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Introduction: Cold Atoms vs. Condensed Matter

• New models of own interest
- Bose-Hubbard model
- Strongly interacting continuum systems: BCS-BEC Crossover; Efimov effect
- SU(N) Heisenberg models with variable N

• Quantum Simulation: clean/ controllable realization of model Hamiltonians which are 
- less clear to what extent realized in condensed matter 
- extremely hard to analyze theoretically 

• Nonequilibrium Physics, time dependence: 
- Condensed matter: thermodynamic equilibrium and ground state physics. 
- Cold atoms: e.g. creation of excited many-body states, study their dynamic behavior

• Scalability: 
- Study crossover from systems with few- to (thermodynamically) many degrees of freedom: 

Change of concepts?

• Integrate quantum optics concepts and many-body theory, coherent-dissipative 
manipulation 

Q: What can cold atoms add to many body physics?

e.g. 2d  Fermi-
Hubbard model
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Q: What can cold atoms add to many body physics?

e.g. 2d  Fermi-
Hubbard model
e.g. 2d  Fermi-
Hubbard model

• New models of own interest
- Bose-Hubbard model
- Strongly interacting continuum systems: BCS-BEC Crossover; Efimov effect
- SU(N) Heisenberg models with variable N

• Quantum Simulation: clean/ controllable realization of model Hamiltonians which are 
- less clear to what extent realized in condensed matter 
- extremely hard to analyze theoretically 

• Nonequilibrium Physics, time dependence: 
- Condensed matter: thermodynamic equilibrium and ground state physics 
- Cold atoms: e.g. creation of excited many-body states, study their dynamic behavior

• Scalability: 
- Study crossover from systems with few- to (thermodynamically) many degrees of freedom: 

Change of concepts?

• Integrate quantum optics concepts and many-body theory, coherent-dissipative manipulation 

Introduction: Cold Atoms vs. Condensed Matter
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A Brief History of cold atoms 
and BEC research
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1925

1908

A Brief History of cold atoms and BEC research
4He liquified by K. Onnes

Bose/Einstein predict condensation
of a noninteracting atomic Bose gas

1924Bose studies statistical 
Properties of photons

1938
Kapitza / Allen & Misener
discover superfluidity of 4He

Allen & Jones discover fountain effect

1938 London makes first connection
between 4He superfluidity and BEC

1941 Landau produces first self-consistent
theory of superfluids

1947 Bogoliubov produces microscopic
theory of weakly interacting Bose gas

1949 Onsager predicts quantized vortices
in liquid 4He  (+ Feynman 1955)

1951 Landau & Lifshitz / Penrose link BEC
and off-diagonal long range order.
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1985
Neutral Atom traps:
Gaithersburg (Magnetic)
AT&T Bell Labs 

1976 Stwalley and Nosanow (following Hecht,
1959) argue spin polarised 1H would be
Superfluid BEC (Realised MIT 1998).

1987 Simultaneous Cooling and Trapping in
Magneto-Optical Trap (AT&T Bell labs)

1995 BEC in dilute gases: 
 JILA (87Rb), MIT (23Na), Rice (7Li)

1997
W. D. Phillips, S. Chu, and 
C. Cohen-Tannoudji: Nobel 
Prize for Laser Cooling

2001
E. Cornell, C. Wieman, 
W. Ketterle: Nobel Prize for 
BEC in dilute gases

A Brief History of cold atoms and BEC research
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+ Yb (2004), Cr (2005) 

A Brief History of cold atoms and BEC research

Earth alkaline atoms: Ca (2009), Sr (2009)

Molecules:  Li2 (2003), K2 (2003)
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• Further milestone experiments:

1999

Tunable interations:
Feshbach resonance

Ketterle Group, MIT

Bosonic Sodium

Haensch Group, Munich

Optical Lattices:
Mott insulator-superfluid 

quantum phase transition

2002

2004

Innsbruck, 2004 

pairing gap 

vortices MIT, 2005 

JILA, 2005 

pair correlations 

Degenerate and strongly interacting fermions

A Brief History of cold atoms and BEC research
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• Liquid 4He “BEC”
• Typical density 1022 cm-3

• Condensation temperature ~ 2.17 K
• Strongly Interacting
• Small Condensate Fraction

• BEC in dilute gases
• Typical density 1013 – 1015 cm-3 (cf. density of air: 3x1019 cm-3)
• Condensation temperature < 10-5 K (cf. CMB radiation: ~ 2.7K)
• Weakly interacting
• Much larger condensate fraction

Absolute Scales in Condensed Matter vs. Cold Atoms

• Compare the absolute scales in of liquid 4He and cold atom BEC
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Modelling in Condensed Matter vs. Cold Atoms 

• Compare the way of constructing microscopic models in these systems

➡ Direct experimental access to both micro- and macrophysics
➡ Challenge to theorists to make the connection
➡ Many disciplines and theoretical techniques are involved: 

Atomic physics, Quantum optics, Condensed matter physics 

• Cold Atoms• Condensed Matter

- microscopic parameters from 
scattering physics (n=T=0)

- many body physics in separate 
experiments

- given chunk of matter
- have to guess the 

microscopic Hamiltonian

Control:
• tune microscopic parameters,
• modify lattice structure
• choose effective dimensionality

Clean system:
• No (uncontrollable) disorder 
• Weak dissipation (>1s) (cf. 
phonons in solid state)

Measurements:
• (quasi-)momentum distribution, noise 
correlations by releasing atoms.
• Spectroscopy (e.g., lattice 
modulations / Bragg scattering). 

• Further general properties and features:
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Units

• In these lecture series, we will often work in “natural units”: 

E = �ω➡ Measure energy and frequency in the same unit,

� = 1
• Quantum mechanical problem:

• Many-Body problem:

kB = 1

➡ Measure energy and temperature in the same unit, E = 1
2kBT

• Nonrelativistic problem: (we often indicate the mass explicitly)

E =
�p 2

2M

2M = 1

➡ Measure energy and momentum square in the same unit,

• Optical problem:

ω = ck

c = 1
➡ Measure frequency an wave number in the same unit,
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Lecture Outline
The lecture series consists of two parts: 

Part I: Introduction to the theory of ultracold atomic 
           quantum gases

• Continuum systems: 
• Scales and interactions, Effective theories
• Weakly interacting Bosons, Bose-Einstein condensation (2nd quantized and 

functional integral formulation)
• Weakly interacting Fermions, BCS superfluidity
• Strong interactions, the BCS-BEC crossover

• Lattice systems:
• Quantum phase transitions
• Microscopic derivation of the Bose-Hubbard model
• Phase Diagram of the Bose-Hubbard model, Mott insulator - 

    superfluid transition

vortices MIT, 2005 

Bose-Einstein Condensation

Fermion Superfluidity

Mott insulator - superfluid 
transition
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The lecture series consists of two parts: 

Lecture Outline

Part II: Many-Body Quantum Optics: Making use of drive and
            dissipation in cold atomic gases

• Lattice models with 3-body hardcore constraint
• Microscopic origin: interactions via loss
• Application I: phase diagram of attractive 3-hardcore bosons
• Application II: atomic color superfluid for 3-component fermions

• Quantum state engineering in driven-dissipative many-body systems
• Proof of principle: driven-dissipative BEC
• Application I: nonequilibrium phase transition from competing 

unitary and dissipative dynamics
• Application II: cooling into antiferromagnetic and d-wave paired 

states for fermions

0.0 0.5 1.0 1.5 2.0
8

6

4

2

0
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Literature

• General BEC/BCS theory:
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Basic BEC theory

Eq

q
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Statistical Mechanics of Noninteracting Bosons 

• The Hamiltonian for free particles in occupation number representation (“second 
quantization”)

• Free particles in occupation number representation = 
collection of independent harmonic oscillators with energy

H =
�

q

q2

2m
a
†
qaq

Example: Na atom (Alkali atoms)

• Microscopic scattering physics: Lennard-Jones (LJ) potential
- 1/r12 hard core repulsion: repulsion of electron clouds rrep = O(aB)

- 1/r6 attraction: van der Waals (induced dipole-dipole interaction)
rvdW = (50...200)aB for alkalis: typ. order of magnitude for interaction length scale

• Simplifications:
- T = 0, no interactions: whole density sits in the condensate: ψ0 =

√
N

- T = 0, weak interactions (a/d " 1): expect ψ0 ≈
√

N
- we can formalize this:
- The operator a†

q creates a particle in the momentum mode q : a†N
q |vac〉 =

p

(N + 1)!|nq = N〉.
Similarly, aq annihilates a particle in the mode q.

