
8⇡~2
m

a

l & rvdW



Validity of our Hamiltonian: Scales in Cold Dilute Bose Gases

 Summary of length scales

length scattering length interparticle sep. de Broglie w.l. trap size

(0.05 ... 0.2)10^3 (0.8 ... 3)10^3 (10 ... 40)10^3 (3 ... 300)10^3

weak interactions/
dilute gases 

quantum degeneracy  phys. meaning of the 
ratio: local density approximation 

valid  

a/aB d/aB �dB/aB losc/aB

�dB = (2⇥�2/mkBT )1/2 d = n�1/3

2a

a� d� �dB

aB = 5.3⇥ 10�2nm Bohr radius

Complement: Real Atoms

Wave function of the atom as a many electron system:

Ψ = Φcore
unℓ(r)

r
Yℓm(θ,φ)

with core wave function (filled shell) and u(r) the radial wave function of the valence elec-
tron.

The antisymetrization of the wave function can be ignored (core wave function and valence
electron wave function do not overlap).The description of the valence electron becomes a
single electron problem.

• The effective Hamiltonian is valid because none of many-body length scales can re-
solve interaction length scale

• Many-body scales: density and temperature in terms of length scales.
- diluteness a/d ≪ 1 (d = n−1/3)

∗ dilute means weakly interacting: interaction energy gn ∼ a/d · d−2

∗ clear: three-body interaction terms irrelevant
- quantum degeneracy: d/λdB ≪ 1 (λdB = (2π!2/mkBT )1/2)

- trap frequencies: λdB/losc ≪ 1 (losc = 1/
√

m/2ω)

:



Violations of the scale hierarchy

• With Feshbach resonances, violation of a/d << 1 possible: Dense degenerate system 
• With optical lattices, a new length and a new energy scale are introduced: 
• lattice spacing = wavelength of light: high densities (“fillings) become available 

• lattice depth: Kinetic energy is withdrawn more strongly than interaction energy: “strong correlations”

• With Feshbach resonances, violation of a/d << 1 possible: “Strong interactions” • With Feshbach resonances, violation of a/d << 1 possible: “Strong interactions” 

• NB: Despite violation of scale hierarchy for dilute quantum gases, we will be able to 
give accurate microscopic models

interaction scale

• Generic sequence of scales and possible violations:

Feshbach resonance

de Broglie wavelength (Oscillator length of trap)interparticle spacing

• Both leads to the possibility of “strong interactions/correlations” as we will see

or 
optical lattice spacing



BEC Phenomenology: Gross-Pitaevski Equation

• Heisenberg Equation of motion for the field operator:

Gross-Pitaevski Equation

➡ Nonlinear partial differential 
operator equation...

Example: Na atom (Alkali atoms)

• Microscopic scattering physics: Lennard-Jones (LJ) potential
- 1/r12 hard core repulsion: repulsion of electron clouds rrep = O(aB)

- 1/r6 attraction: van der Waals (induced dipole-dipole interaction)
rvdW = (50...200)aB for alkalis: typ. order of magnitude for interaction length scale

• Simplifications:
- T = 0, no interactions: whole density sits in the condensate: ψ0 =

√
N

- T = 0, weak interactions (a/d ≪ 1): expect ψ0 ≈
√

N
- we can formalize this:

The Sodium atom has one valence electron outside a closed shell.

The ground state has the configuration 1s2 2s2 2p6 3s.

We order the interactions according to the importance:

Electron - nucleus and electron - electron interaction

Wave function of the atom as a many electron system:

Ψ = Φcore
unℓ(r)

r
Yℓm(θ, φ)

ax = ⇥0(x)a0 +
�

q�=0

⇥q(x)aq = ⇥0(x)a0 + �ax

complete set of 
orthogonal functions

- macroscopic occupation of zero mode implies: commutator 
irrelevant, replace with classical c-numbers 

- Insert into Heisenberg EoM, keep only terms O(
⇤

N)� 1

i@t'(x, t) =
�
� ~2

2m
4� µ+ V (x) + g'⇤(x, t)'(x, t)

�
'(x, t)

ha†0a0i ⇡ ha0a†0i ⇡ N ⇡ ha†0iha0i, thus a0 !
p
N ; '(x, t) := �0(x, t)

p
N

'0

'0

@tax(t) = i[H, a
x

] = �i
�
� 4

2m
� µ+ V (x) + ga†

x

a
x

�
a
x



Macroscopic wave function
• Gross-Pitaevski Equation :

• Interplay of quantum mechanics and nonlinearity: quantized 
vortex solutions

• Properties:
- Classical field equation (cf. classical electrodynamics vs. QED) 
- for g = 0, or single particle: formally recover linear Schrödinger equation -> expect 

quantum behavior; interpret      as “macroscopic wave function”
- however, in general nonlinear -> richer than Schrödinger equation

0 = � �2

2m

�
f” +

f �

r
� ⇥2f

r2

⇥
� µf + gf3 f(r)

rvortex solution

- large distances: constant solution, determine chemical pot. 
- short distances: condensate amplitude must vanish due to 

centrifugal barrier, in turn rooted in the quantization of the 
phase

- uniform case V(x) = 0, search static cylinder symmetric symmetric solutions 
with no z dependence: 

- GP equation: 

integer, such that phase 
returns after 2 pi: unique Wave 
function
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• homogeneous case: plane wave expansion of field operator

Quantum Fluctuations: Bogoliubov Theory

• Grand canonical Hamiltonian. Take the fluctuations into account to leading order: 

• Bose and Einstein (1925): Equation below Tc needs modification due to macroscopic
occupation of zero mode:

n = ⟨a†
0a0⟩ +

ddq

(2π)d

1

e
q^2

2mkBT − 1

- plausible: Bosons can populate single quantum state with arbitrary number
- macroscopic: N0 = ⟨a†

0a0⟩ = O(N) ∝ V , i.e. extensive
- critical temperature: determined by

nλ3
dB = g3/2(1) = ζ(3/2) ≈ 2.612

- zero order: homogenous mean field reproduced
- linear terms: vanishes upon proper choice of the chemical potential (equilibrium condition) µ = gn0

- quadratic part:

Electron - nucleus and electron - electron interaction

Wave function of the atom as a many electron system:

Ψ = Φcore
unℓ(r)

r
Yℓm(θ, φ)

with core wave function (filled shell) and u(r) the radial wave function of the valence elec-
tron.

choice of zero phase without 
loss of generality

(�0(x)a0 = 1/
p
V
p
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p
n0)
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(2)
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X
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Eq

q

- Off-diagonal terms: pairwise creation/annihilation out of the condensate
- Coupling of modes with opposite momenta 
- Hamiltonian not diagonal in operator space: diagonalize to find spectrum 

and elementary excitations

• Discussion:

Quantum Fluctuations: Bogoliubov Theory

• quadratic Bogoliubov Hamiltonian:

• Remarks:
- An equivalent approach linearizes Heisenberg EoM around homog. GP mean field 
- Validity: The ordering principle is given by the power of the condensate amplitude. 

Bogoliubov theory is not a systematic perturbation theory in U but becomes good 
at weak coupling

=
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phonons

particles

• Diagonalization in operator space: Bogoliubov transformation

• The transformation coefficients are chosen to make any off-diagonal contribution in 
terms of new operators vanish. They can be chosen real and evaluate to 

Bogoliubov Quasiparticles

-       creates a quasiparticle excitation and 
- Their dispersion is 
- At low momenta, this is linear and gapless
- At high momenta, like free particles: quadratic

Example: Na atom (Alkali atoms)

• Microscopic scattering physics: Lennard-Jones (LJ) potential
- 1/r12 hard core repulsion: repulsion of electron clouds rrep = O(aB)

- 1/r6 attraction: van der Waals (induced dipole-dipole interaction)
rvdW = (50...200)aB for alkalis: typ. order of magnitude for interaction length scale

• Simplifications:
- T = 0, no interactions: whole density sits in the condensate: ψ0 =

√
N

- T = 0, weak interactions (a/d ≪ 1): expect ψ0 ≈
√

N
- we can formalize this:
- The operator a†

q creates a particle in the momentum mode q : a†N
q |vac⟩ =

p

(N + 1)!|nq = N⟩.
Similarly, aq annihilates a particle in the mode q.

- The operators satisfy bosonic commutation relations, [aq, a†
q′ ] = δ(q−q′) (cf. harmonic oscillator ladder

operators, but with an index label q).
- The operator nq = a†

qaq measures the particle number in the momentum mode q. The total particle
number is N̂ =

P

q a†
qaq.

- The dispersion relation is Eq = !ω = q2

2m . This is the energy of a single particle in the mode q.

- The trafo be canonical, [α , α†
′ ] = δ( − ′), thus u2

q − v2
q = 1.

• Lower T and study the behavior of µ at fixed n (2D):
• Lower T and study the behavior of µ at fixed n (3D):
• At a finite T , µ hits zero: below this Tc the equation of state has no solution

Example: Na atom (Alkali atoms)

• Microscopic scattering physics: Lennard-Jones (LJ) potential
- 1/r12 hard core repulsion: repulsion of electron clouds rrep = O(aB)

- 1/r6 attraction: van der Waals (induced dipole-dipole interaction)
rvdW = (50...200)aB for alkalis: typ. order of magnitude for interaction length scale

• Simplifications:
- T = 0, no interactions: whole density sits in the condensate: ψ0 =

√
N

- T = 0, weak interactions (a/d ≪ 1): expect ψ0 ≈
√

N
- we can formalize this:
- The operator a†

q creates a particle in the momentum mode q : a†N
q |vac⟩ =

p

(N + 1)!|nq = N⟩.
Similarly, aq annihilates a particle in the mode q.

- The operators satisfy bosonic commutation relations, [aq, a†
q′ ] = δ(q−q′) (cf. harmonic oscillator ladder

operators, but with an index label q).
- The operator nq = a†

qaq measures the particle number in the momentum mode q. The total particle
number is N̂ =

P

q a†
qaq.

- The dispersion relation is Eq = !ω = q2

2m . This is the energy of a single particle in the mode q.

- The trafo be canonical, [α , α†
′ ] = δ( − ′), thus u2

q − v2
q = 1.

• Lower T and study the behavior of µ at fixed n (2D):
• Lower T and study the behavior of µ at fixed n (3D):
• At a finite T , µ hits zero: below this Tc the equation of state has no solution
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speed of sound

• Result: Collection of harmonic oscillators. New operators: 
elementary excitations on Bogoliubov ground state: quasiparticles

⇠q = ✏q + gn0, ✏q = q2

2M

Eq =
q

2gn0✏q + ✏2q
q!0! c|q|, c =

q
gn0

m

• Rewrite the Hamiltonian with new operators and do normal ordering

quasiparticle dispersion

↵†
q ↵q|0Bog

i = 0

H = V gn2

2 � 1
2

X

q 6=0

(✏q + gn0 � Eq) +
X

q 6=0

Eq↵
†
q↵q

u2
q = 1

2 (
⇠q
Eq

+ 1), v2q = 1
2 (

⇠q
Eq

� 1) Eq =
q
⇠2q � ✏2q



Energy Correction and  Density Depletion

• Physical effects due to quantum fluctuations: 
• Correction to the total energy:

expand in quasiparticle operators

smallness parameter recovered

interpretation: particles kicked out of condensate

• Depletion of the condensate (via normal ordering of the particle number operator): 

E/V = h0
Bog

|H|0
Bog

i/V = gn

2

2 � 1
2

Z
d

3
q

(2⇡)3 (✏q + gn0 � Eq)

- Problem: linear high momentum UV divergence
- Reason: too naive treatment of interactions: formally assumed to be constant up to arbitrarily 

large momenta
- Cure: UV renormalization of interaction (will perform such program explicitly for fermions later)
- Result: 

interpretation: interaction energy kinetic energy from modes 
outside the condensate

E/V = gn2

2 (1 + 128
15⇡1/2 (na

3)1/2)

n = n0 +

Z

q
ha†qaqi = n0 +

Z

q
v2q ! n� n0

n
⇡ 8

3
p
⇡
(na3)1/2

na3 = (a/d)3

g = 8⇡a
M



Phonon Mode and Superfluidity

• Landau criterion of superfluidity: frictionless flow
- Gedankenexperiment: move an object through a liquid with velocity v. 
- Landau: the creation of an excitation with momentum p and energy      is energetically 

unfavorable if    

➡in this case, the flow is frictionless, i.e. superfluidity is present

•   Weakly interacting Bose gas: Superfluidity through linear phonon excitation 

•   Free Bose gas: No superfluidity due to soft particle excitations

➡Superfluidity is due to linear spectrum of quasiparticle excitations

phonons

particles

v < vc =
✏p
p

✏p =
p2

2m
! vc = 0

✏p = c|p|, c =
q

gn0

m ! vc = c

✏p



Idea of Landau Criterion

• Consider moving object in the liquid ground state of a system
• Question: When is it favorable to create excitations?

ground state system

moving objectv

• General transformation of energy and momentum under 
Galilean boost with velocity v

• Energy and momentum of the ground state 

⌃

⌃0

• Energy and momentum of the ground state plus an excitation with momentum, energy  p, ✏p

• Creation of excitation unfavorable if 

⌃ : E
ex

= E
0

+ ✏p, p
ex

= p

⌃ : E, p

E0
ex

� E0
0

= ✏p � pv � ✏p � |p||v| > 0 ) v < vc =
✏p
p

⌃0 : E0 = E � pv + 1
2Mv2, p0 = p�Mv

total system mass

⌃0 : E0
ex

= E
0

+ ✏p � pv + 1

2

Mv2, p0
ex

= p�Mv

⌃0 : E0
0 = E0 +

1
2Mv2, p0

0 = �Mv

E0, p0 = 0w/o moving object

with moving object

with moving object

w/o moving object

with moving object

w/o moving object



Summary

• The basic phenomenon of Bose-Einstein condensation is a statistical effect, not 
driven by interactions.

• Ultracold bosonic quantum gases realize a situation close to that: model 
Hamiltonians with weak, local, repulsive interactions.

• Important scale hierarchy: 

• In consequence, such systems are well described by relatively simple 
approximations: at T=0, the physics is well understood in terms of GP equation + 
quadratic fluctuations.

• GP mean field equation = nonlinear Schrödinger equation for macroscopic wave 
function (hallmark: quantized vortices).

• Bogoliubov theory encompasses quadratic fluctuations around GP mean field and 
explains superfluidity through existence of phonon mode.

a� d� �dB



Tutorial: 
Functional Integrals 

and 
Effective Action

Z = tre��Ĥ =

Z
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Feynman’s formulation of quantum mechanics



Functional Integrals for Statistical Mechanics

overlap and normalization

completeness

Formula Summary: Functional Integrals I

• Some familiarity with functional integrals is assumed but we refresh our knowledge:
• Given a grand canonical Hamiltonian , e.g. with general two-body interactions,

H − µN̂ =
∑

ij

(hij − µδij)a
†
iaj +

∑

ijkl

Vijkla
†
ia

†
jakal

• Quantum partition function

Z = tre−β(H−µN̂) =
∑

{n}∈Fock space

⟨n|e−β(H−µN̂)|n⟩, β = 1/kBT

• Here the partition function is represented in Fock space. We now perform a basis change to coherent
states leading to the functional integral

• Coherent states (bosons) – eigenstates to the annihilation operators ai:

ai|φ⟩ = φi|φ⟩, ⟨φ|a†i = ⟨φ|φ∗
i

|φ⟩ = e
∑

i
φia

†
i |vac⟩

⟨θ|φ⟩ = e
∑

i
θ∗
i φi , ⟨φ|φ⟩ = e

∑
i
φ∗
i φi

1Fock =
´

∏

i
dφ∗

i dφi

π e−
∑

i φ
∗
iφi |φ⟩⟨φ|

• Note: The creation operators do not have eigenstates

explicit form• properties:

normally ordered



Functional IntegralsFormula Summary: Functional Integrals II

• Insert identity into quantum partition function

Z = tre−β(H−µN̂) =
∑

{n}∈Fock space⟨n|e−β(H−µN̂)|n⟩
=
´

D(φ∗,φ)e−
∑

i φ
∗
iφi⟨φ|e−β(H−µN̂)|φ⟩, D(φ∗,φ) ≡

∏

i
dφ∗

i dφi

π

• For a normal ordered HamiltonianH(a†i , ai)−µN̂(a†i , ai), we can apply the Feynman strategy of dividing
the (imaginary) time interval β into N segments∆β = β/N . Note |φn=0⟩ = |φn=N ⟩ – periodic boundary
conditions

• Inserting the identity 1Fock =
´

D(φ∗
n,φn)e

−
∑

i φ
∗
i,nφi,n |φn⟩⟨φn| after each time step, the respective

matrix elements can be calculated explicitly due to the smallness of ∆β with result

Z =

ˆ N
∏

n=0

D(φ∗
n,φn)e

−
∑N

n=0
[
∑

i φ
∗
i,n(φi,n−φi,n−1)+∆β(H(φ∗

i,n,φi,n−1)−µN(φ∗
i,n,φi,n−1))

- Here, H − µN is a function of classical, but fluctuating variable.
- The additional index n labels the (imaginary) time evolution. Continuum notation for N → ∞:

∆β
N
∑

n=0

→
ˆ β

0
dτ, φi,n → φi(τ),

φi,n − φi,n−1

∆β
→ ∂τφi(τ),

N
∏

n=0

D(φ∗
n,φn) → D(φ∗,φ)



Functional IntegralsFunctional Integrals III

• Continuum notation for the imaginary time dependence

Z =
´

D(φ∗,φ)e−S[φ∗,φ]

S[φ∗,φ] =
´ β
0 dτ

[
∑

i φ
∗
i (τ)(∂τ − µ)φi(τ) +H [φ∗,φ]

H [φ∗,φ] =
∑

ij hijφ∗
i φj +

∑

ijkl Vijklφ∗
i φ

∗
jφkφl

]

• S is the “classical” or “microscopic” action
• Continuum notation for the discrete indices:

- interpret indices as spatial indices
- consider local density-density interactions Vijkl = vδikδjlδil and hij such that it describes kinetic

energy (1D)
H [φ∗,φ] =

∑

ij

h(φ∗
i+1 − φ∗

i )(φi+1 − φi) + v
∑

i

(φ∗
i φi)

2

- the sites i, i+1 be separated by a distance a. The continuum limit a → 0 obtains for fixed ϕ(τ, x) =
a−1/2φi(τ), 1/2M = ha2, g/2 = va , such that

S[ϕ∗,ϕ] =
´ β
0 dτdx[ϕ∗(τ, x)(∂τ − △

2M − µ)ϕ(τ, x) + g
2 (ϕ

∗(τ, x)ϕ(τ, x))2]

• S is the “classical” or “microscopic” action of nonrelativistic continuum bosons with local interaction in
one spatial dimension



Finite temperatures and Matsubara frequencies

'(⌧ = �, x) = '(⌧ = 0, x) � = 1/T

Matsubara torus

Finite temperatures and Matsubara frequencies

• Unlike the spatial integrations, the imaginary time integrations are restricted to a finite interval
• For bosons, we have used periodic boundary conditions, i.e. ϕ(τ = β, x) = ϕ(τ = 0, x)

• This gives rise to a discreteness in the frequency domain (cf. particle in a box problem) for finite
β < ∞ (T > 0): Matsubara modes

ϕ(τ, x) = T
∑

n ϕ(ωn, x)eiωnτ , ϕ(ωn, x) =
´

dτϕ(τ, x)e−iωnτ ,

ωn = 2πnT

• E.g. the free part of the action reads (β−1
´ β
0 dτei(ωn−ωm)τ = δωn,ωm

)

S[ϕ∗,ϕ] =
∑

n

T

ˆ

dx[ϕ∗(ωn, x)(iωn − △
2M − µ)ϕ(ωn, x)]

• In the zero temperature limit, the frequency spacing ∆ω = 2πT → 0 and the Matsubara summation
goes over into a continuum Riemann integral,

∑

n T →
´

dω
2π



Formula summaryFormula Summary

• Functional integral representation of the quantum partition function for ultracold bosons (3D):

Z =
´

D(ϕ∗,ϕ)e−S[ϕ∗,ϕ]

S[ϕ∗,ϕ] =
´ β
0 dτ

[(´

d3xϕ∗(τ,x)(∂τ − µ)ϕ(τ,x)
)

+H [ϕ∗(τ,x),ϕ(τ,x)]
]

=
´ β
0 dτ

´

d3x
[

ϕ∗(τ,x)(∂τ − △
2M − µ)ϕ(τ,x) + g

2 (ϕ
∗(τ, x)ϕ(τ, x))2

]

• Discussion:
- The validity of the microscopic action is based on the validity of the microscopic Hamiltonian
- The boson fields ϕ∗,ϕ are commuting but temporally and spatially fluctuating complex numbers

• Fermions: The same form of the microscopic action is obtained when representing the partition function
for continuum fermion fields ψ. Important differences are:
- Additional spin index, for two-component fermions: ψ(τ,x) = (ψ↑(τ,x),ψ↓(τ,x))T

- Due to the anticommutation relations of the fermion operators, the fermionic fields are anticommut-
ing Grassmann numbers,

{ψσ(τ,x),ψ
∗
σ′ (τ,x)} = {ψσ(τ,x),ψσ′ (τ,x)} = {ψ∗

σ(τ,x),ψ
∗
σ′ (τ,x)} = 0

- They obey antiperiodic boundary conditions in imaginary time ψσ(τ = β, x) = −ψσ(τ = 0, x), thus
ωn = (2n+ 1)πT

- Obviously, these properties will strongly affect the concrete evaluation of the functional integrals



From the Partition Function to the Effective ActionFrom the Partition Function to the Effective Action

• We have stored the information on the many-body system in the partition function

Z =
´

D(ϕ∗,ϕ)e−S[ϕ∗,ϕ]

• Of interest are the low order correlation functions such as e.g. ⟨ϕ(τ,x)ϕ∗(0,0)⟩
• They can be calculated from introducing (imaginary time and space dependent) artificial sources into

the partition function:

Z → Z[j∗(τ,x), j(τ,x)] =

ˆ

D(ϕ∗,ϕ)e−S[ϕ∗,ϕ]+
´

τ,x
(j∗(τ,x)ϕ(τ,x)+j(τ,x)ϕ∗(τ,x))

• and taking (functional) derivatives evaluated at vanishing sources, e.g.