- The operators satisfy bosonic commutation relations, [aq, a†
q′ ] = δ(q−q′) (cf. harmonic oscillator ladder

operators, but with an index label q).
- The operator nq = a†

qaq measures the particle number in the momentum mode q. The total particle
number is N̂ =

P

q a†
qaq.

- The dispersion relation is Eq = !ω = q2

2m . This is the energy of a single particle in the mode q.

The Sodium atom has one valence electron outside a closed shell.

The ground state has the configuration 1s2 2s2 2p6 3s.

We order the interactions according to the importance:

Eq =
q2

2m

Eq

q
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Statistical Mechanics of Noninteracting Bosons 

• Statistical properties described by the Free Energy: 

• Trace easily carried out in occupation number basis: H is diagonal:

• Consider low temperature behavior of equation of state: 

temperature chemical potential

continuum limit
Bose-Einstein 

distribution 

U = kBT logZ, Z = tr exp− 1
kBT (H − µN̂)

U = kBT log
�

q

∞�

nq=0

e
− 1

kBT ( q2

2m−µ)nq = kBT log
�

q

�
1− e

− 1
kBT ( q2

2m−µ)�−1
= −kBT

�

q

log
�
1− e

− 1
kBT ( q2

2m−µ)�

N = −∂U

∂µ
= �

�

q

a†qaq� =
�

q

�a†qaq� =
�

q

1

e
1

kBT ( q2

2m−µ) − 1
→ V

�
ddq

(2π)d
1

e
1

kBT ( q2

2m−µ) − 1

17Thursday, April 8, 2010



Bose-Einstein Condensation, 3D

n =
N

V
=

�
ddq

(2π)d

1

e
1

kBT ( q2
2m−µ) − 1

 Polygamma 
function

gα(z) =
∞�

n=1

zn

nα

Example: Na atom (Alkali atoms)

• Microscopic scattering physics: Lennard-Jones (LJ) potential
- 1/r12 hard core repulsion: repulsion of electron clouds rrep = O(aB)

- 1/r6 attraction: van der Waals (induced dipole-dipole interaction)
rvdW = (50...200)aB for alkalis: typ. order of magnitude for interaction length scale

• Simplifications:
- T = 0, no interactions: whole density sits in the condensate: ψ0 =

√
N

- T = 0, weak interactions (a/d " 1): expect ψ0 ≈
√

N
- we can formalize this:
- The operator a†

q creates a particle in the momentum mode q : a†N
q |vac〉 =

p

(N + 1)!|nq = N〉.
Similarly, aq annihilates a particle in the mode q.

- The operators satisfy bosonic commutation relations, [aq, a†
q′ ] = δ(q−q′) (cf. harmonic oscillator ladder

operators, but with an index label q).
- The operator nq = a†

qaq measures the particle number in the momentum mode q. The total particle
number is N̂ =

P

q a†
qaq.

- The dispersion relation is Eq = !ω = q2

2m . This is the energy of a single particle in the mode q.

• Lower T and study the behavior of µ at fixed n (3D):
• At a finite T , µ hits zero: below this Tc the equation of state has no solution
• Bose and Einstein (1925): Equation below Tc needs modification due to macroscopic

Example: Na atom (Alkali atoms)

• Microscopic scattering physics: Lennard-Jones (LJ) potential
- 1/r12 hard core repulsion: repulsion of electron clouds rrep = O(aB)

- 1/r6 attraction: van der Waals (induced dipole-dipole interaction)
rvdW = (50...200)aB for alkalis: typ. order of magnitude for interaction length scale

• Simplifications:
- T = 0, no interactions: whole density sits in the condensate: ψ0 =

√
N

- T = 0, weak interactions (a/d " 1): expect ψ0 ≈
√

N
- we can formalize this:
- The operator a†

q creates a particle in the momentum mode q : a†N
q |vac〉 =

p

(N + 1)!|nq = N〉.
Similarly, aq annihilates a particle in the mode q.

- The operators satisfy bosonic commutation relations, [aq, a†
q′ ] = δ(q−q′) (cf. harmonic oscillator ladder

operators, but with an index label q).
- The operator nq = a†

qaq measures the particle number in the momentum mode q. The total particle
number is N̂ =

P

q a†
qaq.

- The dispersion relation is Eq = !ω = q2

2m . This is the energy of a single particle in the mode q.

• Lower T and study the behavior of µ at fixed n (3D):
• At a finite T , µ hits zero: below this Tc the equation of state has no solution
• Bose and Einstein (1925): Equation below Tc needs modification due to macroscopic

occupation of zero mode:

n = 〈a†
0a0〉 +

ddq

(2π)d

1

e
q^2

2mkBT − 1

• macroscopic: N0 = 〈a†
0a0〉 = O(N/V ), i.e. extensive

• plausible: Bosons can populate single quantum state with arbitrary number
• critical temperature: determined by

nλ3
{dB} = g{3/2}(1) = ζ(3/2) ≈ 2.612 or λdB/d ! O(1)

\m

The ground state has the configuration 1s2 2s2 2p6 3s.

We order the interactions according to the importance:

Electron - nucleus and electron - electron interaction

Wave function of the atom as a many electron system:

Ψ = Φcore
un!(r)

r
Y!m(θ, φ)

de Broglie wavelength λdB = (2π�2/mkBT )1/2 � d = n−1/3 interparticle 
spacing

T

µ

T = 0 

d = 3

Eq

q

• Lower T and study the behavior of µ at fixed n (3D):
• At a finite T , µ hits zero: below this Tc the equation of state has no solution
• Bose and Einstein (1925): Equation below Tc needs modification due to macroscopic

occupation of zero mode:

n = 〈a†
0a0〉 +

ddq

(2π)d

1

e
q^2

2mkBT − 1

- plausible: Bosons can populate single quantum state with arbitrary number
- macroscopic: N0 = 〈a†

0a0〉 = O(N) ∝ V , i.e. extensive
- critical temperature: determined by

nλ3
dB = g3/2(1) = ζ(3/2) ≈ 2.612

- zero order O(N): homogenous mean field reproduced

- linear terms O(
√

N): vanishes upon proper choice of the chemical potential (equilibrium condition)
µ = gn0

- quadratic part O(1):

Electron - nucleus and electron - electron interaction

Wave function of the atom as a many electron system:

Ψ = Φcore
un!(r)

r
Y!m(θ, φ)

= λ−3
dB(T )g3/2(eµ/kBT )
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Role of Dimension: No BEC in 2D

• Remark: More general result
- No spontaneous breaking of continuous symmetries at finite temperature 

(Mermin-Wagner Theorem)
- quasi long range order possible: Kosterlitz-Thouless transition

T = 0 

µ
d = 2 d = 3

T

Example: Na atom (Alkali atoms)

• Microscopic scattering physics: Lennard-Jones (LJ) potential
- 1/r12 hard core repulsion: repulsion of electron clouds rrep = O(aB)

- 1/r6 attraction: van der Waals (induced dipole-dipole interaction)
rvdW = (50...200)aB for alkalis: typ. order of magnitude for interaction length scale

• Simplifications:
- T = 0, no interactions: whole density sits in the condensate: ψ0 =

√
N

- T = 0, weak interactions (a/d " 1): expect ψ0 ≈
√

N
- we can formalize this:
- The operator a†

q creates a particle in the momentum mode q : a†N
q |vac〉 =

p

(N + 1)!|nq = N〉.
Similarly, aq annihilates a particle in the mode q.

- The operators satisfy bosonic commutation relations, [aq, a†
q′ ] = δ(q−q′) (cf. harmonic oscillator ladder

operators, but with an index label q).
- The operator nq = a†

qaq measures the particle number in the momentum mode q. The total particle
number is N̂ =

P

q a†
qaq.

- The dispersion relation is Eq = !ω = q2

2m . This is the energy of a single particle in the mode q.

• Lower T and study the behavior of µ at fixed n (2D):
• Lower T and study the behavior of µ at fixed n (3D):
• At a finite T , µ hits zero: below this Tc the equation of state has no solution
• Bose and Einstein (1925): Equation below Tc needs modification due to macroscopic

➡ EoS without condensate can be 
fulfilled for all T: 

➡ No BEC in (homogeneous) 2d 
space

• Reason: Infrared (low momentum) divergence due to smaller phase space
d2q

(2π)2
�n̂q� =

d2q

(2π)2
1

e( q2
2m−µ)/kBT − 1

∝ dqq

q2 − µ

low momenta, 
small mu logarithmic 

divergence
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Summary

• BEC is statistical effect, no interaction needed

• BEC is macroscopic population of a single quantum 
state, the q=0 mode

• quantum degeneracy condition: 

• True BEC at finite temperature only in d=3

Eq

q

• Now: more realistic description of ultracold Bose systems
- Trapping potential
- Interactions

λdB = (2π�2/mkBT )1/2
d = n−1/3

λdB � d
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Trapping Potential and Weak Interactions

• Now we aim at a more realistic description of cold atomic gases:

- Trapping potential: the local density experiences a local potential energy 

• So far: free particles in homogeneous space, continuum limit : 

- Local two-body interactions: 

Remark: this is just a collection of local harmonic oscillators: exactly solvable

• Our workhorse Hamiltonian is  

H0 = H − µN̂ =
�

q
a
†
q

� q2

2m
− µ

�
aq =

�

x
a
†
x

�
− �

2m
− µ

�
ax

aq =
�

x
eiqxax; [ax, a†y] = δ(x− y)after Fourier transform

Htrap =
�

x
V (x)n̂x, V (x) = 1

2mω
2x2

Hint =
�

x,y
gδ(x− y)n̂xn̂y = g

�

x
n̂

2
x

H = H0 + Htrap + Hint

V (x)

d

contact interaction
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Microscopic Origin of the Interaction Term

• General properties of LJ type potentials at low energies:
- isotropic s-wave scattering dominates; the scattered wave function behaves asymptotically as 
- a is the scattering length. Knowledge of this single parameter is sufficient to describe low 

energy scattering!
- within Born approximation, it can be calculated as 

➡very different interaction potentials may have the same scattering length!

Example: Na atom (Alkali atoms)

• Microscopic scattering physics: Lennard-Jones (LJ) potential
- 1/r12 hard core repulsion: repulsion of electron clouds rrep = O(aB)

- 1/r6 attraction: van der Waals (induced dipole-dipole interaction)
rvdW = (50...200)aB for alkalis: typ. order of magnitude for interaction length scale

The Sodium atom has one valence electron outside a closed shell.

The ground state has the configuration 1s2 2s2 2p6 3s.

We order the interactions according to the importance:

Electron - nucleus and electron - electron interaction

Wave function of the atom as a many electron system:

Ψ = Φcore
un!(r)

r
Y!m(θ, φ)

with core wave function (filled shell) and u(r) the radial wave function of the valence elec-
tron.

The antisymetrization of the wave function can be ignored (core wave function and valence
electron wave function do not overlap).The description of the valence electron becomes a
single electron problem.

ψ(x) ∼ a/x

aBorn ∼
�

x
U(x)

interatomic potential

true interatomic 
potential U(x)

x

model potential with 
same scattering length
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• Efficient description by an effective Hamiltonian with few parameters.

• For ultracold bosonic alkali gases, a single parameter, the scattering length a, is 
sufficient to characterize low energy scattering physics of indistinguishable particles : 
Effective interaction

• A typical order of magnitude for the scattering length is 

• The validity of the model Hamiltonian is restricted to length scales 

• For bosons, we must restrict to repulsive interactions a > 0 (else: bosons seek solid 
ground state, collapse in real space)

• So far: microscopic description; now: many body scales!

The Model Hamiltonian as an Effective Theory

H =
�

x

�
a
†
x

�
− �

2m
− µ + V (x)

�
ax + gn̂

2
x

�

l� rvdW

a = O(rvdW ), rvdW (50...200)aB

g =
8π�2
m

a
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Validity of our Hamiltonian: Scales in Cold Dilute Bose Gases

 Summary of length scales

length scattering length interparticle sep. de Broglie w.l. trap size

(0.05 ... 0.2)10^3 (0.8 ... 3)10^3 (10 ... 40)10^3 (3 ... 300)10^3

weak interactions/
dilute gases 

quantum degeneracy  phys. meaning of the 
ratio: local density approximation  

a/aB d/aB λdB/aB losc/aB

λdB = (2π�2/mkBT )1/2 d = n−1/3

2a

a� d� λdB

aB = 5.3× 10−2nm Bohr radius

Complement: Real Atoms

Wave function of the atom as a many electron system:

Ψ = Φcore
un!(r)

r
Y!m(θ,φ)

with core wave function (filled shell) and u(r) the radial wave function of the valence elec-
tron.

The antisymetrization of the wave function can be ignored (core wave function and valence
electron wave function do not overlap).The description of the valence electron becomes a
single electron problem.

• The effective Hamiltonian is valid because none of many-body length scales can re-
solve interaction length scale

• Many-body scales: density and temperature in terms of length scales.
- diluteness a/d ! 1 (d = n−1/3)

∗ dilute means weakly interacting: interaction energy gn ∼ a/d · d−2

∗ clear: three-body interaction terms irrelevant
- quantum degeneracy: d/λdB ! 1 (λdB = (2π!2/mkBT )1/2)

- trap frequencies: λdB/losc ! 1 (losc = 1/
√

m/2ω)

:
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Violations of the scale hierarchy

• With Feshbach resonances, violation of a/d << 1 possible: Dense degenerate system 

• With optical lattices, a new length and a new energy scale are introduced: 
• lattice spacing = wavelength of light: high densities (“fillings) become available 

• lattice depth: Kinetic energy is withdrawn more strongly than interaction energy: “strong correlations”

• With Feshbach resonances, violation of a/d << 1 possible: “Strong interactions” • With Feshbach resonances, violation of a/d << 1 possible: “Strong interactions” 

• NB: Despite violation of scale hierarchy for dilute quantum gases, we will be able to 
give accurate microscopic models

interaction scale

• Generic sequence of scales and possible violations:

Feshbach resonance

de Broglie wavelength (Oscillator length of trap)interparticle spacing

• Both leads to the possibility of “strong interactions/correlations” as we will see

or 
optical lattice spacing

25Thursday, April 8, 2010



BEC Phenomenology: Gross-Pitaevski Equation

• Heisenberg Equation of motion for the field operator:

Gross-Pitaevski Equation

➡ Nonlinear partial differential 
operator equation...