⟨ϕ(τ,x)ϕ∗(0,0)⟩ = δ2Z

δj∗(τ.x)δj(0,0)

∣

∣

∣

j=j∗=0

• Remarks:
- functional derivatives are defined with δf(x)/δf(y) = δ(x − y) plus the standard algebraic rules for

differentiation
- successive differentiation generates the “disconnected correlation functions”. The free energy

W [j∗, j] = logZ[j∗, j]

generates the “connected correlation functions”

Lecture 4 starts here 



From the Partition Function to the Effective Action

From the Partition Function to the Effective Action II

• The information accessible from Z[j∗, j] orW [j∗, j] via derivatives wrt an unphysical source (j∗, j)

• There is a way to store the information in a more intuitive way: Legendre transform of W (cf. classical
mechanics, or thermodynamics)

Γ[φ∗,φ] = −W [j∗, j] +

ˆ

j∗φ+ jφ∗, φ(τ,x) =
δW [j∗, j]

δj(τ,x)
= ⟨ϕ(τ,x)⟩

• Properties and Discussion:
- The Legendre transform implements a change of the active variable (j∗, j) → (φ∗,φ)
- The expectation value φ = ⟨ϕ⟩ is called the classical field. For ultracold bosons, it has a direct

physical interpretation in terms of the condensate mean field
- The effective action carries the same information as Z and W , only organized differently. It gener-

ates the one-particle irreducible correlation functions



From the Partition Function to the Effective Action

From the Partition Function to the Effective Action III

• The effective action has a functional integral representation

exp−Γ[φ∗,φ] =

ˆ

D(δϕ∗, δϕ) exp−S[φ∗ + δϕ∗,φ+ δϕ],
δΓ[φ∗,φ]

δφ(τ,x)
= j(τ,x) = 0

• Discussion
- NB: Action principle is leveraged over to full quantum status
- The effective action can be understood “classical action plus fluctuations”. It lends itself to semi-

classical approximations (small fluctuations around a mean field)
- Symmetry principles are leveraged over from the classical action to full quantum status

(see below)



Effective Action and Propagator
additional material

Effective Action and Propagator

• A useful property: The second derivative of the effective action is the inverse propagator
• Consider a propagation amplitude (in matrix notation)

Gij = ⟨δϕiδϕj⟩ =
δ2W

δjiδjj
= W (2)

ij

the indices could stand for e.g. ⟨δϕ(τ,x)δϕ∗(0,0)⟩
• The above statement is then poperly formulated as the identity

∑

k

Γ(2)
ik Gkj = δij

• Proof:
∑

k

Γ(2)
ik Gkj =

∑

k

δ2Γ

δφiδφk

δ2W

δjkδjj
=

∑

k

δ2Γ

δφiδφk

δφk

δjj
=

δ2Γ

δφiδjj
=

δji
δjj

= δij

we have used the chain rule and the field equation for the effective action δΓ/δφi = ji



Functional Integral 
for 

Weakly Interacting Bosons



Some Introductory Remarks

• This section develops the theory of low temperature weakly interacting boson 
degrees of freedom from the functional integral point of view. The aim is threefold:

(1) Reproduce the results of Gross-Pitaevski and Bogoliubov theory 

(2) Get some familiarity with the functional integral: symmetries, approximations, etc.
(3) The emergence of bosonic quasiparticles at low energies is ubiquitous in a large 

variety of low temperature quantum systems:

- The concept of quasiparticles/ effective low energy theories is particularly accessible 
in the functional integral formulation 

- Examples of emergent bosonic low energy theories: 

• BCS theory (Cooper pairs)

• Even more explicitly, BCS-BEC crossover (bound states of fermions: molecules)
• spin waves in magnetic lattice systems

- A rather universal understanding of such theories is crucial, and accessible within the 
framework developed here



• Quantum equation of motion: action principle for the Effective Action

Recovering the Gross-Pitaevski Equation

• explicitly:

0 = (@⌧ � 4
2M

� µ)h'(X)i+ gh'⇤(X)'2(X)i

= �(X)

➡ in general, needs information on 3-point correlation, which needs information on 5-
point correlation...: infinite hierarchy 

• however, at very low temperature and weak interaction: '(X) = �(X) + �'(X)

O(V 0) O(V �1/2)

➡ GP Approximation: neglect O(V �1/2)

0 = (@⌧ � 4
2M

� µ)�(X) + g�⇤(X)�2(X)

➡ “imaginary time” GP equation

0 =
��

��⇤(X)
/

Z
D(�'⇤, �')

h �S

��⇤(X)

i
e�S[�+�']

X = (⌧,x)



Recovering the Gross-Pitaevski Equation

Im

ReComplex time plane

t

⌧ = it Im

ReComplex energy plane

!E = i!M

!M

Wick rotations

note
!M · t = �!E · ⌧

Recovering the Gross-Pitaevski Equation

• We consider the imaginary time classical action S and and view it as being analytically continued from
the real axis (at T = 0 or β → ∞):

τ → it, φ(τ,x) → φ̃(t,x) ⇒
S[φ∗,φ] → iS[φ̃∗, φ̃] = i

´

dt
´

d3x
[

φ̃∗(t,x)(−i∂t − △
2M − µ)φ̃(t,x) + g

2 (φ̃
∗(t, x)φ̃(t, x))2

]

• We derive the field equation of motion for the real time classical action δS/δφ̃∗(t,x) = 0

i∂tφ̃(t,x) =
(

− 1
2M△− µ+ gφ̃∗(t,x)φ̃(t,x)

)

φ̃(t,x)

• This is precisely the Gross-Pitaevski equation for a weakly interacting Bose-Einstein condensate
• Remark: “classical” refers to the absence of fluctuations. Physically, the global phase coherence

implied in this equations is a quantum mechanical effect, with observable consequences: cf. discussion
of quantized vortices

• Indeed, time was introduced rather formally. But the connection to real times is readily made: 

(see below for more discussion)



Symmetries of the Microscopic Action
Symmetries of the microscopic action

• Gross-Pitaevski action:

S[φ̃∗, φ̃] =

ˆ

dt

ˆ

d3x
[

φ̃∗(t,x)(−i∂t − △
2M − µ)φ̃(t,x) + g

2 (φ̃
∗(t, x)φ̃(t, x))2

]

• Symmetries:
- Most important is the invariance under global phase rotations U(1). Such transformation is imple-

mented by φ̃(τ,x) → eiθφ̃(τ,x), φ̃∗(τ,x) → e−iθφ̃∗(τ,x).
- The associated conserved Noether charge (of the full effective action) is the total particle number

N =
´

d3x⟨ϕ∗(0,x)ϕ(0,x)⟩ (NB: needs U(1) symmetry plus linear time derivative)
- Further continuous “equilibrium” symmetries: time and space translation invariance (energy and

momentum conservation) and Galilean invariance (center of mass momentum)



Mean Field Action and Spontaneous Symmetry Breaking

• Homogeneous action: time- and space independent amplitudes (                        -- quantization 
volume)

• homogeneous GPE or equilibrium condition:

• Geometrical interpretation: Mexican hat potential

• for the ground state, the system chooses spontaneously the 
direction: spontaneous symmetry breaking (symmetry: global 
phase rotations U(1))

• Radial (amplitude) excitations: cost energy, gapped mode

• angular (phase) excitations: no energy cost due to 
degeneracy, gapless Goldstone mode

➡ The radial (amplitude) and angular (phase) excitations can be identified explicitly in the quadratic 
fluctuations. En route of showing this, recover Bogoliubov theory

➡ The Goldstone mode is not an artifact of Mean Field but will be established as an exact property

Z
d⌧d

3
x = V/T

0 =
@S

@�
=

�
� µ+ g�⇤�

�
� ) �µ = �g�⇤� < 0

-- negative curvature at origin

p
�⇤
0�0 ⇡

p
N

S(�⇤,�) = V/T (�µ�⇤�+ g
2 (�

⇤�)2)

S(�⇤,�)

�⇤ �

• Next steps:



Quadratic Fluctuations: Recovering Bogoliubov Theory 

Quadratic fluctuations: Recovering the Bogoliubov Theory I

• We go one step beyond the classical limit and include quadratic fluctuations on top of the mean field
• Expansion of S in powers of (δϕ∗, δϕ) around (δϕ∗, δϕ) = (0, 0) yields the approximate effective action

(saddle point approximation):

Γ[φ∗,φ] = − log
´

D(δϕ∗, δϕ) exp−S[φ∗ + δϕ∗,φ+ δϕ]

≈ S[φ∗,φ]− log
´

D(δϕ∗, δϕ) exp− 1
2

´

(δϕ, δϕ∗)S(2)[φ∗,φ]

(

δϕ
δϕ∗

)

Here, we have used the field equation δS/δ(δϕ) = δS/δφ = 0

• We restrict to the homogeneous case φ(τ,x) = φ0

➡ specify �0
➡ specify S(2)



-- diagonal in momentum space

Quadratic fluctuations: Recovering the Bogoliubov Theory II

• Homogenous case:
- The field equation (in general: GPE) reduces to an equilibrium condition determining the chemical

potential
0 =

δS

δφ

∣

∣

∣

hom.
= (−µ+ gφ∗

0φ0)φ
∗
0

For small enough T and g, |φ0| ̸= 0 such that at equilibrium

µ0 = gφ∗
0φ0.

Coincides with Bogoliubov Theory
- It is favorable to work in frequency and momentum space. There, the exponent reads explicitly

(Q = (ωn,q),
´

Q =
∑

n T
´ d3q

(2π)3 ):

S(2)(φ∗,φ) =
(

→
δ

δ(δϕ)(−Q) ,
→
δ

δ(δϕ∗)(Q)

)

S

⎛

⎝

←
δ

δ(δϕ)(K)
←
δ

δ(δϕ∗)(−K)

⎞

⎠ ∝ δ(K −Q)

=⇒ 1
2

´

Q

(

δϕ(−Q), δϕ∗(Q)
)

(

gφ∗2
0 −iωn +

q2

2M − µ+ 2gφ∗
0φ0

iωn +
q2

2M − µ+ 2gφ∗
0φ0 gφ2

0

)

(

δϕ(Q)
δϕ∗(−Q)

)

- NB: The frequency-independent part of the matrix coincides with Bogoliubov theory
- This is a quadratic form leading to a Gaussian functional integral. A technique to evaluate it is

discussed below

(see above)

Quadratic Fluctuations: Recovering Bogoliubov Theory 



Phase and Amplitude Fluctuations
Phase and Amplitude Fluctuations I

• We analyze the quadratic action for the boson fluctuations, using −µ = gφ∗φ

SF [δϕ
∗, δϕ] =

1

2

ˆ

Q

(

δϕ(−Q), δϕ∗(Q)
)

(

gφ∗2
0 −iωn + ϵq + gφ∗

0φ0

iωn + ϵq + gφ∗
0φ0 gφ2

0

)(

δϕ(Q)
δϕ∗(−Q)

)

• We perform a change of basis (real and imaginary parts),

δϕ1(Q) = (δϕ∗(−Q) + δϕ(Q))/
√
2, δϕ2(Q) = i(δϕ∗(Q)− δϕ(−Q))/

√
2

• The action in the new coordinates reads (ρ0 = φ∗
0φ0 and we choose φ real without loss of generality)

SF [δϕ1, δϕ2] =
1

2

ˆ

Q

(

δϕ1(−Q), δϕ2(Q)
)

(

ϵq + 2gρ0 −ωn

ωn ϵq

)(

δϕ1(Q)
δϕ2(−Q)

)

➡ Phase and amplitude couple asymetrically to the homogenous “gap” term 
➡ Frequency couples phase and amplitude

2g⇢0

NB: signs due to reality �'i(Q)⇤ = �'i(�Q)



Phase and Amplitude Fluctuations

Bottom of Mexican 
hat potential

Mexican hat potential

Phase and Amplitude Fluctuations II

• Action in terms of real fields:

SF [δϕ1, δϕ2] =
1

2

ˆ

Q

(

δϕ1(−Q), δϕ2(Q)
)

(

ϵq + 2gρ0 −ωn

ωn ϵq

)(

δϕ1(Q)
δϕ2(−Q)

)

• Discussion:
- Real part corresponds to amplitude fluctuations (see figure) and is gapped (massive) with 2gρ0
- Imaginary part corresponds to phase fluctuations and is gapless (massless)
- The dispersion relation obtains from the poles of the propagator G, or the zeroes of S(2) = G−1

(analytically continued to real continuous frequencies E = iωn)

detG−1(E = iω,q)
!
= 0 ⇒ Eq =

√

ϵq(ϵq + 2gρ0)

reproduces the Bogoliubov excitation spectrum with Eq ≈ c|q|, c =
√

gρ0/M for q → 0

⌘ G�1(!n,q) inverse Green’s function

the coupled equations of motion for the fluctuations 



Phase-Only ActionPhase-Only Action

• If we are interested in the physics at very low momenta/energies E ≪ gρ0, we can integrate out the
amplitude mode:

ˆ

Dδϕ1Dδϕ2 exp−SF [δϕ1, δϕ2] = N
ˆ

Dδϕ2 exp−Sph[δϕ2]

• This is done by completing the square in the exponent. The phase-only action reads

Sph[δϕ2] =
1

4gρ0

ˆ

Q
δϕ2(Q)(ω2 + c2q2)δϕ2(−Q)

• Discussion:
• This action has a relativistic dispersion E2 = c2q2 (analytic continuation), with speed of sound c =

√

gρ0/M

• The speed of sound is also obtained from the limit q → 0 on the full dispersion relation. Now, we have
found the interpretation of the linear dispersion in terms of phase fluctuations

• Conceptually, the low momentum dispersion can be obtained by diagonalization (cf. Bogoliubov operator 
approach) or by integrating out the fast/gapped modes (renormalization). The low frequency result is the 
same.
➡ diagonalization keeps the full information of the spectrum, but may be intractable for interacting 

problems
➡ renormalization drops high momentum information partially, but may be rather efficient for interacting 

problems



Phase-Only ActionPhase-Only Action

• If we are interested in the physics at very low momenta/energies E ≪ gρ0, we can integrate out the
amplitude mode:

ˆ

Dδϕ1Dδϕ2 exp−SF [δϕ1, δϕ2] = N
ˆ

Dδϕ2 exp−Sph[δϕ2]

• This is done by completing the square in the exponent. The phase-only action reads

Sph[δϕ2] =
1

4gρ0

ˆ

Q
δϕ2(Q)(ω2 + c2q2)δϕ2(−Q)

• Discussion:
• This action has a relativistic dispersion E2 = c2q2 (analytic continuation), with speed of sound c =

√

gρ0/M

• The speed of sound is also obtained from the limit q → 0 on the full dispersion relation. Now, we have
found the interpretation of the linear dispersion in terms of phase fluctuations

• The gapless nature of the phase-only action is protected by U(1) symmetry:

• U(1) transformation with generator    acts on amplitude and phase components as:

• U(1) invariance: phase action contains derivative terms only. Indeed:

➡ More generally, symmetry constrains most general form of the effective action

�'1 ! �'1, �'2 ! �'2 + ✓

✓

Sph = �
Z

X
�'2(X)(@2

⌧ +r2)�'2(X) =

Z

X
[(@⌧�'2(X))2 + (r�'2(X))2]



Goldstone’s Theorem

Goldstone’s Theorem

• The gapless nature of low energy excitation is not accidental but an exact property of the theory

• This is expressed in Goldstone’s theorem: Assume a theory which is invariant under continuous global
symmetry transformations. If the symmetry is spontaneously broken, then there are gapless excita-
tions, the Goldstone modes.

• Discussion:
- Does not prove the existence of symmetry breaking, but makes statement in case of
- For an O(N) symmetry, there are N − 1 Goldstone modes
- In our case, we have U(1) ≃ O(2) and thus one Goldstone mode (phase)
- The proof is straightforward using the effective action formalism



Proof of Goldstone’s Theorem 
Proof of Goldstone’s Theorem

• The exact field equation for the full effective action is δΓ/δφ(τ,x) = δΓ/δφ∗(τ,x) = 0. In the homoge-
neous limit, simplification ∂Γ/∂φ = ∂Γ/∂φ∗ = 0

• Explicitly for U(1) invariance: In the homogeneous limit, dependence of Γ restricted to the invariant
ρ = φ∗φ : Γ = Γ[ρ]

• Field parametrization: φ = (φ1 + iφ2)/
√
2, φ∗ = (φ1 − iφ2)/

√
2. I.e. ρ = 1

2 (φ
2
1 + φ2

2)

• Equilibrium: choose real expectation value such that φ1 = φ1,0+δφ1,φ2 = δφ2. Spontaneous symmetry
breaking: φ1,0 ̸= 0

• Consider field equation for φ1,

0 =
∂Γ

∂φ1

∣

∣

∣

eq
= φ1,0

∂Γ

∂ρ

∣

∣

∣

eq
⇒ ∂Γ

∂ρ

∣

∣

∣

eq
= 0

• consider mass term of φ2:

m2
2 ≡ ∂2Γ

∂φ2
2

∣

∣

∣

eq
=

(

∂2ρ

∂φ2
2

∂Γ

∂ρ
+

(

∂ρ

∂φ2

)2 ∂2Γ

∂ρ2

)

∣

∣

∣

eq
=

∂Γ

∂ρ

∣

∣

∣

eq
= 0

I.e. for a symmetry broken spontaneously in the real direction, the imaginary part of the field is mass-
less

• Goldstone’s theorem is a relation of first and second derivatives of the homogenous part of the full
effective action



Limiting cases of the Effective Action Functional Integral

• Often, reference is made to the “classical limit”

• There are actually (at least) three incarnations of what can be meant by this:

1. The true classical limit
2. The high temperature limit, where quantum fluctuations are unimportant 
3.The “semiclassical limit” equivalent to the Gross-Pitaevski approximation 

• We now investigate these three ordering principles comparatively

N ! 1

~ ! 0
T ! 1



1. Classical Limit for the Effective Action
Classical Limit

• We restore the dimension for the action:

[S] = [τ ] · [E] = [τ ] · [!ω] = [!]

• Effective Action:
exp−Γ[φ∗,φ]

!
=

ˆ

D(δϕ∗, δϕ) exp−S[φ∗ + δϕ∗,φ+ δϕ]

!

• In the classical limit ! → 0 but fixed Γ, the exponential distribution is sharply peaked around the field
configuration for which the classical action in the exponent is minimal.

• This is the case for the “classical” field configuration φ(τ,x), determined by the classical action (ex-
tremum) variational principle δS/δφ(τ,x) = 0

• With this insight, we can expand the classical action in the functional integral in the fluctuation (δϕ∗, δϕ),
and keep only the zero order term

• Thus, in the classical limit we have
Γ[φ∗,φ] = S[φ∗,φ]

• Here we study ~ ! 0

• Discussion: 
• This limit is exact (unlike, e.g., the semiclassical limit below)

• The problem remains nonlinear (“classical” means absence of fluctuations from the classical path/field 
configuration)

• It is, however, less clear where this is indeed sensibly realized: For complex bosons, it would still 
allow for phase coherence and full temporal dynamics



2. High Temperature Limit

• Here we study T ! 1

• Discussion: 

• This limit is exact (unlike, e.g., the semiclassical limit below) and clearly realized in nature.
• The problem remains nonlinear and keeps all spatial fluctuations.
• Temporal fluctuations are suppressed completely (quantum fluctuations <-> temporal 

fluctuations). We cannot decide what the quantum dynamics of the system was originally.

➡ in this limit, classical statistical mechanics is recovered

• In this limit, the field cannot evolve in imaginary time:

'(⌧,x) ⇡ [const. in ⌧ ] ⌘ '(x)

• Implications: we may set
Z �

0
d⌧ ! �@⌧'(⌧,x) ! 0

) S ! �(H[']� µN ['])

can be absorbed into the couplings of H�



2. High Temperature Limit and Dimensional Reduction

• In this limit, we cannot decide whether the original quantum dynamics was generated by 

Z �/2

��/2
d⌧ ['⇤@⌧']

Z �/2

��/2
d⌧ [@⌧'

⇤@⌧']or

non-relativistic dynamics (GP) relativistic dynamics
or: phase dynamics described by real field, see above!

• For double time derivative, time and space derivatives appear symmetrically 

➡ relativistic d-dimensional quantum statistical problem is in one-to-one correspondence to (d+1)-
dimensional classical statistical problem 

➡ in other words, high temperatures lead to effective dimensional reduction
➡ non-relativistic dynamics is richer than relativistic one (true quantum criticality, Berry phases, ...)

➡  quantum and classical statistical problem are closely related (NB: for Euclidean actions, 
i.e. imaginary times, i.e. statistical problems!)

Z �/2

��/2
d⌧d

d
x[@⌧'

⇤
@⌧'+ cr'

⇤r'+m

2
'

⇤
'+

g

2
('⇤

')2]

�!1!
Z

d

d+1
x[@µ'

⇤
@µ'+m

2
'

⇤
'+

g

2
('⇤

')2]



3. “Semiclassical limit” and Validity of Bogoliubov Theory

• The ordering principle of the semiclassical approximation has been traced to the existence of 
a macroscopic (extensive) condensate. On the level of the functional integral: 

Classical Limit

• We restore the dimension for the action:

[S] = [τ ] · [E] = [τ ] · [!ω] = [!]

• Effective Action:
exp−Γ[φ∗,φ]

!
=

ˆ

D(δϕ∗, δϕ) exp−S[φ∗ + δϕ∗,φ+ δϕ]

!

• In the classical limit ! → 0 but fixed Γ, the exponential distribution is sharply peaked around the field
configuration for which the classical action in the exponent is minimal.

• This is the case for the “classical” field configuration φ(τ,x), determined by the classical action (ex-
tremum) variational principle δS/δφ(τ,x) = 0

• With this insight, we can expand the classical action in the functional integral in the fluctuation (δϕ∗, δϕ),
and keep only the zero order term

• Thus, in the classical limit we have
Γ[φ∗,φ] = S[φ∗,φ]

� ⇠ N1/2 ⇠ V 1/2, �' ⇠ N0

• Obviously, Bogoliubov theory breaks down if no condensate exists. This situation 
appears for 

d = 2, T > 0

d = 1 all T Mermin-Wagner theorem plus 
dimensional reduction: see below

• In these cases, immediate need for nonperturbative approaches such as (functional) 
RG (Castellani& ’04, Wetterich & ‘08,’09; Kopietz & ’08,’10; Dupuis ’09)

• even in d=3, or d=2,T=0, one should be suspicious since in the range of small 
momenta the power counting is questionable:

nq =

Z

!
h�'⇤

Q�'Qi ⇠ 1/Eq ⇠ 1/|q|

! �' ⇠ 1/|q|1/2 ?!

divergent occupation number

the ordering principle is not ~ ! 0
the ordering principle is only approximate



Validity of Bogoliubov Theory

�0

Q Q

Q Q

K

K infrared divergent!

Validity of Bogoliubov Theory

• We study perturbative corrections to the self-energy for weakly interacting bosons (zero temperature):
The full quadratic part of the effective action is (Q = (ω,q) )

Γ =
1

2

ˆ

Q

(

ϕ(−Q),ϕ∗(Q)
)

(

Σan(Q) −iω + q2

2M − µ+ Σn(Q)

iω + q2

2M − µ+ Σn(Q) Σan(Q)

)

(

ϕ(Q)
ϕ∗(−Q)

)

• We may view Bogoliubov Theory as the zero order self energies

Σ(0)
n (Q) = 2gρ0, Σ(0)

an (Q) = gρ0

• The leading pertrubative corrections are shown diagrammatically. The second diagram has in IR di-
vergence (log in d=3, poly in d<3)

Σ(1)
n (Q) ∼ Σ(1)

an (Q) ∼ −g2ρ0

ˆ

K
G22(K)G22(Q+K), G22(Q) =

2gρ0
ω2 + c2q2

• Perturbation theory breaks down for

|Σ(0)
n,an(Q)| ≈ |Σ(1)

n,an(Q)|

from which we deduce the scale where the superfluid becomes nonperturbative/strongly correlated

pnp = ph · g̃
d

2(3−d) if d < 3
exp(− 1

κg̃3/2 ) if d = 3

• The dimensionless ratio g̃ expresses the ratio of interaction versus kinetic energy in the nonrelativistic
superfluid ([g] = 2− d):

g̃ =
Epot

Ekin
=

gρ0
1/(Mℓ2)

= gMρ1−2/d
0 ∼ (phℓ)

2

where ℓ ∼ n−1/d is the mean interparticle distance and n ≈ ρ0 in the weakly interacting condensate
• Thus, superfluids can be classified according to:

- weakly correlated if g̃ ≪ 1 ⇒ pnp ≪ ph ≪ ℓ−1. Bogoliubov theory is valid for a large part of the
spectrum, namely for momenta |q| ! pnp. This is the case in typical traps.

- strongly correlated if g̃ ! 1 ⇒ pnp ≈ ph ≈ ℓ−1. Bogoliubov theory breaks down. This may happen
on the lattice close to the Mott insulator – superfluid phase transition.

infrared regular

first and second order perturbation theory

⇢0 = �⇤
0�0

gapless phase propagator

�K +Q

��



Ginzburg Scale: Breakdown of Bogoliubov Theory

Validity of Bogoliubov Theory

• We study perturbative corrections to the self-energy for weakly interacting bosons (zero temperature):
The full quadratic part of the effective action is (Q = (ω,q) )

Γ =
1

2

ˆ

Q

(

ϕ(−Q),ϕ∗(Q)
)

(

Σan(Q) −iω + q2

2M − µ+ Σn(Q)

iω + q2

2M − µ+ Σn(Q) Σan(Q)

)

(

ϕ(Q)
ϕ∗(−Q)

)

• We may view Bogoliubov Theory as the zero order self energies

Σ(0)
n (Q) = 2gρ0, Σ(0)

an (Q) = gρ0

• The leading pertrubative corrections are shown diagrammatically. The second diagram has in IR di-
vergence (log in d=3, poly in d<3)

Σ(1)
n (Q) ∼ Σ(1)

an (Q) ∼ −g2ρ0

ˆ

!Q
G22(K)G22(Q+K), G22(Q) =

2gρ0
ω2 + c2q2

• Perturbation theory breaks down for

|Σ(0)
n,an(Q)| ≈ |Σ(1)

n,an(Q)|

from which we deduce the scale where the superfluid becomes nonperturbative/strongly correlated

pnp = ph · g̃
d

2(3−d) if d < 3
exp(− 1

κg̃3/2 ) if d = 3

• The dimensionless ratio g̃ expresses the ratio of interaction versus kinetic energy in the nonrelativistic
superfluid ([g] = 2− d):

g̃ =
Epot

Ekin
=

gρ0
1/(Mℓ2)

= gMρ1−2/d
0 ∼ (phℓ)

2

where ℓ ∼ n−1/d is the mean interparticle distance and n ≈ ρ0 in the weakly interacting condensate
• Thus, superfluids can be classified according to:

- weakly correlated if g̃ ≪ 1 ⇒ pnp ≪ ph ≪ ℓ−1. Bogoliubov theory is valid for a large part of the
spectrum, namely for momenta |q| ! pnp. This is the case in typical traps.

- strongly correlated if g̃ ! 1 ⇒ pnp ≈ ph ≈ ℓ−1. Bogoliubov theory breaks down. This may happen
on the lattice close to the Mott insulator – superfluid phase transition.

• Due to the gapless Goldstone fluctuations, Bogoliubov theory breaks down at sufficiently 
small momenta/long wavelength:

Ginzburg scalepnp

healing scaleph

[g] = d� 2



Validity of Bogoliubov Theory

• We study perturbative corrections to the self-energy for weakly interacting bosons (zero temperature):
The full quadratic part of the effective action is (Q = (ω,q) )

Γ =
1

2

ˆ

Q

(

ϕ(−Q),ϕ∗(Q)
)

(

Σan(Q) −iω + q2

2M − µ+ Σn(Q)

iω + q2

2M − µ+ Σn(Q) Σan(Q)

)

(

ϕ(Q)
ϕ∗(−Q)

)

• We may view Bogoliubov Theory as the zero order self energies

Σ(0)
n (Q) = 2gρ0, Σ(0)

an (Q) = gρ0

• The leading pertrubative corrections are shown diagrammatically. The second diagram has in IR di-
vergence (log in d=3, poly in d<3)

Σ(1)
n (Q) ∼ Σ(1)

an (Q) ∼ −g2ρ0

ˆ

!Q
G22(K)G22(Q+K), G22(Q) =

2gρ0
ω2 + c2q2

• Perturbation theory breaks down for

|Σ(0)
n,an(Q)| ≈ |Σ(1)

n,an(Q)|

from which we deduce the scale where the superfluid becomes nonperturbative/strongly correlated

pnp = ph · g̃
d

2(3−d) if d < 3
exp(− 1

κg̃3/2 ) if d = 3

• The dimensionless ratio g̃ expresses the ratio of interaction versus kinetic energy in the nonrelativistic
superfluid ([g] = 2− d):

g̃ =
Epot

Ekin
=

gρ0
1/(Mℓ2)

= gMρ1−2/d
0 ∼ (phℓ)

2

where ℓ ∼ n−1/d is the mean interparticle distance and n ≈ ρ0 in the weakly interacting condensate
• Thus, superfluids can be classified according to:

- weakly correlated if g̃ ≪ 1 ⇒ pnp ≪ ph ≪ ℓ−1. Bogoliubov theory is valid for a large part of the
spectrum, namely for momenta |q| ! pnp. This is the case in typical traps.

- strongly correlated if g̃ ! 1 ⇒ pnp ≈ ph ≈ ℓ−1. Bogoliubov theory breaks down. This may happen
on the lattice close to the Mott insulator – superfluid phase transition.

Physical meaning: Weakly and Strongly correlated Superfluids

 visualization of the scales 

a
osc

⇠h ⇠ 1/ph` ⇠np ⇠ 1/pnp

⇠h -- vortex size 

-- extent of cloud a
osc

typical scales in a trap: trap provides IR 
cutoff towards strong correlated regime

• Comparison to the typical length scales of ultracold experiments:

➡ This explains the validity of Bogoliubov theory for (continuum) interacting Bose gases



Parenthesis: Multidimensional Gaussian Integrals
Parenthesis: Multidimensional Gaussian Integrals I

• The equilibrium functional integral is defined as the continuum limit of a multidimensional integral over
an exponential distribution

• An analytically tractable class of such integrals are of the Gaussian type, i.e. the exponent is quadratic
in the integration variable

• Consider a multidimensional Gaussian integral for a real vector variable m and positive semidefinite
matrix A

ZG =

ˆ N
∏

i=1

dmi exp− 1
2m

TAm =

ˆ N
∏

i=1

dmi exp− 1
2m

′TDm
′
=

N
∏

i=1

(2πλ−1
i )1/2 = det[A/(2π)]−1/2

• Remarks:
- In the second equality, we have performed a diagonalization to the matrixD = λiδij m′ = Um,D =

UAU−1

- We can then do each one dimensional Gaussian integral separately
- And use the invariance of the determinant under choice of basis

additional material



Parenthesis: Multidimensional Gaussian Integrals

Parenthesis: Multidimensional Gaussian Integrals II

• We note the important relation for a Gaussian free energy (using invariance of tr under choice of basis),

WG = logZG = log det[A/(2π)]−1/2 = −1

2
tr logA+ const.

• For a fermionic Gaussian free energy (Grassmann variables), one obtains in contrast

W (F )
G = logZ(F )

G = log det[A/(2π)]+1/2 = +
1

2
tr logA+ const.

additional material



Saddle Point Effective Potential
Quadratic fluctuations: Recovering the Bogoliubov Theory III

• We con now formulate the homogenous saddle point approximation for the effective action. Due to
homogeneity, we switch to the effective potential

U [φ∗,φ] ≡ Γ[φ∗,φ]

V/T

with quantization volume V/T =
´

dτ
´

d3x

• We obtain, with abbreviation ρ0 = φ∗
0φ0 (we can choose φ0 real so also φ∗

0φ
∗
0 = φ0φ0 = ρ0)

U [φ∗
0,φ0;µ;T ] ≈ −µρ0 +

g
2ρ0

2 + 1
2 tr logS

(2)

= −µρ0 +
g
2ρ

2
0 + T

∑

n

´ d3q
(2π)3 log det2×2

(

gρ0 −iωn + ϵq − µ+ 2gρ0
iωn + ϵq − µ+ 2gρ0 gρ0

)

= −µρ0 +
g
2ρ

2
0 + T

´ d3q
(2π)3 log

(

e
√

(ϵq−µ+2gρ0)2−(gρ0)2)/2T − e−
√

(ϵq−µ+2gρ0)2−(gρ0)2)/2T
)

+ const.

tr runs over all indices: frequency/ momentum and the indices of the 2 × 2 matrix accounting for the
complex boson. We use 2 log sinhx =

∑

n log(1 + x2/(nπ)2), sinhx = (expx − exp(−x))/2. The
(infinite) constant is irrelevant for thermodynamics.

additional material



Quadratic fluctuations: Recovering the Bogoliubov Theory IV

• Effective Potential:

U [φ∗
0,φ0;µ;T ] = −µρ0 +

g
2ρ

2
0 + T

´ d3q
(2π)3 log

(

e
√

(ϵq−µ+2gρ0)2−(gρ0)2)/2T − e−
√

(ϵq−µ+2gρ0)2−(gρ0)2)/2T
)

+ const.

• Discussion:
- High temperature limit T → ∞: ρ0 = 0, µ < 0. U [0, 0;µ;T ] ≈ T

´ d3q
(2π)3 log

(

1− e−(ϵq−µ)/T ) + const.′

- Zero temperature limit T → 0: U [φ∗
0,φ0;µ;T ] ≈ 1

2

´ d3q
(2π)3

√

(ϵq − µ+ 2gρ0)2 − (gρ0)2)We can make
connection to Bogoliubov theory (next slide)

- NB: Though it seems that this theory interpolates well between low and high temperatures, it be-
comes problematic close to the finite temperature BEC phase transition

• The equation of state, i.e. the explicit expression for the density, can be obtained from the effective
potential

• Using the functional integral representation,

n = lim
τ→0,x→0

⟨φ̂∗(τ,x)φ̂(0,0)⟩ = −∂U/∂µ, φ̂(τ,x) = φ(τ,x) + δϕ(τ,x)

NB: This relation follows also using thermodynamics

Equation of State
additional material



Recovering the Bogoliubov Theory
Quadratic fluctuations: Recovering the Bogoliubov Theory V

• We calculate the equation of state explicitly
• Within the saddle point approximation and the equilibrium value µ = gρ0, we find

n = φ∗
0φ0 + 1

2

ˆ

d3q
(2π)3

2gρ0√
2gρ0(ϵq+gρ0)

= φ∗
0φ0 +

ˆ

d3q
(2π)3 vq

• Discussion:
- Diverges linearly at high momenta
- This is because the functional integral does not respect normal ordering. Note, for bosonic fields φ

and operators a, ⟨φ∗φ⟩ = 1
2 ⟨φ

∗φ+ φφ∗⟩ = 1
2 ⟨a

†a+ aa†⟩ = ⟨a†a⟩+ 1
2 . For each momentum mode:

n = φ∗
0φ0 +

´ d3q
(2π)3 ⟨a

†
qaq⟩ = φ∗

0φ0 +
´ d3q

(2π)3

(

⟨δϕ∗
qδϕq⟩ − 1

2

)

= φ∗
0φ0 +

1
2

´ d3q
(2π)3

( 2gρ0√
2gρ0(ϵq+gρ0)

− 1
)

= φ∗
0φ0 +

´ d3q
(2π)3 v

2
q

The Bogoliubov result is reproduced

additional material



Condensation - Superfluidity - Off-diagonal Long-Range Order

Bose Condensation
Statistical property

Superfluidity
Response property

Off-diagonal long range order
Correlation property

- strong fluctuations may overwrite statistics
- Dimensional dependence of long range order 
- Mermin-Wagner-Theorem

• Three cornerstones:



Condensation vs. Superfluidity

• real time atom action
µ = g⇢0, ⇢0 = �⇤

0�0

• imprint plane wave onto the field:

'(t, ~x) ! '

0(t, ~x) = e

i(~p·~x�Et)
'(t, ~x)

'(t, ~x) = �0 + �'(t, ~x)

ground state: 
condensate

fluctuation: test 
stability

• transformed ground state carries superfluid current:

~

j = i
2M [r�

0⇤
0 (t, ~x)�0

0(t, ~x)� �

0⇤
0 (t, ~x)r�

0
0(t, ~x)] = �

⇤
0�0

~p
M = ~v⇢0

➡ study stability of this state carrying supercurrent

current 
velocity

current 
density

• decompose

⇡ V/T (g⇢20/2) +
1

2

Z

X
(�'1, �'2)

 
r2

2M � 2g⇢0 �@t
@t

r2

2M

!✓
�'1

�'2

◆

S['] =

Z

X

n

'⇤
⇣

i@t +
r2

2M
+ µ

⌘

'� g

2
('⇤')2

o



Condensation vs. Superfluidity

• Transformation of the action

S['] ! S['] +

Z

X
'⇤

⇣
E � i~v ·r� ~p2

2M

⌘
'. E = ~p2/2M

choose zero of 
energy by 

➡ study stability of this state carrying supercurrent

Eq ! E0
q = Eq � ~v · ~q � Eq � |~v||~q|

!
> 0

• Transformation of excitation energy (zeros of fluctuation matrix determinant)

• For a dynamically stable situation, need 

E0
q

!
> 0 vcrit =

Eq

|~q|

➡ coincides with result from Landau argument
➡ makes more explicit the connection to supercurrent/superfluid flow

⇡ V/T (g⇢20/2)�
1

2

Z

Q
(�'1, �'2)

 
q2

2M + 2g⇢0 �i(! + ~v · ~q)
i(! + ~v · ~q) q2

2M

!✓
�'1

�'2

◆



Condensation vs. Off-Diagonal Long-Range Order

• How do we measure long range order?

�0 = h'(t,x)i

- Fluctuations can degrade perfect long range order down to “quasi-long range order”. 
The latter can exist in the absence of condensation. 

- general statements on the degree of quasi-long range order are available just 
depending on the dimensionality of the system (Mermin-Wagner-Theorem)

connected two-
point function

condensate 
expectation value

lim
x!1

h'⇤(t,x)'(0,0)i 6= 0- strict definition

- remark: “off-diagonal” in position space and time (diagonal:                  )x = t = 0

- This is realized to full extent in the presence of condensate. Decompose

• We will see:

- Connected two-point function decays for local Hamiltonians: 
condensation <=> perfect long range order

t,

t, t,
lim
x!1

h'⇤(t,x)'(0,0)i = lim
x!1

h�'⇤(t,x)�'(0,0)i+ �⇤
0�0



Condensation vs. Off-Diagonal Long-Range Order

• We study the long distance behavior of the two-point correlation (stat mech context: imaginary time)

• Phase-amplitude representation

- neglect gapped amplitude (here: density) fluctuations 
- taking into account non-perturbative curvature effects of the phase fluctuations 

mandatory here

• remarks:

C2(⌧,x) = h'⇤
(⌧,x)'(0,0)i for ⌧,x ! 1

• simplification:

• useful formula (valid for Gaussian distributed variables):

- proof: see lecture

hei↵�(X)i = e�↵2h�(X)2i/2

C2(⌧,x) ⇡ nhei[✓(⌧,x)�✓(0,0)]i

'(⌧,x) = r(⌧,x)ei✓(⌧,x) ⇡
p
nei✓(⌧,x)



Condensation vs. Off-Diagonal Long-Range Order
• evaluate the correlation function:

C2(⌧,x) ⇡ ne�h✓2(0,0)�✓(⌧,x)✓(0,0)i

• with the universal low energy form of the euclidean (imaginary time) phase action

- c = 1 WLOG (redefinition of momentum)
- space and time appear symmetrically in euclidean action
- remember: exactly gapless

Sph =

Z

Q
✓(Q)G�1(Q)✓(Q) + ...

• we calculate the correlator

G�1(Q) = (!2 + c2q2) = Q2

value determined by 
high energy physics

h✓2(0)� ✓(X)✓(0)i =
Z

Q
[1� eiQX ]G(Q) =

Z
dDq[1� eiQX ]G(Q)

T = 0 : Q = (!,q) ) D = d+ 1

T > 0 : Q ⇡ (0,q) ) D = d higher Matsubara modes are gapped, 
do not contribute to long wavelength behavior

• where (dimensional reduction NB: consideration holds for nonrelativistic matter)

⇤0 = ⇤e� , � ⇡ 0.116

⇤ ⇠ 1/a lattice spacing
X!1�! 1



8
>>><

>>>:

1
SD(D�2)⇤

D�2 D > 2

1
2⇡ log⇤

0|X| D = 2

1
2⇡ |X| D = 1



Condensation vs. Off-Diagonal Long-Range Order

h✓2(0)� ✓(X)✓(0)i =
Z

Q
[1� eiQX ]G(Q) =

Z
dDq[1� eiQX ]G(Q)

• discussion

X!1�! 1



8
>>><

>>>:

1
Sd(d�2)⇤

d�2 D > 2

1
2⇡ log⇤

0|X| D = 2

1
2⇡ |X| D = 1

• spatial correlations at finite temperature in various dimensions:

C2(x)
|x|!1�! const.

• d = 3:

➡ represents true long range order with SSB as physical origin

• d = 1:

C2(x)
|x|!1�! ne�|x|/(2).

➡ exponential decay, i.e. only short range correlations: disordered state, no SSB



Condensation vs. Off-Diagonal Long-Range Order

h✓2(0)� ✓(X)✓(0)i =
Z

Q
[1� eiQX ]G(Q) =

Z
dDq[1� eiQX ]G(Q)

• discussion

X!1�! 1



8
>>><

>>>:

1
Sd(d�2)⇤

d�2 D > 2

1
2⇡ log⇤

0|X| D = 2

1
2⇡ |X| D = 1

• spatial correlations at finite temperature in various dimensions:

• d = 2:

➡ slow algebraic/ power law decay, but no homogeneous order parameter: 
Quasi-long-range order

C2(x)
|x|!1�! n(⇤0|x|)� 1

2⇡

• remarks:

• at finite temperature                , with weakly T-dependent

• T -> 0: LRO re-established (cf. dimensional reduction)

• T -> infty: correlations eventually decay faster than any algebraic power, i.e. disordered 
phase is reached

• at finite T, there is a phase transition which connects the disordered and quasi-LRO phase 
(Kosterlitz-Thouless-transition) without breaking the symmetry

• i.e., (quasi)-LRO can exist without condensation 

• The quasi-LRO phase is robustly critical (algebraic decay)

 = 0� 0



Summary

• Mermin-Wagner-Theorem:
In systems with continuous symmetries, there is no true long-range order in spatial 
dimensions smaller two and finite temperature 

• comments

• d = 2 is called lower critical dimension

• at T = 0, the lower critical dimension is d = 1

• physically, LRO is spoiled by phase fluctuations which are of arbitrarily long wavelength as 
protected by phase rotation symmetry, in conjunction with small phase space in d=2

• This statement is not truly a mathematical theorem. For example, collective effects can 
modify the effective dispersion 

!2 ⇠ q2�⌘

with     an “anomalous dimension”. In that case, the discussion is more subtle.⌘



Summary: Weakly interacting Bosons

• We have applied the effective action formalism to weakly interacting bosons

• Important concepts: 
- Classical Limit(s) and Gross-Pitaevski Theory
- Spontaneous symmetry breaking 
- Phase/ amplitude fluctuations and Bogoliubov theory
- Goldstone’s theorem
- condensation vs. superfluidity and supercurrent instability
- condensation vs. ODRLO and Mermin-Wagner theorem

• These concepts can be applied to many other physical situations. 

• We now use the effective action formalism to analyze weakly interacting fermions



Weakly Interacting Fermions

h " #i 6= 0

h "i = h #i = 0



Degenerate Bose vs. Fermi Gases

Laser cooling
+

Evaporative cooling

Final Temperatures 
10-30 nK

Bosons Fermions

Alkaline atoms in different
hyperfine states

BEC
Quantum
Degenerate
Fermions

• Alkaline atoms (bosons and fermions) can be prepared in the quantum degenerate 
regime, using laser cooling and evaporative cooling

• The fermion spin is realized with two hyperfine states 

Typical Isotopes

Degenerate Boson vs. Fermions

• Bosons: commutator [b(x), b†(y)] = δ(x− y), [b(x), b(y)] = [b†(x), b†(y)] = 0

• Bose-Einstein distribution: nq = (exp( ϵq−µ
T )− 1)−1, ϵq = q2

2M , µ ≤ 0

• Fermions: Pauli principle c† 2σ = 0, anticommutator {cσ(x), c†σ′ (y)} = δσ,σ′δ(x − y), {cσ(x), cσ′ (y)} =

{c†σ(x), c
†
σ′ (y)} = 0

• Fermi-Dirac distribution: nq = (exp( ϵq−µ
T ) + 1)−1, ϵq = q2

2M , µ > 0

• real space picture:



Free Fermions and Fermi Momentum

• Collection of some useful formulae and abbreviations for 3D two-component fermions: 
• The equation of state for free fermions at zero temperature:

n = 2

Z
d3q

(2⇡)3 (exp(
✏q�µ
T + 1)

�1 T!0�! 2

Z
d3q

(2⇡)3 ✓(✏q � µ) =
(2Mµ)3/2

3⇡2
⌘ k3F

3⇡2

• The Fermi momentum k_F is defined as the momentum scale associated to the 
chemical potential of free fermions at T = 0

kF ⌘ (2Mµ(free)
T=0 )1/2

✏F =
k2F
2M

, TF =
✏F
kB

• The Fermi momentum is a measure for the total density of a fermion system:
- It is a measure for the mean interparticle spacing 
- It is temperature and interaction independent
- In contrast, the chemical potential is a function of temperature and interactions

• The associated energy and temperature scales are the Fermi energy and the Fermi temperature

d = (3⇡2)1/3k�1
F

two spin states



Physical Picture for Weakly Attractive Fermions

• The low temperature physics of fermions is governed by 
the Pauli principle 

(1) Expression of a Fermi sphere in momentum space
(2) Absence of fermion condensation: 
(3) Local s-wave interactions of fermions are only possible for 

more than one spin state (ultracold atoms: hyperfine states)

Fermi distribution at low T

nq

kF

h �i = 0

• Now we allow for weak 2-body s-wave attraction between 2 spin states of fermions

a < 0 |akF| ⇠ |a/d| ⌧ 1

attractive scattering length weakness/diluteness condition

• A small interaction scale will not be able to substantially modify the Fermi sphere. 
This is the key to BCS theory

q

� =", #



Physical Picture for Weakly Attractive Fermions

Fermi surface

Cooper pairing: Local in 
momentum space

• However, pairing of fermions with momenta close to the 
Fermi surface is possible: “Cooper pairs”:
• These fermions attract each other with strength a
• The total energy of the system is lowered when 

- bosonic pairs with zero cm energy (total momentum 
zero) form: local in momentum space

- These pairs condense, i.e. occupy a single quantum 
state macroscopically:  

|akF| ⇠ |a/d| ⌧ 1

• A small interaction scale will not be able to substantially 
modify the Fermi sphere

• Comments: 
• Distinguish pairing correlation from Bose condensation

• But: in both cases, spontaneous breaking of U(1) symmetry 

h " #i 6= 0

Fermi distribution at low T

nq

kF
q

h'i 6= 0



Fermionic Path Integral I: Grassmann variables

• Agenda: Construct Path integral by writing partition sum in coherent state basis
• Remember complex bosons: Bosonic operators and commutation relations replaced 

by commuting c-numbers
• Fermionic operators fulfill anticommutation relations. They will be replaced by 

anticommuting objects: Grassmann variables

• Defining properties:

⌘i

) ⌘2i = 0• anti-commutativity

• add to and multiply with complex numbers according to

a+ bi⌘i + bj⌘j , a, bi, bj 2 C

{⌘i, aj} = {⌘i, a†j} = 0

• anti-commutativity with fermion operators

• adjoint       with

{⌘i, ⌘̄j} = {⌘̄i, ⌘̄j} = 0
⌘̄i

{⌘i, ⌘j} = 0



Fermionic Path Integral I: Grassmann variables

• Grassmann calculus

Fermionic Path Integral I: Grassmann variables Motivations/proofs: 
blackboard

• Differentiation

@⌘i⌘j = �ij @⌘i⌘j⌘i = �⌘j�ij

NB: anticommutativity of Grassmann 
derivative, e.g.

• Functions of Grassmann variables: Taylor expansion terminates

F (⌘) = F (0) + @⌘F (0)⌘ NB: F (0), @⌘F (0) 2 C

• Integration
Z

d⌘ = 0,

Z
d⌘⌘ = 1

NB: constructed to reproduce structural properties of c-
number integrals (eg. translation invariance)

• Implication: Grassmann differentiation and integration have the same effect:
Z

d⌘F (⌘) = @⌘F (⌘)

• Gaussian Integral:

one-dimensional multi-dimensional

NB: up to (conventional) factors of pi, 
inverse of result for complex bosonsZ

d⌘̄d⌘e�⌘̄a⌘ = a
Z

d⌘̄d⌘e�⌘̄TA⌘ = detA



Fermionic Path Integral II: Coherent states

• construct eigenstates to fermion annihilation operator:

ai|⌘i = ⌘i|⌘i

• explicit form:

|⌘i = e�
P

i ⌘ia
†
i |0i = (1�

X

i

⌘ia
†
i )|0i

vacuum ai|0i = 0

• adjoint (defines     )⌘̄i

h⌘̄| = h0|e�
P

i ai⌘̄i = h0|e
P

i ⌘̄iai

• completeness relation

proofs: blackboard

Z Y

i

d⌘̄id⌘ie
�

P
i ⌘̄i⌘i |⌘ih⌘̄| = 1

Fock



Fermionic Path Integral III: List of Changes 

• Key identity: hn|⌘ih⌘̄|ni = h�⌘̄|nihn|⌘i

proofs: blackboard

• Rewrite partition sum

Z =
X

{n}2Fock space

hn|e��( ˆH�µ ˆN)|ni

NB: counterintuitive sign 
compared boson case

=

Z
D( ̄, )e�

P
i  ̄i ̄h� ̄|e��(Ĥ�µN̂)| i

=

Z
D( ̄, )e�

P
i  ̄i ̄

X

n

hn| ih ̄|e��(Ĥ�µN̂)|ni

• break up into N segments. Use: (i) exponential is bilinear in Grassmann variables, (ii) at 
the end of the ``time’’ interval, fermion field returns to its opposite (anti-periodic bc’s)

Z =

Z

 (�)=� (0)

D( ̄, )e�S[ ̄, ]

S[ ̄, ] =

Z �

0
d⌧{ ̄@⌧ +H[ ̄, ]� µN [ ̄, ]}



Action for weakly interacting fermionsAction for weakly interacting fermions

• Two-component fermions are described by a spinor

ψ(τ,x) =

(

ψ↑(τ,x)
ψ↓(τ,x)

)

, ψ†(τ,x) = (ψ∗
↑(τ,x),ψ

∗
↑(τ,x))

The components are Grassmann variables, i.e. they anticommute {ψσ(τ.x),ψσ′ (τ ′.x′)} = {ψ∗
σ(τ.x),ψ

∗
σ′ (τ ′.x′)} =

{ψσ(τ.x),ψ∗
σ′ (τ ′.x′)} = 0 (reflecting anticommutation relations for fermionic operators)

• The kinetic (single particle) term describes nonrelativistic propagation:

Skin =
∑

σ,σ′

ˆ

dτdx[ψσ(τ, x)(∂τ − △
2M − µ)δσσ′ψσ′(τ, x)] =

ˆ β

0
dτdx[ψ†(τ, x)(∂τ − △

2M − µ)ψ(τ, x)]

However, unlike bosons µ > 0 to ensure a fixed particle number
• Local s-wave two-body density-density interactions between the two spin states are described by

Sint =
g

2

ˆ β

0
dτdx[ψ†(τ, x)ψ(τ, x)]2

The precise relation of the coupling constant g < 0 to the scattering length a is discussed below
• Validity: as for bosons, in particular, a ≪ d ∼ k−1

F

• Symmetries: as for the boson action, supplemented by global SU(2) spin rotation invariance

NB: from now on, we use notations 
for the conjugate field:  ̄ ⌘  ⇤



Cooper Pairing and Hubbard-Stratonovich TransformationCooper pairs and Hubbard-Stratonovich Transformation I

• We perform a Hubbard Stratonovich transformation, which makes the expected pairing of the fermions
(⟨ψ↑ψ↓⟩ = 1

2 ⟨ψ
T ϵψ⟩ ≠ 0) explict. There are 3 steps:

1. Rearrange the fermion fields into local singlets, to make the pairing explicit (Fierz transformation)

(ψ†ψ)2 = (ψ†δψ)2 = − 1
2 (ψ

†ϵψ∗)(ψT ϵψ), ε =

(

0 1
−1 0

)

2. Introduce a properly written factor of unity into the fermionic functional integral Z =
´

Dψ exp−(Skin+

Sint), (note
(

ψT ϵψ
)†

= −ψ†ϵψ∗; we use X = (τ,x),
´

X =
´

dτx,
´

Dψ =
´

D(ψ∗,ψ))

1 = N
´

Dϕ exp−
´

X m2(ϕ∗ + h
2m2ψ†ϵψ∗)(ϕ − h

2m2ψT ϵψ)

The parameters m2, h are real and m2 > 0 to make the Gaussian integral convergent but other-
wise arbitrary. The resulting partition function is (D = ∂τ − △

2M − µ)

Z = N
ˆ

Dψ)Dϕ exp−
ˆ

X

[

ψ†Dψ+m2ϕ∗ϕ+ h
2 (ϕψ

†ϵψ∗ − ϕ∗ψT ϵψ)− 1
4 (g +

h2

m2 )(ψ
†ϵψ∗)(ψT ϵψ)

]

3. For attractive interaction g < 0, we can now choose the parameters such that g = − h2

m2

- Then we get rid of the fermion interaction term
- Only this ratio is physical. We can redefine ϕ → hϕ and get

Z = N
ˆ

DψDϕ exp−SHS, SHS[ψ,ϕ] =

ˆ

X

[

ψ†Dψ + 1
|g|ϕ

∗ϕ+ 1
2 (ϕψ

†ϵψ∗ − ϕ∗ψT ϵψ)
]



Cooper Pairing and Hubbard-Stratonovich Transformation

Cooper pairs and Hubbard-Stratonovich Transformation II

• We discuss the Hubbard-Stratonovich action

SHS[ψ,ϕ] =

ˆ

X

[

ψ†Dψ + 1
|g|ϕ

∗ϕ+ 1
2 (ϕψ

†ϵψ∗ − ϕ∗ψT ϵψ)
]

• The interacting fermion theory is mapped into a coupled fermion-boson theory.
• The boson field represents Cooper pairs, φ ∼ ψ↑ψ↓. A nonzero expectation value φ = ⟨ϕ⟩ ̸= 0 breaks

the U(1) symmetry and describes Cooper pair condensation
• The theory is quadratic in the fermions. We introduce Nambu-Gorkov fields ΨT = (ψT ,ψ†) to make

this explicit,
SHS =

1

2

ˆ

X

[

ΨTS(2)[ϕ]Ψ+ 1
|g|ϕ

∗ϕ
]

, S(2)[ϕ] =

(

−ϕ∗ϵ −Dδ
Dδ ϕϵ

)

They can be eliminated by Gaussian integration. However, the result is an interacting boson theory
due to the dependence S(2)[ϕ]

• The BCS approximation consists in neglecting the fluctuations of the bosonic Cooper pair field: Mean
field approximation for the boson dofs

†



BCS Effective Action

BCS Effective Action

• We implement the above strategy on the effective action for homogeneneous classical field configura-
tions, 1

Γ[ψcl,φ]/(V/T ) = − log
´

DδψDδϕ exp−SHS[ψcl + δψ,φ+ δϕ]

= 1
|g|φ

∗φ− log
´

Dδψ exp−SHS[δψ,φ]/(V/T )

• Due to the approximation on ϕ, SHS is now truly quadratic, in the background of a classical field φ. It is
useful to switch to momentum space where

SHS[δψ,φ] = 1
2

´

Q ΨT (−Q)S(2)[φ]Ψ(Q),

S(2)[φ] =

(

−φ∗ϵ −(−iωn + ϵq − µ)δ
(iωn + ϵq − µ)δ φϵ

)

, Ψ(Q) =

(

ψ(Q)
ψ∗(−Q)

)

• NB: the classical field couples φψ∗
↑(Q)ψ∗

↓(−Q). Interpretation similar to Bogoliubov theory: creation of
fermions with opposite momenta out of the Cooper pair condensate

• Evaluation of the Grassmann Gaussian integral (2 log coshx =
∑

n log(1 + x2/((n+ 1/2)π)2)):

Γ[ψcl,φ]/(V/T ) = 1
|g|φ

∗φ− 1
2 tr logS

(2)[φ]/(V/T )

= 1
|g|φ

∗φ− 2T
´ d3q

(2π)3 log cosh(Eq/2T ) + const.