Example: Na atom (Alkali atoms)

• Microscopic scattering physics: Lennard-Jones (LJ) potential
- 1/r12 hard core repulsion: repulsion of electron clouds rrep = O(aB)

- 1/r6 attraction: van der Waals (induced dipole-dipole interaction)
rvdW = (50...200)aB for alkalis: typ. order of magnitude for interaction length scale

• Simplifications:
- T = 0, no interactions: whole density sits in the condensate: ψ0 =

√
N

- T = 0, weak interactions (a/d " 1): expect ψ0 ≈
√

N
- we can formalize this:

The Sodium atom has one valence electron outside a closed shell.

The ground state has the configuration 1s2 2s2 2p6 3s.

We order the interactions according to the importance:

Electron - nucleus and electron - electron interaction

Wave function of the atom as a many electron system:

Ψ = Φcore
un!(r)

r
Y!m(θ, φ)

ax = φ0(x)a0 +
�

q�=0

φq(x)aq = φ0(x)a0 + δax

complete set of 
orthogonal functions

- macroscopic occupation of zero mode implies: commutator 
irrelevant, replace with classical c-numbers 

- Insert into Heisenberg EoM, keep only terms O(
√

N)� 1

∂tax(t) = −i[H, ax] = −i
�
− �

2m
− µ + V (x) + ga

†
xax

�
ax

i∂tϕ(x, t) =
�
− �2

2m
�− µ+ V (x) + gϕ∗(x, t)ϕ(x, t)

�
ϕ(x, t)

�a†0a0� ≈ �a0a†0� ≈ N ≈ �a†0��a0�, thus a0 →
√
N ; ϕ(x, t) := φ0(x, t)

√
N

ϕ0

ϕ0
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Macroscopic wave function
• Gross-Pitaevski Equation :

• Interplay of quantum mechanics and nonlinearity: quantized 
vortex solutions

• Properties:
- Classical field equation (cf. classical electrodynamics vs. QED) 
- for g = 0, or single particle: formally recover linear Schrödinger equation -> expect 

quantum behavior; interpret      as “macroscopic wave function”
- however, in general nonlinear -> richer than Schrödinger equation

0 = − �2

2m

�
f” +

f �

r
− �2f

r2

�
− µf + gf3 f(r)

rvortex solution

- large distances: constant solution, determine chemical pot. 
- short distances: condensate amplitude must vanish due to 

centrifugal barrier, in turn rooted in the quantization of the 
phase

- uniform case V(x) = 0, search static cylinder symmetric symmetric solutions 
with no z dependence: 

- GP equation: 

integer, such that phase 
returns after 2 pi: unique Wave 
function

ξ =
�√

2mgn
coherence length

i∂tϕ(x, t) =
�
− �2

2m
�− µ+ V (x) + gϕ∗(x, t)ϕ(x, t)

�
ϕ(x, t)

ϕ(x, t) = ϕ(r,φ) = f(r)ei�φ

ϕ
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• homogeneous case: plane wave expansion of field operator

Quantum Fluctuations: Bogoliubov Theory

• Grand canonical Hamiltonian. Take the fluctuations into account to leading order: 

• Bose and Einstein (1925): Equation below Tc needs modification due to macroscopic
occupation of zero mode:

n = 〈a†
0a0〉 +

ddq

(2π)d

1

e
q^2

2mkBT − 1

- plausible: Bosons can populate single quantum state with arbitrary number
- macroscopic: N0 = 〈a†

0a0〉 = O(N) ∝ V , i.e. extensive
- critical temperature: determined by

nλ3
dB = g3/2(1) = ζ(3/2) ≈ 2.612

- zero order: homogenous mean field reproduced
- linear terms: vanishes upon proper choice of the chemical potential (equilibrium condition) µ = gn0

- quadratic part:

Electron - nucleus and electron - electron interaction

Wave function of the atom as a many electron system:

Ψ = Φcore
un!(r)

r
Y!m(θ, φ)

with core wave function (filled shell) and u(r) the radial wave function of the valence elec-
tron.

ax =
√
n0 +

�

q �=0

eiqxaq

choice of zero phase without 
loss of generality

(φ0(x)a0 = 1/
√
V
�
N0 =

√
n0)

H
(2)
Bog =

�

q �=0

�
a
†
q(

q2

2m − µ+ 2gn0)aq + gn0

2 (a†qa
†
−q + aqa−q)

�

=
1

2

�

q �=0

(a†q, a−q)

�
q2

2m + gn0 gn0

gn0
q2

2m + gn0

��
aq
a†−q

�
+ const.

µ = gn0
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Eq

q

- Off-diagonal terms: pairwise creation/annihilation out of the condensate
- Coupling of modes with opposite momenta 
- Hamiltonian not diagonal in operator space: diagonalize to find spectrum 

and elementary excitations

• Discussion:

Quantum Fluctuations: Bogoliubov Theory

• quadratic Bogoliubov Hamiltonian:

• Remarks:
- An equivalent approach linearizes Heisenberg EoM around homog. GP mean field 
- Validity: The ordering principle is given by the power of the condensate amplitude. 

Bogoliubov theory is not a systematic perturbation theory in U but becomes good 
at weak coupling

=
1

2

�

q �=0

(a†q, a−q)

�
q2

2m + gn0 gn0

gn0
q2

2m + gn0

��
aq
a†−q

�
+ const.

H
(2)
Bog =

�

q �=0

�
a
†
q(

q2

2m − µ+ 2gn0)aq + gn0

2 (a†qa
†
−q + aqa−q)

�
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phonons

particles

• Diagonalization in operator space: Bogoliubov transformation

• The transformation coefficients are chosen to make any off-diagonal contribution in 
terms of new operators vanish. They can be chosen real and evaluate to 

Bogoliubov Quasiparticles

-       creates a quasiparticle excitation and 
- Their dispersion is 
- At low momenta, this is linear and gapless
- At high momenta, like free particles: quadratic

Example: Na atom (Alkali atoms)

• Microscopic scattering physics: Lennard-Jones (LJ) potential
- 1/r12 hard core repulsion: repulsion of electron clouds rrep = O(aB)

- 1/r6 attraction: van der Waals (induced dipole-dipole interaction)
rvdW = (50...200)aB for alkalis: typ. order of magnitude for interaction length scale

• Simplifications:
- T = 0, no interactions: whole density sits in the condensate: ψ0 =

√
N

- T = 0, weak interactions (a/d " 1): expect ψ0 ≈
√

N
- we can formalize this:
- The operator a†

q creates a particle in the momentum mode q : a†N
q |vac〉 =

p

(N + 1)!|nq = N〉.
Similarly, aq annihilates a particle in the mode q.

- The operators satisfy bosonic commutation relations, [aq, a†
q′ ] = δ(q−q′) (cf. harmonic oscillator ladder

operators, but with an index label q).
- The operator nq = a†

qaq measures the particle number in the momentum mode q. The total particle
number is N̂ =

P

q a†
qaq.