Eq =
√

(ϵq − µ)2 + φ∗φ

• NB: The homogeneous BCS effective action depends on the chemical potential µ and on the U(1)
invariant combination ρ = φ∗φ, Γ = Γ[µ, ρ]

1

- The fermion field expectation takes the physical value ψcl = 0 but serves to carry out successive derivatives to generate the 1PI
correlation functions

BCS Effective Action I

• We implement the above strategy on the effective action for homogeneneous classical field configura-
tions, 1

Γ[ψcl,φ]/(V/T ) = − log
´

DδψDδϕ exp−SHS[ψcl + δψ,φ+ δϕ]

= 1
|g|φ

∗φ− log
´

Dδψ exp−SHS[δψ,φ]/(V/T )

• Due to the approximation on ϕ, SHS is now truly quadratic, in the background of a classical field φ. It is
useful to switch to momentum space where

SHS[δψ,φ] = 1
2

´

Q ΨT (−Q)S(2)[φ]Ψ(Q),

S(2)[φ] =

(

−φ∗ϵ −(−iωn + ϵq − µ)δ
(iωn + ϵq − µ)δ φϵ

)

, Ψ(Q) =

(

ψ(Q)
ψ∗(−Q)

)

• NB: the classical field couples φψ∗
↑(Q)ψ∗

↓(−Q). Interpretation similar to Bogoliubov theory: creation of
fermions with opposite momenta out of the Cooper pair condensate

1

- The fermion field expectation takes the physical value ψcl = 0 but serves to carry out successive derivatives to generate the 1PI
correlation functions

�⇤

 "(Q)

 #(�Q)

annihilation process of two oppositely 
directed fermions into the pair condensate

=
V

T



BCS Effective Action

BCS Effective Action II

• Evaluation of the Grassmann Gaussian integral (2 log coshx =
∑

n log(1 + x2/((n+ 1/2)π)2))

Γ[ψcl,φ]/(V/T ) = 1
|g|φ

∗φ− 1
2 tr logS

(2)[φ]/(V/T )

= 1
|g|φ

∗φ− 2T
´ d3q

(2π)3 log cosh(Eq/2T ) + const.

Eq =
√

(ϵq − µ)2 + φ∗φ

• NB: The homogeneous BCS effective action depends on the chemical potential µ and on the U(1)
invariant combination ρ = φ∗φ, Γ = Γ[µ, ρ]

• we now derive two physical conditions from this effective BCS potential: 

• the equation of state

• the condition for the transition into the BCS condensed phase

• we will face problems at high momenta and provide the cure: UV renormalization



The Equation of StateThe Equation of State

• The explicit expression for the density is obtained from

nΛ = −∂U
∂µ

= −
ˆ

d3q
(2π)3 tanh(Eq/2T )

Again, the expression is UV divergent, here ∼ Λ3

• Using tanh(x/2) = 1− 2(expx+ 1)−1, we split the integral into a physical (depending on µ and ρ) and
an unphysical contribution:

nΛ = 2

(
ˆ

d3q
(2π)3

1

eEq/T + 1
−
ˆ

d3q
(2π)3

1
2

)

The overall factor of two counts the degenerate spin states
• Interpretation:

- First term: involves the Fermi-Dirac distribution. The physical density is

n = 2

ˆ

d3q
(2π)3

1

eEq/T + 1

- Second term: Unobservable zero-point energy shift due to the fact that the functional integral does
not respect operator ordering: consider single fermion mode field ψ and associated operator c
({c, c†} = 1),

⟨ψ∗ψ⟩ = 1
2 ⟨ψ

∗ψ − ψψ∗⟩ = 1
2 ⟨c

†c− cc†⟩ = ⟨c†c⟩ − 1
2

U = �/(V/T )



Spontaneous Symmetry Breaking

Cuts through potential landscape for U(1) symmetric theory

Symmetric phase Critical point Symmetry broken phase ���

U(�⇤�)U(�⇤�) U(�⇤�)

Spontaneous Symmetry Breaking

• The phase transition towards a state with macroscopic Cooper pairing at low T can be obtained from
analyzing symmetry breaking patterns

• Study the field equation/ equilibrium condition for the effective potential U [µ, ρ] = Γ[µ, ρ]/(V/T ),

∂U
∂φ∗

= φ · ∂U
∂ρ

!
= 0

• There are three possibilities:
1. Spontaneously symmetry broken phase: φ,φ∗ ̸= 0, ∂U

∂ρ = 0

2. “Symmetric” phase: φ = φ∗ = 0, ∂U
∂ρ ̸= 0

3. Critical point: φ = φ∗ = 0, ∂U
∂ρ = 0

• NB: in the symmetry broken phase,∂U∂ρ = 0 signals the vanishing mass of the Golstone mode



Critical Temperature and a Problem at Large Momenta

q

g(q)

⇤ ⇠ a�1

Bohr

kF a�1

Naive implementation 
of interaction

True interaction 
potential: 

Smooth cutoffSharp cutoff

Critical Temperature and a Problem at Large Momenta

• We focus on the critical point for the Cooper instability first, i.e. we study ∂U
∂ρ

∣

∣

ρ=0
= 0. Explicitly:

0 = −1

g
− 1

2

ˆ

d3q
(2π)3

1

ϵq − µ
tanh

(

ϵq − µ)

2T

)

=
1

|g| −
1

4π2

ˆ

dq
q2

q2/(2M)− µ
tanh

(

q2/(2M)− µ)

2T

)

• The integral is linearly divergent, as the integrand tends to 1 for large momenta q → ∞: “Ultraviolet
divergence”

• This is because we have assumed spatially local interactions, i.e. constant in momentum space up to
arbitrarily large momenta

• In reality, this is not the case. There is a (smooth) momentum cutoff at large momenta. Details of the
precise cutoff function should not matter (cf. discussion of effective theories above)



Ultraviolet Renormalization
Ultraviolet Renormalization

• The problem is cured by a proper ultraviolet (UV) renormalization procedure:
- Introduce a (sharp) UV cutoff Λ in the momentum space integral (UV regularization)
- Interpret g as “bare” coupling with cutoff dependence, g = gΛ
- Trade the bare coupling for a physical observable: Require that ∂U/∂ρ performed in vacuum (µ =

0 (n = 0), T = 0, ρ = 0) produce the physical inverse scattering length (UV renormalization):

∂U
∂ρ

∣

∣

∣

vac
= − 1

gΛ
− 1

4π2

ˆ Λ

dq
q2

q2/(2M)
= − 1

gΛ
− MΛ

2π2

!
= − 1

gp
= − M

4πa

NB: The relation between gΛ and a is not perturbative; a more systematic treatment uses gΛ(q) =
gΛθ(Λ − q) and interprets the above equation as a resummed loop equation; the relation between
a physical fermionic two-body coupling gp and a scattering lenght is a = Mgp/(4π)

• The renormalized equation for the critical temperature reads

0 = −1

a
− 2

π

ˆ

dq

[

q2

q2 − 2Mµ
tanh

(

q2/(2M)− µ)

2T

)

− 1

]

It will be analyzed below

bosons: 8pi;
bosons indistinguishable, 
fermions distinguishable 
(spin)



BCS Equations for the Critical Temperature
BCS Equations for the Critical Temperature I

• We have derived two equations governing the thermodynamics of weakly interacting fermions:
- The equation of state

n = 2

ˆ

d3q
(2π)3

1

e(ϵq−µ)/T + 1

- The equation for the critical temperature

0 = −1

a
− 2

π

ˆ

dq

[

q2

q2 − 2Mµ
tanh

(

q2/(2M)− µ)

2T

)

− 1

]

• Given µ we could solve the second equation. For T/TF ≪ 1, the corrections to the chemical potential
from ϵF = µ(T = a = 0) are negligible. We therefore work with µ ≈ ϵF



The Critical Temperature

divergent part of the integrand, 
and distribution function (dashed)

T̃ = 0.001

T̃ = 0.01

T̃ = 0.1green:

blue:

red:0

BCS Equations for the Critical Temperature II

• We rescale momenta and energies as q̃ = q/kF, Ẽ = E/ϵF. The dimensionless critical temperature is
determined from

0 =
1

|akF|
− 2

π

ˆ

dq̃

[

q̃2

q̃2 − 1
tanh

(

q̃2 − 1)

2T̃

)

− 1

]

• For T̃ → 0, the integral develops a logarithmic divergence at the Fermi surface where q̃ = 1. Thus, the
equation has a solution for arbitrarily weak interaction a if T is lowered sufficiently

• This establishes the BCS transition with critical temperature

Tc

ϵF
=

8γ

πe2
e−

π
2|akF|

The exponential dependence reflects the log divergence. The prefactor is ≈ 0.61 with the Euler con-
stant γ ≈ 1.78

• For T < Tc a gap ρ > 0 develops to cure the log divergence



BCS Equations for the Gap at Zero Temperature
BCS Equations for the Gap at T=0

• We have derived two equations governing the thermodynamics of weakly interacting fermions at T = 0:
- The equation of state

n = 2

ˆ

d3q
(2π)3

1

eEq/T + 1

- The dimensionless equation for the gap ρ = φ∗φ (from ∂U/∂ρ = 0 in the presence of symmetry
breaking ρ ̸= 0 and T = 0)

0 =
1

|akF|
− 2

π

ˆ

dq̃

[

q̃2

Ẽq

− 1

]

with Eq =
√

(ϵq − µ)2 + ρ

• The scale T is exchanged for the scale ρ, wich now regularizes the log divergence. Again, for ρ/TF ≪ 1,
the corrections to the chemical potential from ϵF = µ(T = a = 0) are negligible. We therefore work
with µ ≈ ϵF

• This establishes the BCS gap at zero temperature (π/γ ≈ 1.76)

ρ(T = 0)

ϵF
=

8

e2
e−

π
2|akF| =

π

γ

Tc

ϵF



Fermion Gap and Superfluidity 

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

q
q ⇠

p
✏F

“gap”

• Below the critical temperature, a “gap” opens up

• This means that single fermion excitations are suppressed even very close to the 
Fermi surface (unlike the behavior above T_c). The spectrum is given by 

Eq =
⇥
( q2

2M � µ)2 + ⇢
⇤1/2

⇢

• The suppression of single fermion excitations is responsible for superfluidity:

• The low lying modes are bosonic phonons with linear dispersion

• This ensures superfluidity according to Landau’s criterion



Summary: Weakly Interacting Fermions

• We have derived BCS theory within the effective action formalism
- Condensation of the fermion field is impossible due to Pauli’s principle, but a 

second order pairing correlation can develop.
- The BCS mechanism builds on two cornerstones: 

• the sharpness of the Fermi surface, guaranteed by 

• Cooper pairing of fermions close to the Fermi surface with opposite momenta
- Pairing is introduced in the functional integral by a Hubbard-Stratonovich 

transformation, mapping the purely fermionic to a fermion-boson theory
- BCS theory integrates out the quadratic fermions and treats the bosons classically
- The exponential dependence of critical temperature and gap at zero temperature 

persists to arbitrarily small interactions. It can be traced to a logarithmic divergence 
at the Fermi surface. 

-  Like the condensation amplitude for bosons, the pairing correlation breaks the     
U(1) symmetry. The finite gap prevents single fermion excitations and leads to 
superfluidity

akF ⌧ 1



Experimental (Ir)relevance of Weakly Interacting Atomic 
Fermions

• We compare the critical temperatures for a noninteracting BEC and weakly 
attractive fermions

- Free bosons of mass M undergo condensation at 

• additionally, cooling of degenerate fermions is experimentally more challenging 
due to Pauli blocking 

n�dB = ⇣(3/2), �dB = (2⇡/(MT ))1/2

- Rewrite by using definitions from fermions n = k3F/(3⇡
2), ✏F = k2F/(2M)

T (BEC)
c

✏F
= 4⇡(3⇡2⇣(3/2))�2/3 ⇡ 0.69 = O(1)

T (BCS)
c

✏F
=

8�

⇡e2
e�

⇡
2|akF| ⇡ 0.61e�

⇡
2|akF|

- In contrast, the BCS critical temperature is exponentially small for  akF ⌧ 1

• On the other hand, note a (formal) exponential increase of T_c for rising           i.e. 
towards strong interactions

• Q: What is the fate of the exponential increase in T_c for rising 
• A: BCS-BEC crossover

akF

akF



Strong Interactions 
and 

the BCS-BEC Crossover

(akF)�10



Physical picture: BCS-BEC Crossover

• fermions with attractive interactions • weakly interacting bosons

➡  BCS superfluidity at low T ➡ Bose-Einstein Condensate (BEC) at low T

• We have discussed two cornerstones for quantum condensation phenomena:

 bosons could be realized as  
tightly bound molecules 

(“effective theory”)



Physical picture: BCS-BEC Crossover

• fermions with attractive interactions • weakly interacting bosons

➡  BCS superfluidity at low T

•  Localization in position space
•  Delocalization in momentum space

(akF)�10

In the strongly interacting regime, no simple ordering principle is known:
➡ Challenge for Many-Body methods

• We have discussed two cornerstones for quantum condensation phenomena:

 bosons could be realized as  
tightly bound molecules 

(“effective theory”)

• There is an experimental knob to connect these scenarios: Feshbach resonances
• microscopically, the phenomenon is due to a bound state formation at the resonance 
• from a many-body perspective, the phenomenon is understood as 

1

akF
= 0

➡ Bose-Einstein Condensate (BEC) at low T



fermion field:
two hyperfine states 

examples: 

``open channel''

``closed channel''

DE

Microscopic Origin: Feshbach Resonances
 =

✓
 "
 #

◆

⌫

|⌫, kBT | ⌧ |�E|

• Start from fermions: (Euclidean) Action

• Consider a second interaction channel with bound state close to 
scattering threshold V=0, detuned by 

⌫

• Detuning     can be controlled with magnetic field

⌫(B) = µB(B �B0)

magnetic moment resonance position

⌫

6Li,40 K

V(r)

r

S [ ] =

Z
d⌧d

3
x

�
 

†(@⌧ � 4
2M ) + � 

2 ( †
 )2

�



Microscopic Origin: Feshbach Resonances

bosonic molecule field:

• (background scattering in open channel)
• Feshbach coupling: width of resonance
• detuning: distance from resonance

• Effective Model to describe this situation: 
Interconversion of two fermions into a molecule 

interconversion:
Feshbach, Yukawa term

• Parameters:
� 

⌫

 "

 # molecule formation

h

h
�⇤

``open channel''

``closed channel''

DE

|⌫, kBT | ⌧ |�E|

⌫
V(r)

r

• NB: cf. BCS Cooper pairing with condensate amplitude:

�⇤(⌧,x) �⇤(!,q)or

�⇤
0 = const.

• Now we allow for dynamic bosonic degrees of freedom

S�[�] =

Z
d⌧d

d
x�

⇤(@⌧ � 4
4M + ⌫)�

SF [ ,�] = �h

Z
d⌧d

d
x

�
�

⇤
 " # � � 

⇤
" 

⇤
#
�



Relation to a strongly interacting theory

• take constrained “broad resonance” limit: 
pointlike interactions eM

S = S + S� + SF [ ,�]

�S

��⇤ = 0

• Total action:

• Field equations:

• Formally solve for         , and insert solution into the Feshbach term�,�⇤

 "

 #  †
#

 †
"

1

⌫

) (@t � 4
4M + ⌫)� = h " #

) � =
h

@t � 4
4M + ⌫

 " #

h h

h ! 1, h2

⌫ ! const.

S = S +

Z
d⌧d

3
x " #

h2

@t�
4
2M +⌫

 

†
" 

†
#

S ! S + h2

⌫

Z
d⌧d

3
x 

†
" 

†
# " # = S � 1

2
h2

⌫

Z
d⌧d
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scattering length a and binding energy

eM

abg

a(B)

B

Relation to a strongly interacting theory

• pointlike/broad resonance limit: The action 
takes the form

a =
4⇡�eff

 

M

scattering length 
(nonidentical fermions)

effective fermionic 
interaction

➡ resonant (divergent) interaction at B_0

⌫(B) = µB(B �B0)• remember

observation of divergent scattering length
Ketterle Group, MIT (1999)

bosonic sodium

S[ ] =

Z
d⌧d

d
x

�
 

†(@t � 4
2M ) +

�eff
 

2 ( †
 )2

�

�e↵
 = � � h2

⌫(B)

• in the following, we shall ignore the background 
scattering for simplicity



Regimes in the BCS-BEC Crossover

➡ three regimes

a > 0, |a/d| ⌧ 1

a < 0, |a/d| ⌧ 1

|a/d| & 1

weakly interacting (dilute) fermions

strong interactions, dense

molecular bound states: dilute bosons
➡ see below!

• We identify the inverse scattering length as an adequate “crossover parameter”

since the Feshbach resonance is located at the zero crossing of the detuning ⌫(B)

a�1(B) = �M⌫(B)

4⇡h2

• Compare the scattering length to the mean interparticle spacing d = (3⇡2n)�1/3

• Cf. microscopic justification: a/d > 1 does not invalidate the microscopic Hamiltonian (as 
could be suspected from the discussion of weakly interacting gases). The relevant ratio for 
the validity is                                        . Feshbach resonances violate the generic relation                    rvdW /d, rvdW /�dB ⌧ 1
rvdW /a ⇡ 1 : “anomalously large scattering length”



Evaluation Strategy: Effective Action

• So far: microscopic physics of few scattering particles
• Quantize the many-body theory via functional integral for the effective action

• Effective action includes all quantum and statistical fluctuations by 
integrating over all possible paths 

• Leverages over the intuition from classical physics: 
• symmetries
• action principle, field equation

• Lends itself for powerful modern field theory techniques

�[�] = � log

Z
D�� exp�S[�+ ��] ��[�]

�� = 0

�S[�]
�� = 0S[�]

➡ Consider S, the classical action: 

➡ The effective action is given by 

• Result:



Integrating out the fermions
• For practical purposes, the Feshbach type action is favorable: 

- the potential bosonic bound state is already explicit
- NB: can be seen as result of Hubbard-Stratonovich transformation of fermionic theory
- for simplicity restrict to broad resonance limit, no background coupling 

• This theory is quadratic in the fermions

=
1

2

Z

Q
( T ,�T )

 
S(2)
FF 0

0 S(2)
BB

!✓
 
�

◆

Fourier transform

Nambu-Gorkov fields

 =

✓
 
 ⇤

◆

� =

✓
�
�⇤

◆

• fermions can be integrated out
• the result is a (nontrivial) purely bosonic theory, to be analyzed subsequently

S(2)
FF [�] =

✓
�✏↵�h�⇤ �PF (�Q)�↵�
PF (Q)�↵� ✏↵�h�

◆

- Inverse propagator matrix depends on the fluctuating bosonic field

spin indices

PF (Q) = i! + q2

2M � µ

S(2)
BB =

✓
0 ⌫ � 2µ

⌫ � 2µ 0

◆

boson carries two atoms

S[ ] =

Z
d⌧d

3
x
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†(@t � 4
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⇤
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Gaussian Integral for Fermions

• Effective Action:
 0 = 0 (Pauli principle)

= � log

Z
D�� exp�Sint[�0 + ��]

Sint[�] = S(cl)
� [�]� 1

2

log detS(2)
FF [�] = S(cl)

� [�]� 1

2

Tr logS(2)
FF [�].

with intermediate action

composite field expectation value
(condensation for               )�0 6= 0

�• The Tr Log term features arbitrary powers of      (compatible with symmetries)
➡ This gives rise to an effective bosonic theory (Hertz-Millis approach)

Z
(⌫ � 2µ)�⇤�

�[ 0,�0] = � log

Z
D� D�� exp�S[ 0 + � ,�0 + ��]



Effective Quadratic Theory for Bosons

- The coefficients are given by the classical + fluctuation contributions, e.g.

• Integrating out the fermions yields bosonic theory: Interpretation?
• Progress can be made by expansion in fluctuation field powers:

�1

2

Tr log

�
PF + F

�
= �1

2

Tr logPF � 1

2

TrP�1
F F +

1

4

Tr(P�1
F F)

2
+ ...

-       depends on the condensate 
-     is the “fluctuation matrix”

�0PF

F ⇠ ��

O(��) O(��2)
vanishes due to 
field equation

• Good qualitative understanding at arbitrary temperature: Truncate after quadratic term
• Yields effective Bogoliubov theory for boson fluctuations

P�(K) = ⌫ � h2

Z

Q

PF (�Q�K)PF (Q)

P |2|
F (Q)P |2|

F (Q+K)

K = (!,k)
frequency and 

momentum= iZ�! + A�

4M k2 +m2
� + ...

low energy/derivative expansion

“mass term”

S
Bog

=
1

4
Tr(P�1

F F)2 =
1

2

Z

K

�
��(�K), ��⇤(K)

�✓ ��(K)�⇤
0

�⇤
0

P�(K)
P�(�K) ��(K)�

0

�
0

◆✓
��(K)

��⇤(�K)

◆

= S(2)
FF [�].



Crossover Effective Potential I

• The steps in summary (and a last one...): Effective Potential

�[�0] = � log

Z
D�� exp�Sint[�0 + ��]

integration of fermion fluctuations

quadratic expansion of boson fluctuations

integration of quadratic boson fluctuations

“classical contribution”: 
condensed bosons 

fermionic fluctuations
bosonic fluctuations 

(approximation)

⌘ V/T U [�⇤�]

effective potential: 
homogeneous contribution to 

effective action

= V/T
�
(�2µ+ ⌫)�⇤

0�0 � 1
2Tr logPF [�

⇤
0�0] +

1
2Tr logPB [�

⇤
0�0]

�

important in regime: BEC BCS BEC

=

Z

Q

�
(⌫ � 2µ)�⇤

0

�
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� 1

2

Tr logPF [�
⇤
0

�
0

]

�
� log

Z
D�� exp�S
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Crossover Effective Potential II

• The Crossover Physics can now be extracted from the Effective Potential

Self-consistency relations for 
the solution of the crossover 

thermodynamics 

• The effective potential depends on      and
• These quantities will be determined by: 

• The gap equation

• The equation of state 

U [⇢;µ] = (�2µ+ ⌫)⇢� 1
2Tr logPF [⇢;µ] +

1
2Tr logPB [⇢;µ] ⇢ = �⇤

0�0

perform spin and 
frequency traces

 - single fermion excitation energies, coefficients from fermionic action

 - coefficients: integrals from TrLog + derivative expansion
 - mu-dependence: mainly m2

�(µ)
µ ⇢

= (⌫ � 2µ)⇢� 2T

Z
d3q

(2⇡)3
log cosh(E(F)

q /2T ) + T

Z
d3q

(2⇡)3
log sinh(E(B)

q /2T )

E(F)
q =

⇥
( q2

2M � µ)2 + h2⇢
⇤1/2

E(B)
q =

⇥
(A�q

2 +m2
�)

2 + 2��⇢(A�q
2 +m2

�)
⇤1/2

 - effective boson excitation energies



The Gap Equation and Spontaneous Symmetry Breaking

• field equation for the effective action:

• the effective potential depends only on homogeneous field configuration

• due to U(1) (global phase) symmetry, it only depends on the invariant  

��[�0(x)
⇤
,�0(x)]

��0(y)
= 0

@U [�⇤
0�0]

@�0
= @U [⇢]

@⇢ �⇤
0 = 0

⇢ = �⇤
0�0

• if the symmetry is broken spontaneously,             , then we must have �⇤
0 6= 0

@U [⇢]
@⇢ = 0

• simplifications:

gap equation (cf. fully analogous treatment in BCS theory)

recapitulation

• NB: This criterion based on symmetry breaking works throughout the whole 
crossover. At T=0, the symmetry will be broken for any value of scattering length. 
Therefore, there is no quantum phase transition, but only a crossover phenomenon 

p
⇢0



The Equation of State 

• In our approximation, there are three additive contributions to U. Thus

• We would like to consider a situation with fixed density
• Our problem is formulated in the grand canonical ensemble,

S 3
Z

dtd

3
x(�µ 

†
 )

chemical potential

• The density can be obtained from the effective potential:

= �@U
@µ

classical bosonic 
condensate contribution

fermionic (quasiparticle)  
contribution

contribution of fermions 
bound in bosons

➡ definite interpretations only possible in the BCS and BEC limits 

~ integral over Fermi 
distribution

~ integral over Bose 
distribution

in the presence of 
condensates

= 2�⇤
0�0 + nF + nB

effective bosonic 
propagator

n = 2�⇤
0�0 +

1
2TrP

�1
F +Tr 12P

�1
B

N/V = lim

x!0
h� †

(x)� (0)i = lim

x!0

Z
D� [� †

(x)� (0)] exp�S[ 0 + � ]/N

@m2
�

@µ



The Extended Mean Field Theory of the BCS-BEC Crossover
• The two self-consistency equations from the Effective Potential read

- The Gap equation

UV Renormalization: in 
complete analogy to BCS 

theory

- The Equation of State

NB: Bosonic contribution 
neglected for simplicity
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➡ What do these solutions tell us?

µ• Solve for      and ⇢

• Plot as a function of dimensionless crossover parameter

(akF )
�1 (akF )

�1

n = k3
F

3⇡2
Fermi 

momentum
(a/d)�1 = (akF )

�1

0 0

� = h2⇢
µ

✏F

✏F = k2
F

2M

Fermi energy

n = �@U
@µ = 2�⇤

0�0 + nF + nB

a�1 = �M
4⇡

⌫
h2

0 =
@U
@⇢

= ⌫ � 2µ� h2

2

Z
d3q

(2⇡)3 [
1

E(F)
q

tanh
E(F)

q

2T � 1

E(F)
q

|�=µ=0]



The Extended Mean Field Theory of the BCS-BEC Crossover
• The two self-consistency equations from the Effective Potential read

- The Gap equation

- The Equation of State

NB: Bosonic contribution 
neglected for simplicity
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1 � = h2⇢

µ• Solve for      and ⇢

• Plot as a function of dimensionless crossover parameter

(akF )
�1 (akF )

�1

n = k3
F

3⇡2
Fermi 

momentum
(a/d)�1 = (akF )

�1

BCS 
regime

strongly 
interacting

BEC 
regime

BEC 
regime

strongly 
interacting

BCS 
regime

0 0

➡ Discuss the limiting cases!

µ

✏F

✏F = k2
F

2M

Fermi energy

a�1 = �M
4⇡

⌫
h2

UV Renormalization: in 
complete analogy to BCS 

theory

0 =
@U
@⇢

= ⌫ � 2µ� h2

2

Z
d3q

(2⇡)3 [
1

E(F)
q

tanh
E(F)

q

2T � 1

E(F)
q

|�=µ=0]

n = �@U
@µ = 2�⇤

0�0 + nF + nB



The limiting cases: BCS limit

-3 -2 -1 0 1 2
-5

-4

-3
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0

1

(akF )
�1

• Solution above: µ
✏F

! 1

➡ The EoS reduces to 

BCS 
regime
µ

✏F

n = 2�⇤
0�0 + nF + nB ! nF

➡ The gap equation can be solved analytically

➡ Expression of a Fermi surface, weakly 
interacting fermion gas is approached

• Simplifications

➡ NB: For broad resonances: h ! 1, ⌫ / h2

cf. above: BCS Gap equation reproduced

0.0 0.5 1.0 1.5 2.0
0.0
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2.0
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3.0

single fermion excitation spectrum

qq ⇠
p
✏F

� = h2⇢
“gap”

⌫�2µ
h2 ! ⌫

h2 = � 4⇡
M a�1

0 = ⌫�2µ
h2 � 1

2

Z
d3q

(2⇡)3 [
1

E(F)
q

tanh
E(F)

q

2T � 1

E(F)
q

|�=µ=0]

E(F)
q =

⇥
( q2

2M � µ)2 + h2⇢
⇤1/2

0 = � 1
a � M

8⇡

Z
d3q

(2⇡)3 [
1

E(F)
q

tanh
E(F)

q

2T � 1

E(F)
q

|�=µ=0]



The limiting cases: BCS limit

• The result for the gap: 

➡ Condensation is very weakly expressed: only 
Fermions close to Fermi surface contribute

Fermi surface

• Strongly expressed Fermi surface
• Interpretations:

➡ Scattering/Pairing highly local in momentum space

Locality in momentum space

Delocalization in position space
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• Comparison to full result
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(akF )
�1

(akF )
�1

➡ Strong deviations from BCS result once 

(akF )
�1 ⇠ �1

� = h2⇢

⇢/n

� = 0.61✏F e
� ⇡

2akF

Fermi distribution

q

nq

kF

slight cheating here, this plots 
the renormalized condensate 

(below)



The limiting cases: BEC limit
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(akF )
�1

BEC 
regime

µ

✏F

• Solution above: µ
✏F

! �1

single Fermion excitation spectrum

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

µ/✏F ⇡ 1
µ/✏F ⌧ 0

� = h2⇢

➡ Strong gap        develops on the normal (        ) 
sector of the inverse fermion propagator

�µ

➡ Interpretation?

               is identified as the fluctuation correction 
to the bosonic mass term

 † 

  

E(F)
q =

⇥
( q2

2M � µ)2 + h2⇢
⇤1/2

➡ However, there is a piece from the anomalous part 
that is independent of �µ

➡ The fermion density can be written

nF = 1
2TrP

�1
F ! �

@�m2
�

@µ
�⇤
0�0

�m2
�



Renormalized Condensate

• We consider the equation of state in the BEC regime:

n = 2�⇤
0�0 + nF + nB ! (2� @�m2

�

@µ )�⇤
0�0 + nB = �@m2

�

@µ �⇤
0�0 + nB

total mass term: 
classical + fluctuations

• We consider the bosonic density further (T=0):

nB = � @
@µ

1
2Tr logPB [⇢;µ] ⇡ �@m2

�

@µ Tr logP�1
B [⇢;µ]

Bosonic propagator

PB =

✓
��(K)�⇤

0�
⇤
0 P�(K)

P�(�K) ��(K)�0�0

◆
• For                      the bosonic propagator matrix simplifies to µ ! �1

Z� := � 1
2

@m2
�

@µ

! Z�

 
2aZ��⇤

0�
⇤
0 i! + q2

4M + 2aZ��⇤
0�0

�i! + q2

4M + 2aZ��⇤
0�0 2aZ��0�0

!

is ubiquitous to all the formulas here

• We observe that the expression 

• We introduce a renormalized condensate density as �̃⇤�̃ = Z��
⇤
0�

⇤
0



The limiting cases: BEC limit
• Expressing all quantities in terms of the renormalized condensate gives:

• Equation of state 

➡ Reduction to an effective theory of “renormalized” bosonic bound states

• Mass 2M

• Interaction strength 2a

• Atom number 2
Local objects in position space

• All reference to the concrete value of Z is gone in the renormalized quantities

• Macroscopic measurements probe the renormalized quantities

• Microscopic probes can measure Z, but this is beyond the scope here

• NB: While boson mass and atom number follow from symmetry, the interaction 
strength 2a is an approximation. The exact answer is 0.6a (four-body problem)

• with renormalized inverse boson 
propagator

n = 2�̃⇤
0�̃0 + 2TrP̃B

�1
= 2�̃⇤

0�̃0 + 2ñB

P̃B = PB/Z� =

 
2a�̃⇤

0�̃
⇤
0 i! + q2

4M + 2a�̃⇤
0�̃0

�i! + q2

4M + 2a�̃⇤
0�̃0 2a�̃0�̃0

!



Connection to Scattering Physics: Vacuum limit

• Heuristics: Study the gap equation (broad resonance) for

�
✏F

= 0.61 e
� ⇡

2akF

➡ The density scale k_F (also: temperature) have disappeared from the gap equation: 
➡ only two-body physics left!
➡ Very different from BCS limit, cf.

µ
✏F

! �1

1
a =

p
�µ · 2M



Connection to Scattering Physics: Vacuum limit

➡ microscopic origin of the crossover is bound state formation

• More systematically: Project on physical vacuum by 

- Diluting procedure:
- Getting cold:

Gk!0

(vak) = lim

kF!0

Gk!0

��
T/eF >Tc/eF =const.

d ⇠ k�1
F ! •

T ⇠ eF
n =

k3
F

3p2

• The chemical potential plays the role of half the binding 
energy

• Smooth crossover terminates in sharp 
       “second order phase transition” in vacuum

Ebind = �1/(Ma2)
-3 -2 -1 0 1 2
-5

-4

-3

-2

-1

0

1

µ

molecular bound 
state formation

two-body vs. many-body
(akF )

�1

Ebind/2
atom scattering 

threshold

• NB: Using this vacuum procedure, the above functional integral treatment solves 
the two-body scattering problem -- as quantum mechanics would do



Finite Temperatures
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BEC limit: Free bosons 
of atom number 2, mass 
2M

BCS limit: 
BCS theory

• So far: Crossover Physics at T=0

• The above formalism is readily applied to finite temperature: 
Frequency integration -> Matsubara sum

• Finite temperature phase diagram:

Tc
✏FNormal state

Superfluid state

(akF )
�1

T (BEC)
c

✏F
= 2⇡(6⇡2⇣(3/2))�2/3 ⇡ 0.218



Beyond mean field effects and challenges
at very different scales:

-2 0 2 4 6 8
0.00

0.05

0.10

0.15
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0.30

(akF)�1

Tc

Many-Body fermion 
physics:
Thermodynamic scales

few-body physics of 
effective dimers:
microscopic scales

two-body bound state

critical behavior: 
long distance scales

zero crossing of fermion 
chemical potential

n =
k3

F
3p2 ,T

eM =� 1
Ma2 � T,

k2
F

2M

kld � n1/3,T 1/2,e1/2
M

Challenges beyond Mean Field 

Strategy: Find an interpolation scheme which incorporates known physical 
effects in the limiting cases

Methods: t-matrix approaches, 2PI Effective Action, Functional RG, ...



microscopic thermodynamic long distance

n =
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FIG. 1: Black line: FRG including particle-hole fluctuations; Orange line: FRG with-

out particle-hole fluctuations; Green line: BCS result; Red line: Gorkov’s correction;

Yellow line: Free BEC; Blue line: Interacting BEC with FRG• Accurate treatment of molecular scattering physics in BEC regime 
• Accurately reproduce Gorkov effect in the BCS regime from rebosonization procedure
• Long wavelengths: second order phase transition 

(akF)�1

Tc

eF

FRG
+Rebos.

FRG

Gorkov

zero crossing of fermion 
chemical potential

Results beyond Mean Field 
• Functional RG treatment: connecting micro- and macrophysics, 

unified treatment of physics on various scales 

S. Flörchinger, M. Scherer, 
SD, C. Wetterich



Experiments in the BCS-BEC Crossover

Innsbruck, 2004 

pairing gap 
release energy 

ENS, 2004 

collective modes 

Duke ´04, Innsbruck 2004 & `06 

BEC BCS 

vortices MIT, 2005 

JILA, 2005 

pair correlations 



Summary: BCS-BEC Crossover 

• We have discussed a simple approximation scheme based on the effective action 
capturing the qualitative features of the BCS-BEC crossover at zero and finite 
temperatures 

- The BCS-BEC crossover interpolates between the two cornerstones for quantum 
condensation phenomena, BCS and BEC type superfluidity

- The microscopic origin is a Feshbach resonance. The divergence of the scattering 
length is accompanied by the formation of a bosonic bound state. There are three 
regimes for the many-body physics

- The crossover from BCS to BEC regimes may be viewed as a localization process in 
real space, or a delocalization in momentum space

- Though there are profound quantitiative changes in the thermodynamics, the ground 
state symmetry properties are unchanged: Crossover instead of quantum phase 
transition

weakly interacting (dilute) fermions

dense regime, strong interactions

molecular bound states: dilute bosons

a < 0, |akF| ⌧ 1

|akF| & 1

a > 0, |akF| ⌧ 1



Lattice Systems: Outline
Quantum Phase transitions: General Overview

Microscopic derivation of the Bose-Hubbard model

• What is a Quantum Phase transition?
• Example: Mott Insulator -- Superfluid transition

• Atoms in optical potentials
• Periodic potentials, Bloch theorem
• Bose-Hubbard model

Phase diagram of the Bose-Hubbard model
• Basic mean field theory: phase border and limiting cases
• Path integral formulation: excitation spectrum in the Mott phase 

and bicritical point

g

T

gc

quantum critical 
region

1.0

2.0

3.0

0.010 0.020 0.030
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Quantum Phase Transitions: 
General Overview

g

T

gc

quantum critical region



What is a quantum phase transition?

Literature: Subir Sachdev, Quantum Phase Transitions, Cambridge University Press (1999)

• Consider a Hamiltonian of the form:

H = H1 + gH2

[H1, H2] = 0

dimensionless parameter 

• Study the ground state behavior of the energy 

• Quantum phase transition: Nonanalytic dependence of the ground state energy on 
coupling parameter g

E(g) = hG|H|Gi

• Two possibilities:

• parts commute, 

• but eigenvalues have crossing

g g

EE

low eigenvalues of H

EG

gap �

• parts do not commute, 

• eigenvalues crossing develops in 
the thermodynamic limit 

[H1, H2] 6= 0

EG

gc gc



g g

EE

low eigenvalues of H

EG

gap �

H = H1 + gH2

What is a quantum phase transition?

• The second possibility is more common and closer to the situation in conventional 
classical phase transitions in the thermodynamic limit

• The first possibility often occurs only in conjunction with the second (ex: Bose-
Hubbard phase diagram)

• The phase transition is usually accompanied by qualitative change in the 
correlations in the ground state

EG

gc gc



What is a quantum phase transition?

• We concentrate on second order transitions (as those above)
• characteristic features: 

- vanishing of the energy scale separating ground from excited states (gap) at the 
transition point

- universal scaling close to criticality, 

� ⇠ J |g � gc|⌫zd

critical exponent

- diverging length scale describing the decay of spatial correlations at the transition 
point

typical microscopic energy scale (in H)

⇠�1 ⇠ ⇤|g � gc|⌫

typical microscopic length scale (e.g. lattice spacing)

- the ratio defines the dynamic critical exponent,

� ⇠ ⇠�zd



Quantum vs. Classical Phase Transition

• A quantum phase transition strictly occurs only at zero temperature T=0
• Temperature always sets a minimal energy scale, preventing scaling of  
• Generic quantum phase diagram:

g

T

gc

Ordered with 
symmetry 
breaking 

(possibly) ordered without 
symmetry breaking (gapped)

Disordered

quantum critical 
region (no gap)

�

- classical description of critical 
behavior applies if  

line of second order phase 
transitions - This is always violated at low enough T: 

classical-quantum crossover

~!typ ⌧ kBT

• Phase transitions in classical models are driven by statistical (thermal) fluctuations. 
They freeze to fluctuationless ground state at T=0

• Quantum models have fluctuations driven by Heisenberg uncertainty principle

➡ Quantum critical region features interplay of quantum (temporal) and statistical 
(spatial) fluctuations



Microscopic Physics of the Bose 
Hubbard Model

(see appendix for more details)



Bosons in the Optical LatticeBose Hubbard Model

System: We consider N bosonic particles moving on a lattice (“lattice gas”)
consisting of M lattice sites. The essential ingredients of the dynamics are

• hopping of the bosonic particles between lattice sites (kinetic energy)
• repulsive / attractive interaction between the particles (interaction energy)
• Bose statistics

Bose Hubbard (BH) Hamiltonian:

Ĥ = −J
∑

<ij>

b†i bj + 1
2U

∑

i

b†2i b2
i

= T̂ + V̂

• Second quantized notation:1 b and b†i denote destruction and creation op-
erators for bosons at lattice site i obeying commutation relations

[

bi, b
†
j

]

=

δij . The occupation number operator for site i is n̂i ≡ b†ibi.

• Kinetic energy: the first term is the kinetic energy T̂ = −J
∑

<ij> b†i bj. It
describes the hopping of electrons between adjacent lattice sites (notation
< i, j >) with tunneling amplitudes J > 0.

• Interaction energy: the second term V̂ = 1
2U

∑

i b†2i b2
i ≡ 1

2U
∑

i n̂i(n̂i − 1)
describes an on-site interaction U , when two bosons occupy the same site.
(Typically we assume U > 0, i.e repulsive interactions to guarantee stability.)

Physical realization: (we will return to the details later)

• Atomic physics: loading cold bosonic atoms (from a Bose Einstein conden-
sate) into an optical lattice

• Josephson junction array in mesoscopic solid state physics: in a super-
conductor electrons bind to form Cooper pairs, which behave as composite
bosons. As JJ array is an array (lattice) of superconducing island connected
by tunneling junctions.

Fock space:

• On a single lattice site we have configurations with no boson, one, two etc.
bosons: |ni⟩i = 1√

n!
b†ni

i |vac⟩ with ni = 0, 1, 2, . . . occupation numbers

• The total wave function of the system will be a superposition state

|Ψ⟩ =
∑

{ni},
P

i ni=N

c{ni} |{ni}⟩

The Hamiltonian preserves the particle number N̂ =
∑

i n̂i,
[

Ĥ, N̂
]

= 0,
which leads to the constraint

∑

i ni = N .

What we are interested in ...

• We will be mainly interested in the properties of the ground state of this
system, and low energy excitations. The central question will be the role
of interactions, in particular the competition between the kinetic energy and
interaction energy and the associated quantum phases and quantum phase
transitions.

• (Of course, finite temperature, and the complete phase diagram in the quan-
tum degenerate regime are also of interest.)

For the Bose Hubbard Model we expect ...

1By using the language of second quantization the symmetry of the many body wave function
for bosons Ψ(x1, . . . , xi, . . . , xj , . . . , xN ) = +Ψ(x1, . . . , xj , . . . , xi, . . . , xN ) under exchange
of particle coordinates xi ↔ xj is automatically built into the formalism.

4



Atoms in Optical Lattices

� < 0, �Eg < 0 � > 0, �Eg > 0

Cold Atoms in Optical Lattices

Optical Lattices

• AC-Stark shift
- Consider an atom in its electronic ground state exposed to laser light at fixed position x⃗.
- The light be far detuned from excited state resonances: ground state experiences a second-

oder AC-Stark shift
δEg = α(ω)I

with α(ω) - dynamic polarizability of the atom for laser frequency ω, I ∝ E⃗2 - light intensity.
- Example: two-level atom {|g⟩ , |e⟩}.

• For standing wave laser configuration E⃗(x⃗, t) = e⃗E sinkx e−iωt + h.c., AC-
Stark shift is a function of position: It generates an optical potential

Vopt(x⃗) ≡ δEg(x⃗) = !
Ω2(x⃗)

4∆

Example: for a two-level atom {|g⟩ , |e⟩} in the RWA the AC-Starkshift is given
by δEg(x⃗) = !

Ω2(x⃗)
4∆ with Rabi frequeny Ω and detuning ∆ = ω − ωeg (Ω ≪ ∆).

Note that for red detuning (∆ < 0) the ground state shifts down δEg < 0, while
for blue detuning (∆ > 0) we have δEg > 0.

Optical Lattice (here 1D):

• standing wave laser configuration: E⃗(x⃗, t) = e⃗E sin kx e−iωt + h.c.

• AC Starkshift as a function of position
• The AC Starkshift appears as a conservative potential for the center-of-mass

motion of the atom

i!
∂ψ(x⃗, t)

∂t
=

(

−
!2

2m
∇2 + Vopt(x⃗)

)

ψ(x⃗, t) (Vopt(x⃗) ≡ δEg(x⃗) = !
Ω2(x⃗)

4∆
)

where the position dependent AC-Stark shift appears as a (conservative)
“optical potential”

Vopt(x) = V0 sin2 kx (k = 2π/λ)

for the center-of-mass motion of the atom.
• The potential is periodic with lattice period λ/2, and thus supports a band

structure (Bloch bands). The depth of the potential is proportional to the
laser intensity

2

detuning from 
resonance � = � � �eg

Rabi frequency

⇥� �

�Eg = � ⇥2

4�

�

⇠ aB
aB ⌧ �

extent of atom much smaller 
than laser wavelength

!eg



laser laser

hopping

Bloch bands

Cold Atoms in Optical Lattices

Optical Lattices

AC-Stark shift: We consider an atom in its electronic ground state exposed to
laser light at fixed position  x. If the light is far detuned from excited state reso-
nances, the ground state will experience a second-oder AC-Stark shift ⇥Eg( x) =
�(⌥)I( x) with �(⌥) the dynamic polarizability of the atom for frequency ⌥, and
I( x) the light intensity.

Example: for a two-level atom {|g⌥ , |e⌥} in the RWA the AC-Starkshift is given
by ⇥Eg( x) = �⇥2(⇥x)

4� with Rabi frequeny ⇤ and detuning ⇥ = ⌥ � ⌥eg (⇤ ⇧ ⇥).
Note that for red detuning (⇥ < 0) the ground state shifts down ⇥Eg < 0, while
for blue detuning (⇥ > 0) we have ⇥Eg > 0.

Optical Lattice (here 1D):

• standing wave laser configuration:  E( x, t) =  eE sin kx e�i�t + h.c.
• AC Starkshift as a function of position
• The AC Starkshift appears as a conservative potential for the center-of-mass

motion of the atom

i��⌃( x, t)
�t

=
�
� �2

2m
 2 + Vopt( x)

⇥
⌃( x, t) (Vopt( x) ⇥ ⇥Eg( x) = �⇤2( x)

4⇥
)

where the position dependent AC-Stark shift appears as a (conservative)
“optical potential”

Vopt(x) = V0 sin2 kx (k = 2⇧/⇤)

for the center-of-mass motion of the atom.
• The potential is periodic with lattice period ⇤/2, and thus supports a band

structure (Bloch bands). The depth of the potential is proportional to the
laser intensity

Single Atom moving in an Optical Potential: If we include the motion of the
atom we derive the Schrödinger Equation

i��⌃( x, t)
�t

=
�
� �2

2m
 2 + Vopt( x)

⇥
⌃( x, t) (Vopt( x) ⇥ ⇥Eg( x) = �⇤2( x)

4⇥
),

(Rem.: decoherence due to spontaneous emission from excited state suppressed
by �/⇥⇧ 1)

Example 1 FORT: far off-resonant light trap from focused laser beam for red
detuning.

Example 2 Optical Lattice: standing light wave generated by counterpropagat-
ing light beams, e.g. in 1D  E( x, t) =  eE sin kxe�i�t + c.c. (k = 2⇧/⇤) so that

Vopt(x) = V0 sin2 kx,

which corresponds to a periodic array of microtraps with lattice period a = ⇤/2
and lattice depth V0 ⇤ |E|2 tunable / controlled by the laser intensity.

Discussion:

Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-
suming ⇥ > 0 so that V0 > 0 we have for the lowest states a harmonic oscillator
potential

V (x) = V0 sin2(kx) ⌅ V0 (kx)2 ⌅ 1
2
m⌅2x2

with trapping frequency⌅ =
�

4V0ER/� and with recoil frequency ER ⇥ �2k2/2m.
(TypciallyER ⇤ kHz, and V0 ⇤ few tens of kHz.)

(Note: the recoil frequency ER provides a natural energy scale for the depth of
the optical lattice V0/ER ⌃ 1.)
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Optical Lattices

AC-Stark shift: We consider an atom in its electronic ground state exposed to
laser light at fixed position  x. If the light is far detuned from excited state reso-
nances, the ground state will experience a second-oder AC-Stark shift ⇥Eg( x) =
�(⌥)I( x) with �(⌥) the dynamic polarizability of the atom for frequency ⌥, and
I( x) the light intensity.

Example: for a two-level atom {|g⌥ , |e⌥} in the RWA the AC-Starkshift is given
by ⇥Eg( x) = �⇥2(⇥x)

4� with Rabi frequeny ⇤ and detuning ⇥ = ⌥ � ⌥eg (⇤ ⇧ ⇥).
Note that for red detuning (⇥ < 0) the ground state shifts down ⇥Eg < 0, while
for blue detuning (⇥ > 0) we have ⇥Eg > 0.