- The dispersion relation is Eq = !ω = q2

2m . This is the energy of a single particle in the mode q.

- The trafo be canonical, [α , α†
′ ] = δ( − ′), thus u2

q − v2
q = 1.

• Lower T and study the behavior of µ at fixed n (2D):
• Lower T and study the behavior of µ at fixed n (3D):
• At a finite T , µ hits zero: below this Tc the equation of state has no solution

Example: Na atom (Alkali atoms)

• Microscopic scattering physics: Lennard-Jones (LJ) potential
- 1/r12 hard core repulsion: repulsion of electron clouds rrep = O(aB)

- 1/r6 attraction: van der Waals (induced dipole-dipole interaction)
rvdW = (50...200)aB for alkalis: typ. order of magnitude for interaction length scale

• Simplifications:
- T = 0, no interactions: whole density sits in the condensate: ψ0 =

√
N

- T = 0, weak interactions (a/d " 1): expect ψ0 ≈
√

N
- we can formalize this:
- The operator a†

q creates a particle in the momentum mode q : a†N
q |vac〉 =

p

(N + 1)!|nq = N〉.
Similarly, aq annihilates a particle in the mode q.

- The operators satisfy bosonic commutation relations, [aq, a†
q′ ] = δ(q−q′) (cf. harmonic oscillator ladder

operators, but with an index label q).
- The operator nq = a†

qaq measures the particle number in the momentum mode q. The total particle
number is N̂ =

P

q a†
qaq.

- The dispersion relation is Eq = !ω = q2

2m . This is the energy of a single particle in the mode q.

- The trafo be canonical, [α , α†
′ ] = δ( − ′), thus u2

q − v2
q = 1.

• Lower T and study the behavior of µ at fixed n (2D):
• Lower T and study the behavior of µ at fixed n (3D):
• At a finite T , µ hits zero: below this Tc the equation of state has no solution

�
αq

α†
−q

�
=

�
uq vq

v∗q u∗q

� �
aq

a†−q

�

speed of sound

• Result: Collection of harmonic oscillators. New operators: 
elementary excitations on Bogoliubov ground state: quasiparticles

u2
q = 1

2 (
ξq
�q

+ 1), v2q = 1
2 (

ξq
�q

− 1) ξq = �q + gn0, �q = q2

2M

Eq =
�

2gn0�q + �2q
q→0→ c|q|, c =

�
gn0

m

• Rewrite the Hamiltonian with new operators and do normal ordering

quasiparticle dispersion

α†
q αq|0Bog� = 0

H = V
gn2

2 − 1
2

�

q �=0

(�q + gn0 − Eq) +
�

q �=0

Eqα
†
qαq
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Energy Correction and  Density Depletion

• Physical effects due to quantum fluctuations: 
• Correction to the total energy:

expand in quasiparticle operators

smallness parameter recovered

interpretation: particles kicked out of condensate

• Depletion of the condensate (via normal ordering of the particle number operator): 

E/V = �0Bog|H|0Bog�/V = gn2

2 − 1
2

�
d3q

(2π)3 (�q + gn0 − Eq)

- Problem: linear high momentum UV divergence
- Reason: too naive treatment of interactions: formally assumed to be constant up to arbitrarily 

large momenta
- Cure: UV renormalization of interaction (will perform such program explicitly for fermions later)
- Result: 

interpretation: interaction energy kinetic energy from modes 
outside the condensate

E/V = gn2

2 (1 + 128
15π1/2 (na

3)1/2)

n = n0 +

�

q
�a†qaq� = n0 +

�

q
v2q → n− n0

n
≈ 8

3
√
π
(na3)1/2

na3 = (a/d)3

g = 8πa
M
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Phonon Mode and Superfluidity

• Landau criterion of superfluidity: frictionless flow
- Gedankenexperiment: move an object through a liquid with velocity v. 
- Landau: the creation of an excitation with momentum p and energy      is energetically 

unfavorable if    

➡in this case, the flow is frictionless, i.e. superfluidity is present

•   Weakly interacting Bose gas: Superfluidity through linear phonon excitation 

•   Free Bose gas: No superfluidity due to soft particle excitations

➡Superfluidity is due to linear spectrum of quasiparticle excitations

phonons

particles

v < vc =
�p
p

�p =
p2

2m
→ vc = 0

�p = c|p|, c =
�

gn0

m → vc = c

�p
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Idea of Landau Criterion

• Consider moving object in the liquid ground state of a system

• Question: When is it favorable to create excitations?
frame of reference of the 

ground state system

frame of reference of the 
moving objectv

• General transformation of energy and momentum under 
Galilean boost with velocity v

• Energy and momentum of the ground state in 

Σ

Σ�

• Energy and momentum of the ground state plus an excitation with momentum, energy  

Σ : E0, p0 = 0

p, �p

• Creation of excitation unfavorable if 

Σ : Eex = E0 + �p, pex = p

Σ : E, p

E�
ex − E�

0 = �p − pv ≥ �p − |p||v| > 0 ⇒ v < vc =
�p
p

Σ� : E� = E − pv + 1
2Mv2, p� = p−Mv

total system mass

Σ� : E�
ex = E0 + �p − pv + 1

2Mv2, p�
ex = p−Mv

Σ� : E�
0 = E0 +

1
2Mv2, p�

0 = −Mv
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Summary

• The basic phenomenon of Bose-Einstein condensation is a statistical effect, not 
driven by interactions.

• Ultracold bosonic quantum gases realize a situation close to that: model 
Hamiltonians with weak, local, repulsive interactions.

• Important scale hierarchy: 

• In consequence, such systems are well described by relatively simple 
approximations: at T=0, the physics is well understood in terms of GP equation + 
quadratic fluctuations.

• GP mean field equation = nonlinear Schrödinger equation for macroscopic wave 
function (hallmark: quantized vortices).

• Bogoliubov theory encompasses quadratic fluctuations around GP mean field and 
explains superfluidity through existence of phonon mode.

a� d� λdB
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Mini-Tutorial: 
Functional Integrals 

and 
Effective Action

Z = tre−βĤ =

�
D(ϕ∗,ϕ)e−S[ϕ∗

,ϕ]
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Functional Integrals

overlap and normalization

completeness

Formula Summary: Functional Integrals I

• Some familiarity with functional integrals is assumed but we refresh our knowledge:
• Given a grand canonical Hamiltonian , e.g. with general two-body interactions,

H − µN̂ =
∑

ij

(hij − µδij)a
†
iaj +

∑

ijkl

Vijkla
†
ia

†
jakal

• Quantum partition function

Z = tre−β(H−µN̂) =
∑

{n}∈Fock space

〈n|e−β(H−µN̂)|n〉, β = 1/kBT

• Here the partition function is represented in Fock space. We now perform a basis change to coherent
states leading to the functional integral

• Coherent states (bosons) – eigenstates to the annihilation operators ai:

ai|φ〉 = φi|φ〉, 〈φ|a†i = 〈φ|φ∗
i

|φ〉 = e
∑

i
φia

†
i |vac〉

〈θ|φ〉 = e
∑

i
θ∗
i φi , 〈φ|φ〉 = e

∑
i
φ∗
i φi

1Fock =
´

∏

i
dφ∗

i dφi

π e−
∑

i φ
∗
iφi |φ〉〈φ|

• Note: The creation operators do not have eigenstates

explicit form
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Functional IntegralsFormula Summary: Functional Integrals II