Optical Lattice (here 1D):

• standing wave laser configuration:  E( x, t) =  eE sin kx e�i�t + h.c.
• AC Starkshift as a function of position
• The AC Starkshift appears as a conservative potential for the center-of-mass

motion of the atom

i��⌃( x, t)
�t

=
�
� �2

2m
 2 + Vopt( x)

⇥
⌃( x, t) (Vopt( x) ⇥ ⇥Eg( x) = �⇤2( x)

4⇥
)

where the position dependent AC-Stark shift appears as a (conservative)
“optical potential”

Vopt(x) = V0 sin2 kx (k = 2⇧/⇤)

for the center-of-mass motion of the atom.
• The potential is periodic with lattice period ⇤/2, and thus supports a band

structure (Bloch bands). The depth of the potential is proportional to the
laser intensity

Single Atom moving in an Optical Potential: If we include the motion of the
atom we derive the Schrödinger Equation

i��⌃( x, t)
�t

=
�
� �2
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 2 + Vopt( x)

⇥
⌃( x, t) (Vopt( x) ⇥ ⇥Eg( x) = �⇤2( x)

4⇥
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potential
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(Note: the recoil frequency ER provides a natural energy scale for the depth of
the optical lattice V0/ER ⌃ 1.)

20

Cold Atoms in Optical Lattices

Optical Lattices

AC-Stark shift: We consider an atom in its electronic ground state exposed to
laser light at fixed position  x. If the light is far detuned from excited state reso-
nances, the ground state will experience a second-oder AC-Stark shift ⇥Eg( x) =
�(⌥)I( x) with �(⌥) the dynamic polarizability of the atom for frequency ⌥, and
I( x) the light intensity.

Example: for a two-level atom {|g⌥ , |e⌥} in the RWA the AC-Starkshift is given
by ⇥Eg( x) = �⇥2(⇥x)

4� with Rabi frequeny ⇤ and detuning ⇥ = ⌥ � ⌥eg (⇤ ⇧ ⇥).
Note that for red detuning (⇥ < 0) the ground state shifts down ⇥Eg < 0, while
for blue detuning (⇥ > 0) we have ⇥Eg > 0.

Optical Lattice (here 1D):

• standing wave laser configuration:  E( x, t) =  eE sin kx e�i�t + h.c.
• AC Starkshift as a function of position
• The AC Starkshift appears as a conservative potential for the center-of-mass

motion of the atom

i��⌃( x, t)
�t

=
�
� �2

2m
 2 + Vopt( x)

⇥
⌃( x, t) (Vopt( x) ⇥ ⇥Eg( x) = �⇤2( x)

4⇥
)

where the position dependent AC-Stark shift appears as a (conservative)
“optical potential”

Vopt(x) = V0 sin2 kx (k = 2⇧/⇤)

for the center-of-mass motion of the atom.
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• atomic fermions can be treated analogously: Fermi Hubbard model 

Boson Gas in Periodic Optical Potentials

H =

Z

x

⇥
 ̂†
x

�
� 4

2m
+ V (x)

�
 ̂
x

+ g( ̂†
x

 ̂
x

)2
⇤

• Starting point: workhorse Hamiltonian for weakly interacting ultracold bosons

• see above: trapping potential can be treated classically due to scale separation
• instead, now we are interested in a periodic potential of wavelength comparable to the typical 

interparticle distance: light in with optical wavelength, as

• create such conservative potential by weakly coupling the atoms in their ground state                to 
auxiliary internal level by above means: position dependent second order AC Stark shift

($  ̂
x

)

V (x) = ~⌦
2(x)

4�
⌘ V0

X

i

sin2(kixi), ki = 2⇡/�i

Rabi coupling to aux. level

laser detuning from aux. level

� ⇠ 500nm = 5 · 10�5cm
typical wavelength of light typical interparticle separation

d . 10�4cm (n & 1012cm�3)



which are localized around a particular lattice site xi = ia with i = 0,±1, . . . .

The Bloch and Wannier wave functions are complete set of functions

Generalizations:

We can generate 2D, and 3D potentials by adding optical potentials in differ-
ent spatial directions. For lasers with different frequencies the interference
terms average out, and the potentials are additive. Example: in 3D V (⇤x) =⇤3

j=1 V0j sin2(kxj).

Laser configurartions / lattice configurations; tricks with light polarization; disor-
der potential via laser speckles; back ground harmonic trapping potentials etc.

Rem.: Compare with solid state physics, where periodic potential for electrons
are generated by ions oscillating around equilibrium positions (phonons); fast
electron and slow ion motion (Born-Oppenheimer).

Bose (and Fermi) Hubbard Models

Many body Hamiltonian of a dilute gas of bosonic atoms

Hamiltonian

H =
ˆ

d3x�̂†(⇤x)
�
� �2

2m
⇤2 + V0(⇤x)

⇥
�̂(⇤x) +

1
2
g

ˆ
d3x�̂†(⇤x)�̂†(⇤x)�̂(⇤x)�̂(⇤x)

with V0(⇤x) a single particle trapping potential (below: the optical lattice), and
g = 4��as

m , where a is the scattering length.

This is valid under the assumption:

• The gas is sufficiently dilute so that only two body interactions are important,
we can treat the composite atoms as bosons

• The enery / temperature are sufficiently small that two-body interactions re-
duce to s-wave scattering, parametrized by the scattering length as.

Bose Hubbard Hamiltonian

Lit.: D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys Rev.
Lett. 81, 3108 (1998)

We expand the field operators in Wannier functions of the lowest band

�̂(⇤x) =
⌅

i

w(⇤x� ⇤xi)bi

to obtain the Bose Hubbard model

Ĥ = �
⌅

ij

Jijb
†
i bj + 1

2U
⌅

i

b†2i b2
i

with hopping Jij =
´

d3xw(⇤x � ⇤xi)
⇧
� �2

2m⇤
2 + V0(⇤x)

⌃
w(⇤x � ⇤xj) and interaction

U = 1
2g
´

d3x |w(⇤x)|4 valid for J, U, kBT ⇥ �⇥Bloch.

22

spatially localized 
Wannier functions

U
J

Bose Hubbard Hamiltonian (Jaksch et al. ’98)

(tight binding lowest band approximation)

additionally, we are bound to interactions (scattering lengths)

here, it means lattice spacingg ⌧ a0, a
extent of Wannier function This is not true close to 

Feshbach resonances!

• For dominant optical potential           (other scales), we expect 
localized single particle wavefunctions to provide a useful 
description of the system. 

• A suitable complete set of basis functions are the Wannier functions

V0 �

• W



Parameters as function of laser intensity

Bose Hubbard Parameters

H = �J
X

hi,ji

b†i bj +
X

i

✏in̂i +
1
2U

X

i

n̂i(n̂i � 1)

• J/U mainly controlled by extraction of kinetic energy via deepening the lattice 



Summary: Bose-Hubbard Model

• Achieved via coherent manipulation of ultracold atoms.

• Ratio of kinetic and interaction energy tunable via lattice parameters (and 
Feshbach resonances). In particular, reach interaction dominated regime.

• Possible to penetrate high density regime                        . Not possible in the 
continuum. 

• The Bose-Hubbard model is an exemplary model for strongly correlated bosons. It 
is not realized in condensed matter.

H = �J
�

�i,j⇥

b†i bj � µ
�

i

n̂i +
�

i

�in̂i + 1
2U

�

i

n̂i(n̂i � 1)

U

J

⇥n̂i⇤ = O(1)

• Remark: strong interactions and high density not in contradiction to earlier scale considerations:

• strong interactions:                mainly from reduction of kinetic energy via lattice depth.

• High density due to strong localization of onsite wave function.

• For validity of lowest band approximation, it is however important that

J/U � 1

a� �

kinetic energy 
interaction energy 

trapping potential 



Phase Diagram 
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Bose Hubbard Model
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Kinetic vs. Interaction Domination - Limiting Cases

• Interaction dominated regime: set J = 0

• Goal: Find the ground state (gs) phase diagram for Bose-Hubbard model (T=0)
• Strategy: (i) analyze limiting cases, (ii) find interpolation scheme
• Restrict to the homogeneous system �i = 0

- Purely local Hamiltonian: gs many-body wavefunction takes product form

➡ Remains to analyze onsite problem only.
- Only onsite density operators occur, with (real space) occupation number eigenstates
➡ Onsite Hamiltonian also diagonal in this basis: Thus, minimize onsite energy and find 

the optimal n for given mu:

|�� =
�

i

|��i
n̂i|n�i = n|n�i

H = �µ
�

i

n̂i + 1
2U

�

i

n̂i(n̂i � 1) =
�

i

hi number eigenstates n=1

for µ/U < 0 n = 0
for 0 < µ/U < 1 n = 1|
for 1 < µ/U < 2 n = 2

and so on

particle number quantization: for ranges of the 
chemical potential (particle reservoir), the 
system draws an integer number out or it:

“Mott states”



Kinetic vs. Interaction Domination - Limiting Cases

• Kinetically dominated regime: set U=0

- Free bosons at T=0: Bose Einstein condensation! 
- See that: Diagonalize with Fourier transformation

momentum eigenstate q=0

H = �J
�

�i,j⇥

b†i bj � µ
�

i

n̂i

• Ground state wave function: fixed particle number N (M - no. of lattice sites)

- product state in momentum space, not in position space

• Work in grand canonical ensemble: coherent state with av. density 

b†N
q=0|vac� = (M�1/2

�

i

b†i )
N |vac�

�n̂i⇥ = N/M

eN1/2b†q=0 |vac� = e(N/M)1/2 P
i b†i |vac� =

⇤

i

�
e((N/M)1/2b†i )|vac�i

⇥

➡ grand canonical ground state can be written as a product of onsite coherent states

ensures av. particle no. 

lattice dispersion ✏q = �2J
X

�

cosqe�

H =
X

q

(✏q � µ)b†qbq

lattice direction



Intermediate Overview: Competition

• Interaction U favors localization in real 
space for integer particle numbers: 

• Mott state with quantized particle no.
• no expectation value: phase symmetry 

intact (unbroken)

• Hopping J favors delocalization in real 
space: 

• Condensate (local in momentum space!)
• Fixed condensate phase: Breaking of phase 

rotation symmetry

➡ Competition gives rise to a quantum phase transition as a function of 

⇥bi⇤ � ei�

U/J
➡ Link between extremes: position space product ground states, respectively 



Mean Field Theory
• Interpolation scheme encompassing the full range        .  J/U

•   Main ingredient: Based on above discussion, construct local mean field Hamiltonian

H = �J
X

hi,ji

b†i bj � µ
X

i

n̂i +
1
2U

X

i

n̂i(n̂i � 1)

full Bose Hubbard Hamiltonian

coordination number 
z = 2d (cubic lattice)• Discussion:

• Derivation: Decompose                       , neglect             terms, rewrite in terms of
• The problem is reduced to an onsite problem
•     is the “mean field”:

- information on other other sites only via averages 
- if nonzero, assumes translation invariance but spontaneous phase symmetry breaking

• Validity: approximation neglects spatial correlations via local form
- becomes exact in infinite dimensions (Metzner and Vollhardt ’89)
- reasonable in d=2,3 (T=0)

bi =  + �bi �b†i �bj bi

 

n̂i = b†i bi

H(MF) =
X

i

hi

hi = �µn̂i +
1
2Un̂i(n̂i � 1)� Jz( ⇤bi +  b†i ) + Jz ⇤ 



Phase Diagram: Derivation

• Assume second order phase transition and follow Landau procedure:

•  Study ground state energy

• Determine zero crossing of mass term

• Calculate E in second order perturbation theory

E( ) = const. +m2| |2 +O(| |4)

h(0)
i = �µn̂i +

1
2Un̂i(n̂i � 1) + Jz ⇤ 

hi = h(0)
i +  Vi

smallness parameter close to 
phase transition

Vi = Jz(bi + b†i )

E( )

unstable towards SSB



Phase Diagram: DerivationOutline

• Zero order Hamiltonian h(0)
i : diagonal in Fock basis {|n⟩}, n = 0, 1, 2, ...

• The eigenvalues are E(0)
n = −µn+ 1

2Un(n− 1) + Jzψ2

• The ground state energies for given µ are

E(0)
n̄ =

{

0 for µ < 0

−µn̄+ 1
2Un̄(n̄− 1) + Jzψ2 for U(n̄− 1) < µ < Un̄

• The second order correction to the energy is

E(2)
n̄ = ψ2

∑

n̸=g

|⟨n̄|Vi|n⟩|2

E(0)
n̄ − E(0)

n

= (Jzψ)2
(

n̄

U(n̄− 1)− µ
+

n̄+ 1

µ− Un̄

)

• For E = const.+m2ψ2 + ... the phase transition happens at (µ̄ = µ/Jz, Ū = U/Jz)

m2

Jz
= 1 +

n̄

Ū(n̄− 1)− µ̄
+

n̄+ 1

µ̄− Ū n̄
= 0

•
• A quantum computer with N qubits can simulate such a problem. This is why a quantum computer

can easily outperform a classical computer in this task. Thus it is of interest to build quantum simulators
to solve / simulate many body dynamics.
- analog quantum simulator: we build a “analog” physical system consisting of N spins and Hamil-

tonian H with controllable external parameters (magnetic fields, ...). We will discuss below exam-
ples of analog quantum simulators for bose and fermi Hubbard (lattice) models with cold atoms in
optical lattices.

Bose-Hubbard phase border
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with z the number of nearest neighbors.

Computer Program: For given J , U and chemical potential µ perform the fol-
lowing calcuations.

1. Asume ⇤ �= 0.

2. Solve the Schrödinger equation (*) for the lowest eigenvalue � and normal-
ized eigenvector |⇥i⇤ =

��
n=0 fn |n⇤i

3. Calculate the new ⇤ from the {fn}.

Repeat until {fn} and thus ⇤ converge.

Cases: For a given {J, U, µ} two cases are possible:

• if ⇤ �= 0 we have a superfluid phase, and
• if ⇤ = 0 we have a Mott phase. The transition between these phases will

occur for a certain critical Uc/J . It is a second order transition.

This gives the phase diagram as a function of µ/U and J/U .

Finally, we plot ⇥n̂i⇤ = n as a function of µ to determine the chemical potential
for a given density n = N/M .

11

Phase Diagram: Overall Shape

1 +
n̄

Ū(n̄� 1)� µ̄
+

n̄+ 1

µ̄� Ū n̄
= 0

“Mott Lobe”

NB: for non-commensurate (= integer) 
fillings, superfluidity persists for U -> 0: 
excess particles condense.

MI: Quantization of particle number SF: Quantization of phase 

Simple picture:

”[N̂ , '̂] = i” - conjugate variables



Limiting cases: Weak coupling, Superfluid

➡ At weak coupling, the (lattice) Gross-Pitaevski equation is reproduced
➡ certain spatial fluctuations are included: scattering off the condensate
➡ dispersion: 

Limiting cases: Weak coupling

• Consider site dependent mean fields, hi = −µn̂i + 1
2Un̂i(n̂i − 1)− J

∑

⟨j|i⟩(ψ
∗
j bi + ψjb

†
i ) + const.

• Consider the equation of motion for the order parameter:
- Heisenberg equation of motion for onsite Hamiltonian:

∂tρ = −i[hi, ρ], ρ = |ψ⟩⟨ψ|, |ψ⟩ =
∏

i

|ψ⟩i

- Equation of motion for the order parameter:

i∂tψi ≡ i∂ttr(biρ) = −J
∑

⟨j|i⟩

ψi − µ⟨n̂i⟩+ U⟨n̂ibi⟩

- Weak coupling: assume coherent states bi|ψ⟩i = ψi|ψ⟩i

i∂tψi = −J
∑

⟨j|i⟩

ψi − µψ∗
i ψi + Uψ∗

i ψ
2
i = −J△ψi − µ′ψ∗

i ψi + Uψ∗
i ψ

2
i

• At weak coupling, the (lattice) Gross-Pitaevski equation is reproduced

Consider a system of N spin-1/2 particles or qubits on a lattice. Its state vector lives in the product Hilberg
space H = {|↑⟩ , |↓⟩}⊗N ≡ {|0⟩ , |1⟩}⊗N , and is in general a superposition

|Ψ⟩ =
∑

{σi=0,1}

cσ1σ2...cN |σ1,σ2, . . . ,σN ⟩

= c0...00 |0 . . . 00⟩+ c0...01 |0 . . . 01⟩+ . . .+ c1...11 |1 . . . 11⟩

of the exponentially large number 2N of basis states. When solving the time-dependent or time-independent
Schrödinger equation with some many body Hamiltonian Ĥ involving non-trivial interactions we are faced
with the problem of solving differential equations of eigenvalue problems involving the 2N coefficients
cσ1σ2...cN .

• For large N solving such a system exactly on a computer is difficult if not fundamentally impossible.
Example: even for a moderate number of N = 300 spins or qubits this would require us to store and
solve for 2300 complex coefficients in a computer. This is roughly the number of atoms in the visible
universe.

• In practice, however, depending of the specific problem and questions asked we can often make
(clever) approximations to these wave functions, as in the case of mean field theories based on in-
dependent particle models, for ground states and low energy excitations in 1D systems (density renor-
malization group, DMRG), or Monte Carlo simulations. But for some fundamental problems no such
(controlled) approximations are known at present, an example being the fermionic Hubbard model for
high-Tc.

• A quantum computer with N qubits can simulate such a problem. This is why a quantum computer
can easily outperform a classical computer in this task. Thus it is of interest to build quantum simulators
to solve / simulate many body dynamics.
- analog quantum simulator: we build a “analog” physical system consisting of N spins and Hamil-

tonian H with controllable external parameters (magnetic fields, ...). We will discuss below exam-
ples of analog quantum simulators for bose and fermi Hubbard (lattice) models with cold atoms in
optical lattices.

- digital quantum simulator: the time evolution e−iHt can be decomposed in the sense of the Trot-
ter formula into a sequence of single and two qubit gates. Of course, a freely programmable general
purpose quantum computer will provide such a quantum simulator. However, in many cases one
gets away with a special and thus simpler set of quantum gates: for example, a spatially homoge-
neous system can be simulated with parallel quantum gates and without individual addressing of
qubits. A quantum simulator will, therefore, be more like a special purpose quantum computer.

!q =
q
✏q(2U ⇤ + ✏q) ✏q = 2J

X

�

(1� cos aq�)

4fi =
X

hj|ii

fj � fi
µ0 = µ+ Jz

shift: defines zero of kinetic energy
lattice Laplacian

| ii = e�| i|2/2
1X

n=0

 n
ip
n!
|ni

bi

z



Limiting cases: Strong coupling, Mott Insulator

➡switching on J adiabatically, the ground state remains exact eigenstate to   
number operator. Assuming translation invariance gives exact result

hb†i bii = n̄

- Implication: the Mott insulator is an incompressible state, @hN̂i
@µ

= 0

Limiting cases: Strong coupling

• Mean field Mott state : |n̄⟩ =
∏

i |n̄i⟩ = n̄−M/2
∏

i b
†n̄
i |vac⟩: Quantization of particle number

• Discussion:
- Within mean field, Mott-ness follows as a consequence of purity:

∗ assume mechanism that suppresses SF off-diagonal order: ρ diagonal, 1 = trρ =
∏

i triρi
hom.
=

(
∑

pm)M

∗ Zero temperature: pure state, 1 = trρ2 =
∏

i triρ
2
i
hom.
= (

∑

p2m)M

∗ only solution is pm = δn,n̄

- Quantization of particle number within MI is an exact result in the sense ⟨b†i bi⟩ = n̄

∗ at J = 0, Mott state |n̄⟩ is (i) exact ground state, (ii) eigenstate to particle number N̂ =
∑

i n̂i,
(iii) separated from other states by gap ∼ U

∗ kinetic perturbation Hkin = −J
∑

⟨i,j⟩ b
†
ibj

∗ commutes with N̂ , [Hkin, N̂ ] = 0



Excitation spectrum in the Mott phase
• We are looking for the single particle dispersion relation 
• This is a dynamical quantity: hard to get within Hamiltonian framework above
• Path integral formulation of the Bose-Hubbard model

!q

• Discussion: 
- Nonrelativistic action (on the lattice)
- Note symmetry (T=0): temporally local gauge invariance 
- so far: weak coupling problems J>>U, decoupling in the interaction U
- now: Mott physics, i.e. strong coupling problem U>>J: decoupling in J

bi-local contribution; for 
nearest-neighbour hopping

local contribution

Z = tre��Ĥ
=

Z
Da exp�SBH[a]

SBH[a] = Sloc[a] + Skin[a]

S
loc

[a] =

Z �/2

��/2
d⌧

X

i

⇥
a⇤i (@⌧ � µ)ai +

1

2

Ua⇤ 2

i a2i
⇤

tij = �J
X

��

�i,j+�e�

Skin[a] =

Z �/2

��/2
d⌧

X

i,j

tija
⇤
i aj � = ±1

� = x, y, z

spatial directions

ai ! aie
i�(⌧), µ ! µ+ i@⌧�(⌧)



Decoupling in J: Hopping Expansion

Decoupling in J: Hopping Expansion

• Hubbard-Stratonovich transformation:

Z =
´

Da exp−SBH[a] = N
´

DaDψ exp−SBH[a] +
´

dτ
∑

ij tij(ψ
∗
i − a∗i )(ψj − aj)

= N
´

DaDψ exp−Sloc[a] +
´

dτ
∑

ij tij(ψ
∗
i ψj − ψ∗

i aj − ψja∗i )= N
´

Dψ exp−Seff[ψ]

Seff[ψ] =
´

dτ
∑

ij tijψ
∗
i ψj − log⟨exp−

´

dτ
∑

ij(ψ
∗
i aj + ψja∗i ⟩Sloc

⟨O⟩Sloc
=
´

DaO exp−Sloc[a]

• Discussion
- Form of intermediate action identical to mean field decoupling above (for site dependent mean

fields)
- The effective action Seff[ψ] can now be calculated perturbatively

• Goal: treat the strong coupling problem U>>J via decoupling in J

SBH[a] = Sloc[a] + Skin[a]

⇠ U ⇠ J



Decoupling in J: Hopping Expansion
Decoupling in J: Hopping Expansion

• expansion in powers of the hopping

⟨exp−
ˆ

dτ
∑

ij

tij(ψ
∗
i aj + ψja

∗
i )⟩Sloc = 1 +

∞
∑

m=1

⟨[
ˆ

dτ
∑

ij

tij(ψ
∗
i aj + ψja

∗
i )]

2m⟩Sloc

→ note: averages of odd powers of ai or a∗i vanish in the Mott state
• To lowest order, the effective action thus reads

Seff[ψ] =

ˆ

dτ
∑

ij

tijψ
∗
i (τ)ψj(τ) +

ˆ

dτdτ ′
∑

iji′j′

tijti′j′ψ
∗
j (τ)ψj′ (τ

′)⟨ai(τ)a∗i (τ ′)⟩Sloc

• Discussion
- the approach is inherently perturbative: no known closed form expression for above average
- the hopping expansion does not lead to an exact solution of the problem: Z =

´

Dψ exp−Seff[ψ]
would need to be calculated for this purpose

- the hopping expansion is closely related to the mean field approximation (see below)



Quadratic Effective Action
Quadratic Effective Action

• The correlation functions ⟨ai(τ)a∗i′ (τ ′)⟩Sloc can be evaluated explicitly since the local onsite problem is
solved exactly

• The effective action is then, in frequency and momentum space and for nearest neighbour hopping

S(2)
eff [ψ] =

´

dω
2π

ddq
(2π)dψ

∗
q(ω)G

−1(ω,q)ψq(ω)

G−1(ω,q) = ϵq − ϵ2q

(

n̄+1
−iω−µ+n̄U + n̄

iω+µ−(n̄−1)U

)

, ϵq = 2J
∑

λ cosqeλ

• Evaluating G−1(ω = 0,q = 0) reproduces the above mean field result (ϵq = Jz): The fluctuations
included here are the same, but their spatial and temporal dependence is resolved within the functional
integral formulation

• The frequency dependence is dictated by the temporally local gauge invariance to −iω − µ

• The quasiparticle spectrum obtains from the poles of the Green’s function analytically continued to real
frequencies,

G−1(ω → iω,q)
!
= 0



Excitation Spectrum: Particles and Holes

Excitation Spectrum

• Solving G−1(ω → iω,q)
!
= 0 yields the quasiparticle dispersion

ω±
q = −µ+ U

2 (2n̄− 1)− ϵq
2 ± 1

2

√

ϵ2q − 2(2n̄+ 1)Uϵq + U2

• For µ within the Mott phase, ω+
q ≥ 0 and ω−

q ≤ 0. They correspond to quasiparticle and quasihole
excitations.