• Insert identity into quantum partition function

Z = tre−β(H−µN̂) =
∑

{n}∈Fock space〈n|e−β(H−µN̂)|n〉
=
´

D(φ∗,φ)e−
∑

i φ
∗
iφi〈φ|e−β(H−µN̂)|φ〉, D(φ∗,φ) ≡

∏

i
dφ∗

i dφi

π

• For a normal ordered HamiltonianH(a†i , ai)−µN̂(a†i , ai), we can apply the Feynman strategy of dividing
the (imaginary) time interval β into N segments∆β = β/N . Note |φn=0〉 = |φn=N 〉 – periodic boundary
conditions

• Inserting the identity 1Fock =
´

D(φ∗
n,φn)e

−
∑

i φ
∗
i,nφi,n |φn〉〈φn| after each time step, the respective

matrix elements can be calculated explicitly due to the smallness of ∆β with result

Z =

ˆ N
∏

n=0

D(φ∗
n,φn)e

−
∑N

n=0
[
∑

i φ
∗
i,n(φi,n−φi,n−1)+∆β(H(φ∗

i,n,φi,n−1)−µN(φ∗
i,n,φi,n−1))

- Here, H − µN is a function of classical, but fluctuating variable.
- The additional index n labels the (imaginary) time evolution. Continuum notation for N → ∞:

∆β
N
∑

n=0

→
ˆ β

0
dτ, φi,n → φi(τ),

φi,n − φi,n−1

∆β
→ ∂τφi(τ),

N
∏

n=0

D(φ∗
n,φn) → D(φ∗,φ)
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Functional IntegralsFunctional Integrals III

• Continuum notation for the imaginary time dependence

Z =
´

D(φ∗,φ)e−S[φ∗,φ]

S[φ∗,φ] =
´ β
0 dτ

[
∑

i φ
∗
i (τ)(∂τ − µ)φi(τ) +H [φ∗,φ]

H [φ∗,φ] =
∑

ij hijφ∗
i φj +

∑

ijkl Vijklφ∗
i φ

∗
jφkφl

]

• S is the “classical” or “microscopic” action
• Continuum notation for the discrete indices:

- interpret indices as spatial indices
- consider local density-density interactions Vijkl = vδikδjlδil and hij such that it describes kinetic

energy (1D)
H [φ∗,φ] =

∑

ij

h(φ∗
i+1 − φ∗

i )(φi+1 − φi) + v
∑

i

(φ∗
i φi)

2

- the sites i, i+1 be separated by a distance a. The continuum limit a → 0 obtains for fixed ϕ(τ, x) =
a−1/2φi(τ), 1/2M = ha2, g/2 = va , such that

S[ϕ∗,ϕ] =
´ β
0 dτdx[ϕ∗(τ, x)(∂τ − #

2M − µ)ϕ(τ, x) + g
2 (ϕ

∗(τ, x)ϕ(τ, x))2]

• S is the “classical” or “microscopic” action of nonrelativistic continuum bosons with local interaction in
one spatial dimension
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Finite temperatures and Matsubara frequencies

ϕ(τ = β, x) = ϕ(τ = 0, x) β = 1/T

Matsubara torus

Finite temperatures and Matsubara frequencies

• Unlike the spatial integrations, the imaginary time integrations are restricted to a finite interval
• For bosons, we have used periodic boundary conditions, i.e. ϕ(τ = β, x) = ϕ(τ = 0, x)

• This gives rise to a discreteness in the frequency domain (cf. particle in a box problem) for finite
β < ∞ (T > 0): Matsubara modes

ϕ(τ, x) = T
∑

n ϕ(ωn, x)eiωnτ , ϕ(ωn, x) =
´

dτϕ(τ, x)e−iωnτ ,

ωn = 2πnT

• E.g. the free part of the action reads (β−1
´ β
0 dτei(ωn−ωm)τ = δωn,ωm

)

S[ϕ∗,ϕ] =
∑

n

T

ˆ

dx[ϕ∗(ωn, x)(iωn − #
2M − µ)ϕ(ωn, x)]

• In the zero temperature limit, the frequency spacing ∆ω = 2πT → 0 and the Matsubara summation
goes over into a continuum Riemann integral,

∑

n T →
´

dω
2π
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Formula summaryFormula Summary

• Functional integral representation of the quantum partition function for ultracold bosons (3D):

Z =
´

D(ϕ∗,ϕ)e−S[ϕ∗,ϕ]

S[ϕ∗,ϕ] =
´ β
0 dτ

[(´

d3xϕ∗(τ,x)(∂τ − µ)ϕ(τ,x)
)

+H [ϕ∗(τ,x),ϕ(τ,x)]
]

=
´ β
0 dτ

´

d3x
[

ϕ∗(τ,x)(∂τ − #
2M − µ)ϕ(τ,x) + g

2 (ϕ
∗(τ, x)ϕ(τ, x))2

]

• Discussion:
- The validity of the microscopic action is based on the validity of the microscopic Hamiltonian
- The boson fields ϕ∗,ϕ are commuting but temporally and spatially fluctuating complex numbers

• Fermions: The same form of the microscopic action is obtained when representing the partition function
for continuum fermion fields ψ. Important differences are:
- Additional spin index, for two-component fermions: ψ(τ,x) = (ψ↑(τ,x),ψ↓(τ,x))T

- Due to the anticommutation relations of the fermion operators, the fermionic fields are anticommut-
ing Grassmann numbers,

{ψσ(τ,x),ψ
∗
σ′ (τ,x)} = {ψσ(τ,x),ψσ′ (τ,x)} = {ψ∗

σ(τ,x),ψ
∗
σ′ (τ,x)} = 0

- They obey antiperiodic boundary conditions in imaginary time ψσ(τ = β, x) = −ψσ(τ = 0, x), thus
ωn = (2n+ 1)πT

- Obviously, these properties will strongly affect the concrete evaluation of the functional integrals
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From the Partition Function to the Effective ActionFrom the Partition Function to the Effective Action

• We have stored the information on the many-body system in the partition function

Z =
´

D(ϕ∗,ϕ)e−S[ϕ∗,ϕ]

• Of interest are the low order correlation functions such as e.g. 〈ϕ(τ,x)ϕ∗(0,0)〉
• They can be calculated from introducing (imaginary time and space dependent) artificial sources into

the partition function:

Z → Z[j∗(τ,x), j(τ,x)] =

ˆ

D(ϕ∗,ϕ)e−S[ϕ∗,ϕ]+
´

τ,x
(j∗(τ,x)ϕ(τ,x)+j(τ,x)ϕ∗(τ,x))

• and taking (functional) derivatives evaluated at vanishing sources, e.g.