• If we are interested in the true excitation spectrum, we need to consider that the quasiholes are prop-
agating backward in time. The true particle and hole excitation energies are therefore

E±
q = ±ω±

q = ±
(

− µ+ U
2 (2n̄− 1)− ϵq

2

)

+ 1
2

√

ϵ2q − 2(2n̄+ 1)Uϵq + U2

• Generically, both branches of the spectrum are gapped: E±
q=0 = O(U) > 0

• Study the phase border for Jz ≪ U , defined with G−1(ω = 0,q = 0)
!
= 0 −→ µcrit(U) in the upper

branch of the lobe:
- there is a gapless particle with quadratic dispersion for q → 0, E+

q ≈ (1 + (n̄+1)U+Jz
∆

)

δϵq, δϵq =
2J

∑

λ(1− cosqeλ) ≈ Jq2

- there is a gapped hole with gap ∆ = Eq=0 =
√

Jz2 − 2(2n̄+ 1)UJz + U2

• For the lower branch of the lobe and Jz ≪ U , the holes disperse E−
q ≈ Jq2 and the particles are

gapped with ∆ ≈ U
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Bicritical point: Change of Universality Class

The Tip of the Lobe: Bicritical Point

• The interpretation in terms of particle and hole excitation only holds for Jz ≪ U

• In general, at the phase transition there is one gapless mode. Choosing it to set the zero of energy,
the gap of the other mode is given by

∆ = E+
q=0 + E−

q=0 =
√

Jz2 − 2(2n̄+ 1)UJz + U2

• At the tip of the lobe, U/Jz = 2n̄+ 1 +
√

(2n̄+ 1)2 − 1 and thus ∆ = 0: there are two gapless modes
(particle-hole symmetry)

• The excitation spectrum at this point is dominanted by the square root for q → 0 and reads

E±
q = 1

2

√

(2(2n̄+ 1)U + Jz)δϵq ∼ |q|

• The spectrum changes form a nonrelativistic spectrum E ∼ q
2 (dynamic exponent zd = 2) to a rela-

tivistic spectrum E ∼ |q| (dynamic exponent zd = 1)

1.0

2.0

3.0

0.010 0.020 0.030
0.0
0.0

SF

MI

MI

MI

➡At a generic point on the phase border, the system is in the z_d = 2 O(2) universality class
➡At the tip of the lobe, the system is in the z_d = 1 O(2) universality class

�



Bicritical point: Symmetry ArgumentThe Tip of the Lobe: Bicritical Point

• We show that the change in universality class at the tip of the lobe is not an artifact of mean field theory
• The full effective action (including fluctuations) at low energies has a derivative expansion

Γ[ψ] =

ˆ

ψ∗[Z∂τ + Y ∂2
τ +m2 + ...]ψ + λ(ψ∗ψ)2 + ...

• At the phase transition, we have m2 = 0. At the tip of the lobe, we have additionally(vertical tangent)

∂m2

∂µ
= 0

• Using the invariance under temporally the local symmetryψ → ψeiθ(τ), µ → µ + i∂τθ(τ), we find the
Ward identity (q = (ω,q))

−∂m2

∂µ
= − ∂

∂µ

δ2Γ

δψ∗(q)δψ(q)

∣

∣

∣

ψ=0;q=0
=

∂

∂(iω)

δ2Γ

δψ∗(q)δψ(q)

∣

∣

∣

ψ=0;q=0
= Z

• Thus, there cannot be a linear time derivative ath the tip of the lobe, Z = 0. The leading frequency
dependence is quadratic
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M
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moving in positive mu direction 
suppresses SF

µ/U

! @m2

@µ
> 0

moving in positive mu direction 
enhances SF

! @m2

@µ
< 0



• spatial correlation function

Mottsuperfluid

off-diagonal long range order:

interference
no interference

exp signature

Experimental signatures 1: Interference



M. Greiner, I. Bloch, T. Hänsch et al., Nature Jan 3 2002

freezesuperfluid meltMott superfluid

interference NO interference interference

spatial correlation functions:

off-diagonal 
longrange order

Interference Patterns



Experimental Signatures 2: Mott Gap 

xy

density: “wedding 
cake”n=1

n=2

• The gap in the Mott phase causes staggered structure in density profile

lattice + trapping energy
(1)Consider situation

(2)Assume local density approximation: local applicability of mean field theory

µ(xi) = µ� V (xi), V (xi) =
k
2x

2
i

(3)The incompressibility within Mott state leads to  (2d) 

@hN̂i
@µ

= 0



Experimental Signatures 2: Mott Gap 

SF MI

MI MI

Bloch group, 2006

N = 1⇥ 105 N = 1⇥ 105

N = 2⇥ 105 N = 3.5⇥ 105

xy

density: “wedding 
cake”n=1

n=2
• Experiment:

• 3D isotropic trap
• resolve x-y-integrated density profile in z-direction

• total density (grey)
• singly occupied sites (red)
• doubly occupied sites (blue)

• Superfluid region:
• Thomas-Fermi quadratic shape
• resolution of singly and doubly sites from Poissonian 

number statistics for SF state
• Mott insulator region

• e.g. for spherical Mott shells of Radius R at the core of 
the trap, integrated profile:

• profile for inner shell of radius R_2, n=2:

• profile of outer shell of radius R_1, n=1

Z
dxdy✓(R

2�(x

2
+y

2
+z

2
)) = 2⇡

Z
drr✓((R

2�z

2
)�r

2
) = ⇡max(0, R

2�z

2
)

⌫(R; z) = const.⇥max(0, R2 � z2)

⌫(R1; z)� ⌫(R2; z)

⌫(R1; z) -- red line 

-- blue line 



Summary

• Cold bosonic atoms loaded into optical lattices allow to implement an interacting many-body 
system with quantum phase transition with no counterpart in condensed matter physics 
• Optical lattices are standing wave laser configurations which couple to atoms via a position 

dependent AC Stark shift

• In an accessible parameter regime the microscopic model for bosonic atoms reduces to a single 
band Bose-Hubbard model with parameters J (kinetic energy) and onsite interaction U

• In such systems, it is possible to realize high densities (O(1)) and strong interactions U>J
• The competition of kinetic and interaction energy g = J/U gives rise to a quantum phase transition 

for commensurate fillings n=1,2,...

• The strong coupling “Mott phase” is an ordered phase (quantized particle number) without 
symmetry breaking

• One characteristic property is incompressibility, which has been observed in experiments



Excursion:
3-Body Interactions from 3-Body Loss: 

2 Applications



Outline

(1) Dissipative generation of a 3-body hardcore interaction

(2) Phase diagram for 3-body hardcore bosons

A. J. Daley, J. Taylor, SD, M. Baranov, P. Zoller, Phys. Rev. Lett. 102, 040402 (2009)

• Mechanism and experimental perspectives

• Unique effects of interactions and the constraint 
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SD, M. Baranov, A. J. Daley, P. Zoller, Phys. Rev. Lett, 104, 165301(2010); 
SD, M. Baranov, A. J. Daley, P. Zoller , Phys. Rev. B 82, 064509 (2010); 
Phys. Rev. B 82, 064510 (2010)



Motivation

• 3-body loss processes (-)

• ubiquitous, but typically undesirable
• inelastic 3 atom collision
• molecule + atom ejected from lattice

• 3-body interactions (+) 
• Stabilize bosonic system with attractive interactions
• interesting many-body consequences
• 3-component fermion system: stabilize atomic color superfluidity

➡ We make use of strong 3-body loss to generate a 3-body hard-
core constraint

ig3! g3



3-body interactions via 3-body loss

A. J. Daley, J. Taylor, SD, M. Baranov, P. Zoller, Phys. Rev. Lett. 102, 040402 (2009)



Γ

|0�
|1�

|e�

J = |1⇥�e|

An analogy: optical pumping

d
dt

� = �i[H, �] + L[�]

H =
⇥
2

(|0⇤⇥e| + |e⇤⇥0|) � �|e⇤⇥e|

L[�] = �
�

J�J† � 1
2
(J†J� + �J†J)

⇥

master equation in Lindblad form

with

�0�1
e� =

⇤2

4⇥2 + �2
�

�0�1
e� � ⇤2

4⇥2
�

�0�1
e� � ⇥2

�

pumping rate (for                  )⇤� �,⇥
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0
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0.01

�/⇥0 205 15

�0�1
e�

Zeno regime: system 
frozen in  |0�

•system “freezes” in |0>
•leading correction is effective small loss rate 0 -> 1 

�

�0�1
e�

large    :
�0!1
e↵ ⇡ ⌦2/�



0 2 4 6 8 10 12 14 16 18 20
0

0.0025

0.005

0.0075

0.01

Γ

|0�
|1�

|e�

Analogy to three-body loss

�3
J

2U

J

Γ

2U

�3

J

detuning
Rabi frequency

decay rate

onsite interaction energy
tunnel coupling

0 205 15�3/2U

three-body recombination rate

•system “freezes” in subspace with fewer 3 particles per site: 
3-body constraint

•stabilizes against particle loss: effective loss rate 

�e↵

�e↵

�e↵

�e↵ ⇡ J2

�3

�e↵ ⇡ J2/�3

➡  For                  , realization of a Bose-Hubbard-Hamiltonian with three-body 
hard-core constraint on time scales t < 1/�e↵

�3 � U, J



Physical Realization in Cold Atomic Gases
•Estimate loss rate for Cesium close to a zero crossing of the scattering length 
(e.g. Naegerl et al.)

• Preparation of the ground state of constrained Hamiltonian: 
• role of heating effects due to residual particle loss
•Approach: Exact numerical time evolution of full Master Equation in 1D; 
combine DMRG method with stochastic simulation of ME

• Find optimal experimental sequence to avoid heating

|U|

J

g3

lattice depth

➡ 3-body loss can be made the dominant energy scale



Ground State Preparation
•Start from Mott ground state in superlattice 
•Loss causes heating, inhibits reaching ground state

“lucky” trajectory “unlucky” trajectory

➡ “Probabilistic” ground state preparation

Ramp: Superlattice, V/
J=30 to V/J=0, 

N=M=20



Phase Diagram for Three-Body Hardcore Bosons

microscopic thermodynamic long distance

interactions interactions
condensation

interactions
condensation
spin waves
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SD, M. Baranov, A. J. Daley, P. Zoller, Phys. Rev. Lett, 104, 165301(2010); 
SD, M. Baranov, A. J. Daley, P. Zoller , Phys. Rev. B 82, 064509 (2010); 
Phys. Rev. B 82, 064510 (2010)



Physics of the constrained Hamiltonian

• The constrained Bose-Hubbard Hamiltonian stabilizes attractive two-body interactions

• Qualitative picture for ground state: Mean Field Theory 
• homogenous Gutzwiller Ansatz for projected on-site Hilbert space

• Gutzwiller energy

|Yi = ’
i

|Yii |Yii = f0|0i+ f1|1i+ f2|2i

E(ra,fa) = Ur2

2

� JZr2

1

h
r2

0

+2

p
2r

2

r
0

cosF+2r2

2

i

F = f2 +f0�2f1

fa = raeifa

PHP =�J Â
hi, ji

b̂†
i b̂ j +

U
2 Â

i
n̂i(n̂i�1) & b†

i
3 ⌘ 0

U < 0



Mean Field Phase Diagram

• Phase transition reminiscent of Ising (cf Radzihovsky& ‘03; Stoof, Sachdev& ‘03):

hb̂i 6= 0, hb̂2i 6= 0

hb̂i = 0, hb̂2i 6= 0

hˆbi ⇠ expiq hˆb2i ⇠ exp2iq

➡ Spontaneous breaking of Z_2 symmetry                     of the DSF order parameterq! q+p

Uc

Jz
=�2

�
1+n/2+2

p
n(1�n/2)

�
 critical interaction strength:

2

superfluid

dimer superfluid

10
-10

-5

5

0

10

MI

z

• Two symmetry breaking patterns occur:

- Conventional SF

- “Dimer SF”

U/



Beyond Mean Field Phase Diagram
•Why?

•Mean Field Theory (MFT) misses out physics at various length scales

✓Tied to interactions 
✓Tied to the constraint

•How?
•MFT is a classical field theory 
•Find a means to requantize this MFT: classical field theory -> quantum field theory

• exact mapping of the constrained Hamiltonian to a coupled boson theory with polynomial interactions
• the bosonic operators find natural interpretation in terms of “atoms” and “dimers”

microscopic thermodynamic long distance

n =
k3

F
3p2 ,T

kld � n1/3,T 1/2,e1/2
MeM =� 1

Ma2

“atoms” “dimers”

➡ We have identified several quantitative and qualitative effects:



Implementation of the Hard-Core Constraint

• Introduce operators to parameterize on-site Hilbert space (Auerbach, Altman ‘98)

t†
a,i|vaci = |ai, a = 0,1,2

• They are not independent: 

Â
a

t†
a,ita,i = 1

• Representation of Hubbard operators: 

a†
i =
p

2t†
2,it1,i + t†

1,it0,i

n̂i = 2t†
2,it2,i + t†

1,it1,i
|vaci

|0i

|1i
|2i

t†
1,it0,i

 Action of operators

a†
i



Hkin =�J Â
hi, ji

⇥
t†
1,it0,it

†
0, jt1, j +

p
2(t†

2,it1,it
†
0, jt1, j + t†

1,it0,it
†
1, jt2, j)+2t†

2,it
†
1, jt1,it2, j

i

• Hamiltonian: 

H
pot

=�µÂ
i

2t†

2,it2,i + t†

1,it1,i +U Â
i

t†

2,it2,i

• Mean field: Gutzwiller energy (classical theory)
• interaction: quadratic
• hopping: higher order 
• One phase is redundant: absorb via local gauge transformation

• Role of interaction and hopping reversed
• Strong coupling approach facilitated

Implementation of the Hard-Core Constraint

• Properties:

t
1,i ! exp�ij

0,i t
1,i, t

2,i ! exp�ij
0,i t

2,it
1,i = expij

0,i |t
0,i|

➡  e.g. t_0 can be chosen real 



Implementation of the Hard-Core Constraint
• Resolve the relation between t-operators (zero density)

t†
1,it0,i = t†

1,i

q
1� t†

1,it1,i� t†
2,it2,i ! t†

1,i(1� t†
1,it1,i� t†

2,it2,i)

• justification: for projective operators one has from Taylor representation

X2 = X ! f (X) = f (0)(1�X)+X f (1) X = 1� t†
1,it1,i� t†

2,it2,i

|2i2
i

• Now we can interpret the remaining operators as standard bosons: 

Hi = {|ni1
i |mi2

i }, n,m = 0,1,2, ...

Hi = Pi�Ui

Pi = {|0i1
i |0i2

i , |1i1
i |0i2

i , |0i1
i |1i2

i }

• on-site bosonic space 

• decompose into physical/unphysical space:  

• the Hamiltonian is an involution on P and U:   

H = HPP +HUU

•remaining degrees of freedom: “atoms” and “dimers” 
➡ similarity to Hubbard-Stratonovich transformation  

|0i1
i

|1i1
i

|2i1
i

|1i2
i|0i2

i

“a
to

m
s”

   
“dimers”   

• correct bosonic enhancement factors on physical subspace  
p

n = 0,1



• The partition sum does not mix U and P too:

Z = Tr exp�bH = TrPP exp�bHPP +TrUU exp�bHUU

Implementation of the Hard-Core Constraint

•Usually: Effective Action shares all symmetries of S
• Here: symmetry principles are supplemented with a constraint principle

• Legendre transform of the Free energy

• Need to discriminate contributions from U and P:  Work with Effective Action

G[c] =�W [J]+
Z

JT c, c⌘ dW [J]
dJ

• Has functional integral representation: 

W [J] = logZ[J]

 Quantum Equation of Motion for J=0

S[c = (t1, t2)] =
Z

dt
⇣
Â

i
t†
1,i∂tt1,i + t†

2,i∂tt2,i +H[t1, t2]
⌘

exp�G[c] =
Z

Ddcexp�S[c+dc]+
Z

JT dc, J =
dG[c]

c



Condensation and Thermodynamics
• Physical vacuum is continuously connected to the finite density case: 
   Introduce new, expectationless operators by (complex) Euler rotation

~b = Rq Rj~t

~t = (t0, t1, t2)T

• Hamiltonian in new coordinates takes form:

H = EGW +HSW +Hint

Mean field: Gutzwiller Energy

Quadratic part: Spin waves (Goldstone for n > 0)

higher order: interactions

microscopic thermodynamic long distance

interactions interactions
condensation

interactions
condensation
spin waves



The requantized Gutzwiller model

Hkin =�J Â
hi, ji

⇥
t†
1,i(1�n1,i�n2,i)(1�n1, j �n2, j)t1, j +

p
2(t†

2,it1,i(1�n1, j �n2, j)t1, j + t†
1,i(1�n1,i�n2,i)t†

1, jt2, j)+2t†
2,it2, jt

†
1, jt1,i

i

Hkin =�J Â
hi, ji

⇥
t†
1,it1, j +

p
2(t†

2,it1,it1, j + t†
1,it

†
1, jt2, j)

i

• Hamiltonian to cubic order is of Feshbach type: 

H
pot

= Â
i
(U�2µ)n

2,i�µn
1,i

 detuning from atom level 

 (bilocal) dimer splitting into atoms

 Dimer energy 

 two separate atom’s energy 

• quadratic part: 

• leading interaction:

         detuning 
here: detuning 

• Compare to standard Feshbach models:

⇠ 1/U

⇠U

  
➡ we can expect resonant (strong coupling) phenomenology at weak coupling



Vacuum Problems

• The physics at n=0 and n=2 are closely connected: 
• “vacuum”: no spontaneous symmetry breaking
• low lying excitations:

• n=0: atoms and dimers on the physical vacuum
• n=2: holes and di-holes on the fully packed lattice

n=2

n=0

dimer excitation

di-hole excitation

+G  (K) = -1
d

 = +

• Two-body problems can be solved exactly

 red
 blue

Eb/Jz

�U

• Bound state formation:

➡ reproduces Schrödinger Equation: benchmark
➡ Square root expansion of constraint fails

➡ di-hole-bound state formation at finite U in 2D
0 1 2 3 4 5 6

�4

�3

�2

�1

0
n = 0 n = 2Eb/Jz

U/Jz

d = 2
d = 3

1

an| ˜U |+ bn
=

Z
ddq

(2⇡)d
1

� ˜Eb + cn/d
P

�(1� cosqe�)

n = 0 : a0 = 1, b0 = 0, c0 = 2

n = 2 : a2 = 4, b2 = �6 + 3Ẽb c2 = 4



Beyond Mean Field Phase Diagram
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• Start here!

kld � n1/3,T 1/2,e1/2
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microscopic thermodynamic long distance



Beyond Mean Field Phase Diagram
• Vacuum limit: 

• Scattering of a few particles
• Requantized Hamiltonian is of Feshbach type

➡ n = 0: Schrödinger Equation reproduced: Benchmark
➡ n = 2: finite critical interaction for di-hole bound state in 2D 

• low lying excitations:
atoms and dimers on 
the physical vacuum

• low lying excitations:
holes and di-holes on 
the fully packed lattice

kld � n1/3,T 1/2,e1/2
Mn =

k3
F

3p2 ,TeM =� 1
Ma2

microscopic thermodynamic long distance
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Beyond Mean Field Phase Diagram

kld � n1/3,T 1/2,e1/2
Mn =

k3
F

3p2 ,TeM =� 1
Ma2

microscopic thermodynamic long distance

• Thermodynamic scales: Nonuniversal shifts on the phase border

➡ Quantum fluctuations lead to quantitative deviation from MFT
➡ Stronger shifts for small densities: weaker vacuum fluctuations 
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Beyond Mean Field Phase Diagram

kld � n1/3,T 1/2,e1/2
Mn =

k3
F

3p2 ,TeM =� 1
Ma2

microscopic thermodynamic long distance

➡ Enhancement of symmetry from 
➡ Ising quantum critical point near half filling

• Qualitative effects of the constraint and interactions:
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S.C. Zhang ’93)



Symmetry Enhancement in Strong Coupling

• Interpret EFT as a spin 1/2 model in external field:

➡ Isotropic Heisenberg model (half filling n=1):
• Emergent symmetry: SO(3) rotations vs. SO(2) sim U(1)
• Bicritical point with Neel vector order parameter

l =
v
2t

= 1• Leading (second) order perturbation theory: 

CDW order

xy plane: superfluid order

• charge density wave and superfluid exactly degenerate
• CDW: Translation symmetry breaking
• DSF: Phase symmetry breaking

• physically distinct orders can be freely rotated into each other:  
“continuous supersolid”

➡ The symmetry enhancement is unique to the 3-body hardcore constraint 

with constraint

without constraint

• Perturbative limit U >> J: expect dimer hardcore model

(similar to fermions: S.C. Zhang ’93)
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Signatures of  “continuous supersolid”

(1) Second collective (pseudo) Goldstone mode 

density profile: Onset of CDW DSF order in textured regions

(2) Use weak superlattice to rotate Neel order parameter

(3) Simulation of 1D experiment in a trap (t-DMRG)

• Proximity to bicritical point governs physics in strong coupling

w(q) = tz
�
(leq +1)(1� eq)

�1/2

gap

• Next (fourth) order perturbation theory: Superfluid preferred

Second (pseudo) Goldstone mode
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(2) Use weak superlattice to rotate Neel order parameter

(3) Simulation of 1D experiment in a trap (t-DMRG)

• Proximity to bicritical point governs physics in strong coupling

w(q) = tz
�
(leq +1)(1� eq)

�1/2

gap

• Next (fourth) order perturbation theory: Superfluid preferred

Second (pseudo) Goldstone mode



S[J,f] = SI[f]+SG[J]+Sint[J,f]

SI[f] =
Z

∂µf∂µf+m2f2 +lf4

pure Ising action

pure Goldstone action

coupling term

➡ Interactions persist to arbitrary long wavelength (cf. decoupling SW)
➡         : Phase transition is driven first order by coupling of Ising and Goldstone mode

Ising potential landscape: 
Z_2 symmetry breaking

Frey, Balents; Radzihovsky&

Ising field: Real part of atomic field 

Infrared Limit: Nature of the Phase Transition

• Perform the continuum limit and integrate out massive modes:

Sint[J,f] = ik
Z

∂tJ f2

k 6= 0

• Two near massless modes: Critical atomic field, dimer Goldstone mode
• Coleman-Weinberg phenomenon for coupled real fields: Radiatively induced first order PT



coupling term

Ising Quantum Critical Point around n=1

00

|k|

n
0 1 2

• Plot the Ising-Goldstone coupling:

Sint[J,f] = ik
Z

∂tJ f2

➡ Second order quantum critical behavior is a lattice + constraint effect

• Symmetry argument: 
• dimer compressibility must have zero crossing
• Ward identies for time-local gauge invariance and atom-dimer phase locking

➡   must have zero crossing: true quantum critical Ising transition

decoupling

G 3
Z

~x,t
b

†
2,i(�g2 µ)b2,i

k

• Estimate correlation length:  

➡weakly first order, broad near critical domain





Effective Lattice Hamiltonian

• Start from our model Hamiltonian, add optical potential:

H =
⇧

x

⇤
a†x

�
� ⇥

2m
� µ + V (x) + Vopt(x)

⇥
ax + gn̂2

x

⌅

• Periodicity of the optical potential suggests expansion of field operators into localized 
lattice periodic Wannier functions (complete set of orthogonal functions) 

ax =
�

i,n

wn(x� xi)bi,n

• For low enough energies (temperature), we can restrict to lowest band:
band index minimum position

• Then we obtain the single band (Bose-) Hubbard model

H = �J
�

�i,j⇥

b†i bj � µ
�

i

n̂i +
�

i

�in̂i + 1
2U

�

i

n̂i(n̂i � 1)

n̂i = b†i bi

U

J

T, U, J �
�

4V0ER, ER = k2/(2m)⇥ n = 0

U = g

�
dx|w0(x)|4

J = �
�

dxw�
0(x)(��2/2m⇥� Vopt(x))w0(x� �/2)



Cold Atoms in Optical Lattices

Optical Lattices

AC-Stark shift: We consider an atom in its electronic ground state exposed to
laser light at fixed position ↵x. If the light is far detuned from excited state reso-
nances, the ground state will experience a second-oder AC-Stark shift ⇥Eg(↵x) =
�( )I(↵x) with �( ) the dynamic polarizability of the atom for frequency  , and
I(↵x) the light intensity.

Example: for a two-level atom {|g� , |e�} in the RWA the AC-Starkshift is given
by ⇥Eg(↵x) = �⇥2(⇥x)

4� with Rabi frequeny ⇤ and detuning ⇥ =  �  eg (⇤ ⌃ ⇥).
Note that for red detuning (⇥ < 0) the ground state shifts down ⇥Eg < 0, while
for blue detuning (⇥ > 0) we have ⇥Eg > 0.

Single Atom moving in an Optical Potential: If we include the motion of the
atom we derive the Schrödinger Equation

i�⌦�(↵x, t)
⌦t

=
�
� �2

2m
⌦2 + Vopt(↵x)

⇥
�(↵x, t) (Vopt(↵x) ⇥ ⇥Eg(↵x) = �⇤2(↵x)

4⇥
),

where the position dependent AC-Stark shift appears as a (conservative) “opti-
cal potential” for the center-of-mass motion of the atom.

(Rem.: decoherence due to spontaneous emission from excited state suppressed
by �/⇥⌃ 1)

Example 1 FORT: far off-resonant light trap from focused laser beam for red
detuning.

Example 2 Optical Lattice: standing light wave generated by counterpropagat-
ing light beams, e.g. in 1D ↵E(↵x, t) = ↵eE sin kxe�i�t + c.c. (k = 2⌥/⇧) so that

Vopt(x) = V0 sin2 kx,

which corresponds to a periodic array of microtraps with lattice period a = ⇧/2
and lattice depth V0 ⌅ |E|2 tunable / controlled by the laser intensity.

Discussion:

Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-
suming ⇥ > 0 so that V0 > 0 we have for the lowest states a harmonic oscillator
potential

V (x) = V0 sin2(kx) ⇧ V0 (kx)2 ⇧ 1
2
m⌃2x2

with trapping frequency⌃ =
 

4V0ER/� and with recoil frequency ER ⇥ �2k2/2m.
(TypciallyER ⌅ kHz, and V0 ⌅ few tens of kHz.)

(Note: the recoil frequency ER provides a natural energy scale for the depth of
the optical lattice V0/ER ⌥ 1.)

The ground state wave function

�n=0(x) =
⌅

1
⌥1/2a0

e�x2/(2a2
0)

has size a0 =
⇤

�/m⌃ ⌃ ⇧/2, i.e we are in the Lamb-Dicke regime ⌅ = 2⌥a0/⇧⌃
1.

Bloch wave functions and bands (1D): In general the eigen-solutions of the
time-independent Schrödinger equation with periodic potential, H�nq(x) = ⇤nq�nq(x),
has the form �nq(x) = eiqxunq(x) with (periodic) Bloch wave functions unq(x) =
unq(x + a), q the quasimomentum in the first Brillouin zone �⌥/a < q ⇤ +⌥/a,
and n = 0, 1, . . . labelling the Bloch bands.

Plots:
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Cold Atoms in Optical Lattices

Optical Lattices

AC-Stark shift: We consider an atom in its electronic ground state exposed to
laser light at fixed position ↵x. If the light is far detuned from excited state reso-
nances, the ground state will experience a second-oder AC-Stark shift ⇥Eg(↵x) =
�( )I(↵x) with �( ) the dynamic polarizability of the atom for frequency  , and
I(↵x) the light intensity.

Example: for a two-level atom {|g� , |e�} in the RWA the AC-Starkshift is given
by ⇥Eg(↵x) = �⇥2(⇥x)

4� with Rabi frequeny ⇤ and detuning ⇥ =  �  eg (⇤ ⌃ ⇥).
Note that for red detuning (⇥ < 0) the ground state shifts down ⇥Eg < 0, while
for blue detuning (⇥ > 0) we have ⇥Eg > 0.

Single Atom moving in an Optical Potential: If we include the motion of the
atom we derive the Schrödinger Equation

i�⌦�(↵x, t)
⌦t

=
�
� �2

2m
⌦2 + Vopt(↵x)

⇥
�(↵x, t) (Vopt(↵x) ⇥ ⇥Eg(↵x) = �⇤2(↵x)

4⇥
),

where the position dependent AC-Stark shift appears as a (conservative) “opti-
cal potential” for the center-of-mass motion of the atom.

(Rem.: decoherence due to spontaneous emission from excited state suppressed
by �/⇥⌃ 1)

Example 1 FORT: far off-resonant light trap from focused laser beam for red
detuning.

Example 2 Optical Lattice: standing light wave generated by counterpropagat-
ing light beams, e.g. in 1D ↵E(↵x, t) = ↵eE sin kxe�i�t + c.c. (k = 2⌥/⇧) so that

Vopt(x) = V0 sin2 kx,

which corresponds to a periodic array of microtraps with lattice period a = ⇧/2
and lattice depth V0 ⌅ |E|2 tunable / controlled by the laser intensity.

Discussion:

Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-
suming ⇥ > 0 so that V0 > 0 we have for the lowest states a harmonic oscillator
potential

V (x) = V0 sin2(kx) ⇧ V0 (kx)2 ⇧ 1
2
m⌃2x2

with trapping frequency⌃ =
 

4V0ER/� and with recoil frequency ER ⇥ �2k2/2m.
(TypciallyER ⌅ kHz, and V0 ⌅ few tens of kHz.)

(Note: the recoil frequency ER provides a natural energy scale for the depth of
the optical lattice V0/ER ⌥ 1.)

The ground state wave function

�n=0(x) =
⌅

1
⌥1/2a0

e�x2/(2a2
0)

has size a0 =
⇤

�/m⌃ ⌃ ⇧/2, i.e we are in the Lamb-Dicke regime ⌅ = 2⌥a0/⇧⌃
1.

Bloch wave functions and bands (1D): In general the eigen-solutions of the
time-independent Schrödinger equation with periodic potential, H�nq(x) = ⇤nq�nq(x),
has the form �nq(x) = eiqxunq(x) with (periodic) Bloch wave functions unq(x) =
unq(x + a), q the quasimomentum in the first Brillouin zone �⌥/a < q ⇤ +⌥/a,
and n = 0, 1, . . . labelling the Bloch bands.

Plots:
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- Because ⌃�(x + a) = ei�⌃�(x) we can write ⌃�(x) = ei�u�(x) with peri-
odic Bloch functions u�(x) = u�(x + a) .

• We have [H,T ] = 0, and we can find simultaneous eigenfunctions of {H,T}

H�q(x) = E�q(x)
T�q(x) = eiqa�q(x)

with q � [�⇧/a, ⇧/a]. We call �q quasimomentum.
• Eigenstates of the Hamiltonian thus have the form

⌃(n)
q (x) = eiqxu(n)

q (x) q � [�⇧/a, ⇧/a]

and the Bloch functions u(n)
q (x) are eigenstates of

ĥqu
(n)
q (x) ⇥

�
(p̂ + q)2

2m
+ V (x̂)

⇥
u(n)

q (x) = �(n)
q u(n)

q (x)

Note: the Bloch functions can be expanded in a Fourier series

u(n)
q (x) =

1 
2⇧

+⇥⇤

j=�⇥
c(n,q)
j eikjx (kj = 2⇧j/a)

Discussion:

Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-
suming � > 0 so that V0 > 0 we have for the lowest states a harmonic oscillator
potential

V (x) = V0 sin2(kx) ⇧ V0 (kx)2 ⇧ 1
2
m⌅2x2

with trapping frequency⌅ =
 

4V0ER/� and with recoil frequency ER ⇥ �2k2/2m.
(TypciallyER ⌅ kHz, and V0 ⌅ few tens of kHz.)

(Note: the recoil frequency ER provides a natural energy scale for the depth of
the optical lattice V0/ER ⌥ 1.)

The ground state wave function

⌥n=0(x) =
⇧

1
⇧1/2a0

e�x2/(2a2
0)

has size a0 =
⌅

�/m⌅ ⌃ ⇤/2, i.e we are in the Lamb-Dicke regime ⇥ = 2⇧a0/⇤⌃
1.

Bloch wave functions and bands (1D): In general the eigen-solutions of the
time-independent Schrödinger equation with periodic potential, H⌥nq(x) = �nq⌥nq(x),
has the form ⌥nq(x) = eiqxunq(x) with (periodic) Bloch wave functions unq(x) =
unq(x + a), q the quasimomentum in the first Brillouin zone �⇧/a < q ⇤ +⇧/a,
and n = 0, 1, . . . labelling the Bloch bands.

Plots:

Wannier functions (1D): Instead of Bloch wave functions we can also work with
Wannier wave functions

unq(x) =
⇧

a

2⇧

⇤

xi

wn(x� xi)eixiq,

wn(x� xi) =
⇧

a

2⇧

ˆ ⇥/a

�⇥/a
dq unq(x) e�iqxi

which are localized around a particular lattice site xi = ia with i = 0,±1, . . . .
The Bloch and Wannier wave functions are complete.

Generalizations:

We can generate 2D, and 3D potentials by adding optical potentials in differ-
ent spatial directions. For lasers with different frequencies the interference
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Cold Atoms in Optical Lattices

Optical Lattices

AC-Stark shift: We consider an atom in its electronic ground state exposed to
laser light at fixed position  x. If the light is far detuned from excited state reso-
nances, the ground state will experience a second-oder AC-Stark shift ⇥Eg( x) =
�(⌥)I( x) with �(⌥) the dynamic polarizability of the atom for frequency ⌥, and
I( x) the light intensity.

Example: for a two-level atom {|g⇧ , |e⇧} in the RWA the AC-Starkshift is given
by ⇥Eg( x) = �⇥2(⇤x)

4� with Rabi frequeny ⇤ and detuning ⇥ = ⌥ � ⌥eg (⇤ ⌅ ⇥).
Note that for red detuning (⇥ < 0) the ground state shifts down ⇥Eg < 0, while
for blue detuning (⇥ > 0) we have ⇥Eg > 0.

Optical Lattice (here 1D):

• standing wave laser configuration:  E( x, t) =  eE sin kx e�i⇥t + h.c.
• AC Starkshift as a function of position
• The AC Starkshift appears as a conservative potential for the center-of-mass

motion of the atom

i��⌃( x, t)
�t

=
�
� �2

2m
⌃2 + Vopt( x)

⇥
⌃( x, t) (Vopt( x) ⇥ ⇥Eg( x) = �⇤2( x)

4⇥
)

where the position dependent AC-Stark shift appears as a (conservative)
“optical potential”

Vopt(x) = V0 sin2 kx (k = 2⌅/⇤)

for the center-of-mass motion of the atom.
• The potential is periodic with lattice period ⇤/2, and thus supports a band

structure (Bloch bands). The depth of the potential is proportional to the
laser intensity

Single Atom moving in an Optical Potential: If we include the motion of the
atom we derive the Schrödinger Equation

i��⌃( x, t)
�t

=
�
� �2

2m
⌃2 + Vopt( x)

⇥
⌃( x, t) (Vopt( x) ⇥ ⇥Eg( x) = �⇤2( x)

4⇥
),

(Rem.: decoherence due to spontaneous emission from excited state suppressed
by �/⇥ ⌅ 1)

Example 1 FORT: far off-resonant light trap from focused laser beam for red
detuning.

Example 2 Optical Lattice: standing light wave generated by counterpropagat-
ing light beams, e.g. in 1D  E( x, t) =  eE sin kxe�i⇥t + c.c. (k = 2⌅/⇤) so that

Vopt(x) = V0 sin2 kx,

which corresponds to a periodic array of microtraps with lattice period a = ⇤/2
and lattice depth V0 ⇤ |E|2 tunable / controlled by the laser intensity.

Review: Bloch’s Theorem for Periodic Potentials

• Consider a Hamiltonian (in 1D) Ĥ = p̂2

2m +V (x̂) with periodic potential V (x) =
V (x + a). We are interested in the eigenfunctions H⌃(x) = E⌃(x). (We set
� = 1).

• We define a translation operator T = e�ip̂a so that T⌃(x) = ⌃(x + a).
- T is unitary, and thus has eigenfunctions T⇧�(x) = ei�⇧�(x) with � =

(�⌅,⌅] real.
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- Because ⌃�(x + a) = ei�⌃�(x) we can write ⌃�(x) = ei�u�(x) with peri-
odic Bloch functions u�(x) = u�(x + a) .

• We have [H,T ] = 0, and we can find simultaneous eigenfunctions of {H,T}

H�q(x) = E�q(x)
T�q(x) = eiqa�q(x)

with q � [�⇧/a, ⇧/a]. We call �q quasimomentum.
• Eigenstates of the Hamiltonian thus have the form

⌃(n)
q (x) = eiqxu(n)

q (x) q � [�⇧/a, ⇧/a]

and the Bloch functions u(n)
q (x) are eigenstates of

ĥqu
(n)
q (x) ⇥

�
(p̂ + q)2

2m
+ V (x̂)

⇥
u(n)

q (x) = �(n)
q u(n)

q (x)

Note: the Bloch functions can be expanded in a Fourier series

u(n)
q (x) =

1 
2⇧

+⇥⇤

j=�⇥
c(n,q)
j eikjx (kj = 2⇧j/a)

Discussion:

Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-
suming � > 0 so that V0 > 0 we have for the lowest states a harmonic oscillator
potential

V (x) = V0 sin2(kx) ⇧ V0 (kx)2 ⇧ 1
2
m⌅2x2

with trapping frequency⌅ =
 

4V0ER/� and with recoil frequency ER ⇥ �2k2/2m.
(TypciallyER ⌅ kHz, and V0 ⌅ few tens of kHz.)

(Note: the recoil frequency ER provides a natural energy scale for the depth of
the optical lattice V0/ER ⌥ 1.)

The ground state wave function

⌥n=0(x) =
⇧

1
⇧1/2a0

e�x2/(2a2
0)

has size a0 =
⌅

�/m⌅ ⌃ ⇤/2, i.e we are in the Lamb-Dicke regime ⇥ = 2⇧a0/⇤⌃
1.

Bloch wave functions and bands (1D): In general the eigen-solutions of the
time-independent Schrödinger equation with periodic potential, H⌥nq(x) = �nq⌥nq(x),
has the form ⌥nq(x) = eiqxunq(x) with (periodic) Bloch wave functions unq(x) =
unq(x + a), q the quasimomentum in the first Brillouin zone �⇧/a < q ⇤ +⇧/a,
and n = 0, 1, . . . labelling the Bloch bands.

Plots:

Wannier functions (1D): Instead of Bloch wave functions we can also work with
Wannier wave functions

unq(x) =
⇧
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⇤
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wn(x� xi)eixiq,

wn(x� xi) =
⇧

a

2⇧

ˆ ⇥/a

�⇥/a
dq unq(x) e�iqxi

which are localized around a particular lattice site xi = ia with i = 0,±1, . . . .
The Bloch and Wannier wave functions are complete.

Generalizations:

We can generate 2D, and 3D potentials by adding optical potentials in differ-
ent spatial directions. For lasers with different frequencies the interference
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- Because ⌃�(x + a) = ei�⌃�(x) we can write ⌃�(x) = ei�u�(x) with peri-
odic Bloch functions u�(x) = u�(x + a) .

• We have [H,T ] = 0, and we can find simultaneous eigenfunctions of {H,T}

H�q(x) = E�q(x)
T�q(x) = eiqa�q(x)

with q � [�⇧/a, ⇧/a]. We call �q quasimomentum.
• Eigenstates of the Hamiltonian thus have the form

⌃(n)
q (x) = eiqxu(n)

q (x) q � [�⇧/a, ⇧/a]

and the Bloch functions u(n)
q (x) are eigenstates of

ĥqu
(n)
q (x) ⇥

�
(p̂ + q)2

2m
+ V (x̂)

⇥
u(n)

q (x) = E(n)
q u(n)

q (x)

Note: the Bloch functions can be expanded in a Fourier series

u(n)
q (x) =

1 
2⇧

+⇥⇤

j=�⇥
c(n,q)
j eikjx (kj = 2⇧j/a)

Solution of the Schrödinger Equation for the Optical Lattice (1D)

Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-
suming V0 > 0 we have for the lowest states a harmonic oscillator potential

V (x) = V0 sin2(kx) ⇧ V0 (kx)2 ⇧ 1
2
m⌅2x2

with trapping frequency ⌅ =
 

4V0ER/� and with recoil frequency ER ⇥ �2k2/2m.
(TypciallyER ⌅ kHz, and V0 ⌅ few tens of kHz.)

(Note: the recoil frequency ER provides a natural energy scale for the depth of
the optical lattice V0/ER ⌥ 1.)

The ground state wave function

⌥n=0(x) =
⇧

1
⇧1/2a0

e�x2/(2a2
0)

has size a0 =
⌅

�/m⌅ ⌃ ⇤/2, and we are in the Lamb-Dicke limit ⇥ = 2⇧a0/⇤⌃
1.

Bloch wave functions and bands (1D): In general the eigen-solutions of the
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has the form ⌥nq(x) = eiqxunq(x) with (periodic) Bloch wave functions unq(x) =
unq(x + a), q the quasimomentum in the first Brillouin zone �⇧/a < q ⇤ +⇧/a,
and n = 0, 1, . . . labelling the Bloch bands.
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Wannier functions (1D): Instead of Bloch wave functions we can also work with
Wannier wave functions

unq(x) =
⇧

a

2⇧

⇤

xi

wn(x� xi)eixiq,

wn(x� xi) =
⇧

a

2⇧

ˆ ⇥/a

�⇥/a
dq unq(x) e�iqxi

which are localized around a particular lattice site xi = ia with i = 0,±1, . . . .
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We can generate 2D, and 3D potentials by adding optical potentials in differ-
ent spatial directions. For lasers with different frequencies the interference
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- Because ⌃�(x + a) = ei�⌃�(x) we can write ⌃�(x) = ei�u�(x) with peri-
odic Bloch functions u�(x) = u�(x + a) .

• We have [H,T ] = 0, and we can find simultaneous eigenfunctions of {H,T}

H�q(x) = E�q(x)
T�q(x) = eiqa�q(x)
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Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-
suming V0 > 0 we have for the lowest states a harmonic oscillator potential

V (x) = V0 sin2(kx) ⇧ V0 (kx)2 ⇧ 1
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m⌅2x2

with trapping frequency ⌅ =
 

4V0ER/� and with recoil frequency / energy ER ⇥
�2k2/2m. (TypciallyER ⌅ kHz, and V0 ⌅ few tens of kHz.)

(Note: the recoil frequency ER provides a natural energy scale for the depth of
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The ground state wave function

⌥n=0(x) =
⇧

1
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⌅
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1.

Bloch wave functions and bands (1D): In general the eigen-solutions of the
time-independent Schrödinger equation with periodic potential, H⌥nq(x) = �nq⌥nq(x),
has the form ⌥nq(x) = eiqxunq(x) with (periodic) Bloch wave functions unq(x) =
unq(x + a), q the quasimomentum in the first Brillouin zone �⇧/a < q ⇤ +⇧/a,
and n = 0, 1, . . . labelling the Bloch bands.

Plots:

Wannier functions (1D): Instead of Bloch wave functions we can also work with
Wannier wave functions

unq(x) =
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⇧

a

2⇧

ˆ ⇥/a

�⇥/a
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which are localized around a particular lattice site xi = ia with i = 0,±1, . . . .
The Bloch and Wannier wave functions are complete.

Generalizations:

We can generate 2D, and 3D potentials by adding optical potentials in differ-
ent spatial directions. For lasers with different frequencies the interference
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Solution of Schroedinger Equation for 1D optical lattice
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Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-
suming V0 > 0 we have for the lowest states a harmonic oscillator potential

V (x) = V0 sin2(kx) ⇧ V0 (kx)2 ⇧ 1
2
m⌅2x2

with trapping frequency ⌅ =
 

4V0ER/� and with recoil frequency / energy ER ⇥
�2k2/2m. (TypciallyER ⌅ kHz, and V0 ⌅ few tens of kHz.)

(Note: the recoil frequency ER provides a natural energy scale for the depth of
the optical lattice V0/ER ⌥ 1.)

The ground state wave function

⌥n=0(x) =
⇧

1
⇧1/2a0

e�x2/(2a2
0)

has size a0 =
⌅

�/m⌅ ⌃ ⇤/2, and we are in the Lamb-Dicke limit ⇥ = 2⇧a0/⇤⌃
1.

Bloch wave functions and bands (1D): In general the eigen-solutions of the
time-independent Schrödinger equation with periodic potential, H⌥nq(x) = �nq⌥nq(x),
has the form ⌥nq(x) = eiqxunq(x) with (periodic) Bloch wave functions unq(x) =
unq(x + a), q the quasimomentum in the first Brillouin zone �⇧/a < q ⇤ +⇧/a,
and n = 0, 1, . . . labelling the Bloch bands.
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Wannier functions (1D): Instead of Bloch wave functions we can also work with
Wannier wave functions

unq(x) =
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which are localized around a particular lattice site xi = ia with i = 0,±1, . . . .
The Bloch and Wannier wave functions are complete.

Generalizations:

We can generate 2D, and 3D potentials by adding optical potentials in differ-
ent spatial directions. For lasers with different frequencies the interference
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Lowest Two Bloch Bands for V0=5 ER

- Because ⌃�(x + a) = ei�⌃�(x) we can write ⌃�(x) = ei�u�(x) with peri-
odic Bloch functions u�(x) = u�(x + a) .

• We have [H,T ] = 0, and we can find simultaneous eigenfunctions of {H,T}

H�q(x) = E�q(x)
T�q(x) = eiqa�q(x)

with q � [�⇧/a, ⇧/a]. We call �q quasimomentum.
• Eigenstates of the Hamiltonian thus have the form

⌃(n)
q (x) = eiqxu(n)

q (x) q � [�⇧/a, ⇧/a]

and the Bloch functions u(n)
q (x) are eigenstates of
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(n)
q (x) ⇥

⇤
(p̂ + q)2
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+ V (x̂)

⌅
u(n)

q (x) = E(n)
q u(n)

q (x)

Note: the Bloch functions can be expanded in a Fourier series

u(n)
q (x) =

1 
2⇧

+⇥⇧

j=�⇥
c(n,q)
j eikjx (kj = 2⇧j/a)

Solution of the Schrödinger Equation for the Optical Lattice (1D)

Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-
suming V0 > 0 we have for the lowest states a harmonic oscillator potential

V (x) = V0 sin2(kx) ⇧ V0 (kx)2 ⇧ 1
2
m⌅2x2

with trapping frequency ⌅ =
 

4V0ER/� and with recoil frequency / energy ER ⇥
�2k2/2m. (TypciallyER ⌅ kHz, and V0 ⌅ few tens of kHz.)

(Note: the recoil frequency ER provides a natural energy scale for the depth of
the optical lattice V0/ER ⌥ 1.)

The ground state wave function

⌥n=0(x) =
⌥

1
⇧1/2a0

e�x2/(2a2
0)

has size a0 =
⌃

�/m⌅ ⌃ ⇤/2, and we are in the Lamb-Dicke limit ⇥ = 2⇧a0/⇤⌃
1.

Bloch wave functions and bands (1D): In general the eigen-solutions of the
time-independent Schrödinger equation with periodic potential, H⌥nq(x) = �nq⌥nq(x),
has the form ⌥nq(x) = eiqxunq(x) with (periodic) Bloch wave functions unq(x) =
unq(x + a), q the quasimomentum in the first Brillouin zone �⇧/a < q ⇤ +⇧/a,
and n = 0, 1, . . . labelling the Bloch bands.

Compare: Bloch bands in tight binding approximation. Above we intro-
duced the Hamiltonian

Ĥ = �J
⇧

i

�
b†i bi+1 + b†i+1bi

⇥
=

⇧

q

�qb
†
qbq

with the tight-binding dispersion relation

�q = �2J cos qa (�⇧/a < q ⇤ ⇧/a).

For well separated bands the Bloch band calculation fits this relation well. This
is typically fulfilled for the lowest bands.

Wannier functions (1D): Instead of Bloch wave functions we can also work with
Wannier wave functions

unq(x) =
⌥

a

2⇧

⇧

xi

wn(x� xi)eixiq,

wn(x� xi) =
⌥

a

2⇧

ˆ ⇥/a

�⇥/a
dq unq(x) e�iqxi
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- Because ⌃�(x + a) = ei�⌃�(x) we can write ⌃�(x) = ei�u�(x) with peri-
odic Bloch functions u�(x) = u�(x + a) .

• We have [H,T ] = 0, and we can find simultaneous eigenfunctions of {H,T}

H�q(x) = E�q(x)
T�q(x) = eiqa�q(x)

with q � [�⇧/a, ⇧/a]. We call �q quasimomentum.
• Eigenstates of the Hamiltonian thus have the form

⌃(n)
q (x) = eiqxu(n)

q (x) q � [�⇧/a, ⇧/a]

and the Bloch functions u(n)
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Solution of the Schrödinger Equation for the Optical Lattice (1D)

Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-
suming V0 > 0 we have for the lowest states a harmonic oscillator potential

V (x) = V0 sin2(kx) ⇧ V0 (kx)2 ⇧ 1
2
m⌅2x2

with trapping frequency ⌅ =
 

4V0ER/� and with recoil frequency / energy ER ⇥
�2k2/2m. (TypciallyER ⌅ kHz, and V0 ⌅ few tens of kHz.)

(Note: the recoil frequency ER provides a natural energy scale for the depth of
the optical lattice V0/ER ⌥ 1.)

The ground state wave function

⌥n=0(x) =
⌥

1
⇧1/2a0

e�x2/(2a2
0)

has size a0 =
⌃

�/m⌅ ⌃ ⇤/2, and we are in the Lamb-Dicke limit ⇥ = 2⇧a0/⇤⌃
1.

Bloch wave functions and bands (1D): In general the eigen-solutions of the
time-independent Schrödinger equation with periodic potential, H⌥nq(x) = �nq⌥nq(x),
has the form ⌥nq(x) = eiqxunq(x) with (periodic) Bloch wave functions unq(x) =
unq(x + a), q the quasimomentum in the first Brillouin zone �⇧/a < q ⇤ +⇧/a,
and n = 0, 1, . . . labelling the Bloch bands.

Compare: Bloch bands in tight binding approximation. Above we intro-
duced the Hamiltonian

Ĥ = �J
⇧

i

�
b†i bi+1 + b†i+1bi

⇥
=

⇧

q

�qb
†
qbq

with the tight-binding dispersion relation

�q = �2J cos qa (�⇧/a < q ⇤ ⇧/a).

For well separated bands the Bloch band calculation fits this relation well. This
is typically fulfilled for the lowest bands.

Wannier functions (1D): Instead of Bloch wave functions we can also work with
Wannier wave functions
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which are localized around a particular lattice site xi = ia with i = 0,±1, . . . .

The Bloch and Wannier wave functions are complete set of functions

Generalizations:

We can generate 2D, and 3D potentials by adding optical potentials in differ-
ent spatial directions. For lasers with different frequencies the interference
terms average out, and the potentials are additive. Example: in 3D V (�x) =�3

j=1 V0j sin2(kxj).

Laser configurartions / lattice configurations; tricks with light polarization; disor-
der potential via laser speckles; back ground harmonic trapping potentials etc.

Rem.: Compare with solid state physics, where periodic potential for electrons
are generated by ions oscillating around equilibrium positions (phonons); fast
electron and slow ion motion (Born-Oppenheimer).

Bose (and Fermi) Hubbard Models

Goal: we are interested in the many body dynamics
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Laser Control: Kinetic vs. Potential Energy

• shallow lattice : weak laser

weakly interacting system: 
J >> U

(kinetic energy >> interactions)

J large

U small

strongly interacting system: 
J << U

(kinetic energy << interactions)

laser parameters
(time dependent)

J small

U large

• deep lattice: intense laser



Laser Beams

Very Strong

weaker

Optical Lattice Configurations



 square lattice

 triangular lattice

laser

Optical Lattice Configurations