〈ϕ(τ,x)ϕ∗(0,0)〉 = δ2Z

δj∗(τ.x)δj(0,0)

∣

∣

∣

j=j∗=0

• Remarks:
- functional derivatives are defined with δf(x)/δf(y) = δ(x − y) plus the standard algebraic rules for

differentiation
- successive differentiation generates the “disconnected correlation functions”. The free energy

W [j∗, j] = logZ[j∗, j]

generates the “connected correlation functions”
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From the Partition Function to the Effective Action

From the Partition Function to the Effective Action II

• The information accessible from Z[j∗, j] orW [j∗, j] via derivatives wrt an unphysical source (j∗, j)

• There is a way to store the information in a more intuitive way: Legendre transform of W (cf. classical
mechanics, or thermodynamics)

Γ[φ∗,φ] = −W [j∗, j] +

ˆ

j∗φ+ jφ∗, φ(τ,x) =
δW [j∗, j]

δj(τ,x)
= 〈ϕ(τ,x)〉

• Properties and Discussion:
- The Legendre transform implements a change of the active variable (j∗, j) → (φ∗,φ)
- The expectation value φ = 〈ϕ〉 is called the classical field. For ultracold bosons, it has a direct

physical interpretation in terms of the condensate mean field
- The effective action carries the same information as Z and W , only organized differently. It gener-

ates the one-particle irreducible correlation functions
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From the Partition Function to the Effective Action

From the Partition Function to the Effective Action III

• The effective action has a functional integral representation

exp−Γ[φ∗,φ] =

ˆ

D(δϕ∗, δϕ) exp−S[φ∗ + δϕ∗,φ+ δϕ],
δΓ[φ∗,φ]

δφ(τ,x)
= j(τ,x) = 0

• Discussion
- NB: Action principle is leveraged over to full quantum status
- The effective action can be understood “classical action plus fluctuations”. It lends itself to semi-

classical approximations (small fluctuations around a mean field)
- Symmetry principles are leveraged over from the classical action to full quantum status
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Effective Action and Propagator
additional material

Effective Action and Propagator

• A useful property: The second derivative of the effective action is the inverse propagator
• Consider a propagation amplitude (in matrix notation)

Gij = 〈δϕiδϕj〉 =
δ2W

δjiδjj
= W (2)

ij

the indices could stand for e.g. 〈δϕ(τ,x)δϕ∗(0,0)〉
• The above statement is then poperly formulated as the identity

∑

k

Γ(2)
ik Gkj = δij

• Proof:
∑

k

Γ(2)
ik Gkj =

∑

k

δ2Γ

δφiδφk

δ2W

δjkδjj
=

∑

k

δ2Γ

δφiδφk

δφk

δjj
=

δ2Γ

δφiδjj
=

δji
δjj

= δij

we have used the chain rule and the field equation for the effective action δΓ/δφi = ji
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Functional Integral 
for 

Weakly Interacting Bosons
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Some Introductory Remarks

• This section develops the theory of low temperature weakly interacting boson 
degrees of freedom from the functional integral point of view. The aim is threefold:

(1) Reproduce the results of Gross-Pitaevski and Bogoliubov theory 

(2) Get some familiarity with the functional integral
(3) The emergence of bosonic quasiparticles at low energies is ubiquitous in a large 

variety of low temperature quantum systems:

- The concept of quasiparticles/ effective low energy theories is particularly accessible 
in the functional integral formulation 

- Examples of emergent bosonic low energy theories: 

• BCS theory (Cooper pairs)

• Even more explicitly, BCS-BEC crossover (bound states of fermions: molecules)

• spin waves in magnetic lattice systems
- A rather universal understanding of such theories is crucial, and accessible within the 

framework developed here
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Classical Limit for the Effective Action
Classical Limit

• We restore the dimension for the action:

[S] = [τ ] · [E] = [τ ] · [!ω] = [!]

• Effective Action:
exp−Γ[φ∗,φ]

!
=

ˆ

D(δϕ∗, δϕ) exp−S[φ∗ + δϕ∗,φ+ δϕ]

!

• In the classical limit ! → 0 but fixed Γ, the exponential distribution is sharply peaked around the field
configuration for which the classical action in the exponent is minimal.

• This is the case for the “classical” field configuration φ(τ,x), determined by the classical action (ex-
tremum) variational principle δS/δφ(τ,x) = 0

• With this insight, we can expand the classical action in the functional integral in the fluctuation (δϕ∗, δϕ),
and keep only the zero order term

• Thus, in the classical limit we have
Γ[φ∗,φ] = S[φ∗,φ]
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Recovering the Gross-Pitaevski Equation

Im

ReComplex time plane

t

τ = it Im

ReComplex energy plane

ωE = iωM

ωM

Wick rotations

note
ωM · t = −ωE · τ

Recovering the Gross-Pitaevski Equation

• We consider the imaginary time classical action S and and view it as being analytically continued from
the real axis (at T = 0 or β → ∞):

τ → it, φ(τ,x) → φ̃(t,x) ⇒
S[φ∗,φ] → iS[φ̃∗, φ̃] = i

´

dt
´

d3x
[

φ̃∗(t,x)(−i∂t − "
2M − µ)φ̃(t,x) + g

2 (φ̃
∗(t, x)φ̃(t, x))2

]

• We derive the field equation of motion for the real time classical action δS/δφ̃∗(t,x) = 0

i∂tφ̃(t,x) =
(

− 1
2M%− µ+ gφ̃∗(t,x)φ̃(t,x)

)

φ̃(t,x)

• This is precisely the Gross-Pitaevski equation for a weakly interacting Bose-Einstein condensate
• Remark: “classical” refers to the absence of fluctuations. Physically, the global phase coherence

implied in this equations is a quantum mechanical effect, with observable consequences: cf. discussion
of quantized vortices
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Symmetries of the Microscopic Action
Symmetries of the microscopic action

• Gross-Pitaevski action:

S[φ̃∗, φ̃] =

ˆ

dt

ˆ

d3x
[

φ̃∗(t,x)(−i∂t − "
2M − µ)φ̃(t,x) + g

2 (φ̃
∗(t, x)φ̃(t, x))2

]

• Symmetries:
- Most important is the invariance under global phase rotations U(1). Such transformation is imple-

mented by φ̃(τ,x) → eiθφ̃(τ,x), φ̃∗(τ,x) → e−iθφ̃∗(τ,x).
- The associated conserved Noether charge (of the full effective action) is the total particle number

N =
´

d3x〈ϕ∗(0,x)ϕ(0,x)〉 (NB: needs U(1) symmetry plus linear time derivative)
- Further continuous “equilibrium” symmetries: time and space translation invariance (energy and

momentum conservation) and Galilean invariance (center of mass momentum)
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Mean Field Action and Spontaneous Symmetry Breaking

• Homogeneous action: time- and space independent amplitudes (                        -- quantization 
volume)

• homogeneous GPE or equilibrium condition:

• Geometrical interpretation: Mexican hat potential

• for the ground state, the system chooses spontaneously the 
direction: spontaneous symmetry breaking (symmetry: global 
phase rotations U(1))

• Radial (amplitude) excitations: cost energy, gapped mode

• angular (phase) excitations: no energy cost due to 
degeneracy, gapless Goldstone mode

• The radial (amplitude) and angular (phase) excitations can be identified explicitly in the quadratic 
fluctuations

�
dτd3x = V/T

0 =
∂S

∂φ
=

�
− µ+ gφ∗φ

�
φ ⇒ −µ = −gφ∗φ < 0

-- negative curvature at origin

�
φ∗
0φ0 ≈

√
N

S(φ∗,φ) = V/T (−µφ∗φ+ g
2 (φ

∗φ)2)

S(φ∗,φ)

φ∗ φ
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Quadratic Fluctuations 

Quadratic fluctuations: Recovering the Bogoliubov Theory I

• We go one step beyond the classical limit and include quadratic fluctuations on top of the mean field
• Expansion of S in powers of (δϕ∗, δϕ) around (δϕ∗, δϕ) = (0, 0) yields the approximate effective action

(saddle point approximation):

Γ[φ∗,φ] = − log
´

D(δϕ∗, δϕ) exp−S[φ∗ + δϕ∗,φ+ δϕ]

≈ S[φ∗,φ]− log
´

D(δϕ∗, δϕ) exp− 1
2

´

(δϕ, δϕ∗)S(2)[φ∗,φ]

(

δϕ
δϕ∗

)

Here, we have used the field equation δS/δ(δϕ) = δS/δφ = 0

• We restrict to the homogeneous case φ(τ,x) = φ0
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Quadratic Fluctuations

-- diagonal in momentum space

Quadratic fluctuations: Recovering the Bogoliubov Theory II

• Homogenous case:
- The field equation (in general: GPE) reduces to an equilibrium condition determining the chemical

potential
0 =

δS

δφ

∣

∣

∣

hom.
= (−µ+ gφ∗

0φ0)φ
∗
0

For small enough T and g, |φ0| "= 0 such that at equilibrium

µ0 = gφ∗
0φ0.

Coincides with Bogoliubov Theory
- It is favorable to work in frequency and momentum space. There, the exponent reads explicitly

(Q = (ωn,q),
´

Q =
∑

n T
´ d3q

(2π)3 ):

S(2)(φ∗,φ) =
(

→
δ

δ(δϕ)(−Q) ,
→
δ

δ(δϕ∗)(Q)

)

S





←
δ

δ(δϕ)(K)
←
δ

δ(δϕ∗)(−K)



 ∝ δ(K −Q)

=⇒ 1
2

´

Q

(

δϕ(−Q), δϕ∗(Q)
)

(

gφ∗2
0 −iωn +

q2

2M − µ+ 2gφ∗
0φ0

iωn +
q2

2M − µ+ 2gφ∗
0φ0 gφ2

0

)

(

δϕ(Q)
δϕ∗(−Q)

)

- NB: The frequency-independent part of the matrix coincides with Bogoliubov theory
- This is a quadratic form leading to a Gaussian functional integral. A technique to evaluate it is

discussed below

(see above)
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Phase and Amplitude Fluctuations
Phase and Amplitude Fluctuations I

• We analyze the quadratic action for the boson fluctuations, using −µ = gφ∗φ

SF [δϕ
∗, δϕ] =

1

2

ˆ

Q

(

δϕ(−Q), δϕ∗(Q)
)

(

gφ∗2
0 −iωn + εq + gφ∗

0φ0

iωn + εq + gφ∗
0φ0 gφ2

0

)(

δϕ(Q)
δϕ∗(−Q)

)

• We perform a change of basis (real and imaginary parts),

δϕ1(Q) = (δϕ∗(−Q) + δϕ(Q))/
√
2, δϕ2(Q) = i(δϕ∗(Q)− δϕ(−Q))/

√
2

• The action in the new coordinates reads (ρ0 = φ∗
0φ0 and we choose φ real without loss of generality)

SF [δϕ1, δϕ2] =
1

2

ˆ

Q

(

δϕ1(−Q), δϕ2(Q)
)

(

εq + 2gρ0 −ωn

ωn εq

)(

δϕ1(Q)
δϕ2(−Q)

)
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Phase and Amplitude Fluctuations

Bottom of Mexican 
hat potential

Mexican hat potential

Phase and Amplitude Fluctuations II

• Action in terms of real fields:

SF [δϕ1, δϕ2] =
1

2

ˆ

Q

(

δϕ1(−Q), δϕ2(Q)
)

(

εq + 2gρ0 −ωn

ωn εq

)(

δϕ1(Q)
δϕ2(−Q)

)

• Discussion:
- Real part corresponds to amplitude fluctuations (see figure) and is gapped (massive) with 2gρ0
- Imaginary part corresponds to phase fluctuations and is gapless (massless)
- The dispersion relation obtains from the poles of the propagator G, or the zeroes of S(2) = G−1

(analytically continued to real continuous frequencies E = iωn)

detG−1(E = iω,q)
!
= 0 ⇒ Eq =

√

εq(εq + 2gρ0)

reproduces the Bogoliubov excitation spectrum with Eq ≈ c|q|, c =
√

gρ0/M for q → 0
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Phase-Only Action
Phase-Only Action

• If we are interested in the physics at very low momenta/energies E ! gρ0, we can integrate out the
amplitude mode:

ˆ

Dδϕ1Dδϕ2 exp−SF [δϕ1, δϕ2] = N
ˆ

Dδϕ2 exp−Sph[δϕ2]

• This is done by completing the square in the exponent. The phase-only action reads

Sph[δϕ2] =
1

4gρ0

ˆ

Q
δϕ2(Q)(ω2 + c2q2)δϕ2(−Q)

• Discussion:
• This action has a relativistic dispersion E2 = c2q2 (analytic continuation), with speed of sound c =

√

gρ0/M

• The speed of sound is also obtained from the limit q → 0 on the full dispersion relation. Now, we have
found the interpretation of the linear dispersion in terms of phase fluctuations
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Goldstoneʼs Theorem

Goldstone’s Theorem

• The gapless nature of low energy excitation is not accidental but an exact property of the theory

• This is expressed in Goldstone’s theorem: Assume a theory which is invariant under continuous global
symmetry transformations. If the symmetry is spontaneously broken, then there are gapless excita-
tions, the Goldstone modes.

• Discussion:
- Does not prove the existence of symmetry breaking, but makes statement in case of
- For an O(N) symmetry, there are N − 1 Goldstone modes
- In our case, we have U(1) " O(2) and thus one Goldstone mode (phase)
- The proof is straightforward using the effective action formalism
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Proof of Goldstoneʼs Theorem 
additional material

Proof of Goldstone’s Theorem

• The exact field equation for the full effective action is δΓ/δφ(τ,x) = δΓ/δφ∗(τ,x) = 0. In the homoge-
neous limit, simplification ∂Γ/∂φ = ∂Γ/∂φ∗ = 0

• Explicitly for U(1) invariance: In the homogeneous limit, dependence of Γ restricted to the invariant
ρ = φ∗φ : Γ = Γ[ρ]

• Field parametrization: φ = (φ1 + iφ2)/
√
2, φ∗ = (φ1 − iφ2)/

√
2. I.e. ρ = 1

2 (φ
2
1 + φ2

2)

• Equilibrium: choose real expectation value such that φ1 = φ1,0+δφ1,φ2 = δφ2. Spontaneous symmetry
breaking: φ1,0 #= 0

• Consider field equation for φ1,

0 =
∂Γ

∂φ1

∣

∣

∣

eq
= φ1,0

∂Γ

∂ρ

∣

∣

∣

eq
⇒ ∂Γ

∂ρ

∣

∣

∣

eq
= 0

• consider mass term of φ2:

m2
2 ≡ ∂2Γ

∂φ2
2

∣

∣

∣

eq
=

(

∂2ρ

∂φ2
2

∂Γ

∂ρ
+

(

∂ρ

∂φ2

)2 ∂2Γ

∂ρ2

)

∣

∣

∣

eq
=

∂Γ

∂ρ

∣

∣

∣

eq
= 0

I.e. for a symmetry broken spontaneously in the real direction, the imaginary part of the field is mass-
less

• Goldstone’s theorem is a relation of first and second derivatives of the homogenous part of the full
effective action

57Thursday, April 8, 2010



Parenthesis: Multidimensional Gaussian Integrals
Parenthesis: Multidimensional Gaussian Integrals I

• The equilibrium functional integral is defined as the continuum limit of a multidimensional integral over
an exponential distribution

• An analytically tractable class of such integrals are of the Gaussian type, i.e. the exponent is quadratic
in the integration variable

• Consider a multidimensional Gaussian integral for a real vector variable m and positive semidefinite
matrix A

ZG =

ˆ N
∏

i=1

dmi exp− 1
2m

TAm =

ˆ N
∏

i=1

dmi exp− 1
2m

′TDm
′
=

N
∏

i=1

(2πλ−1
i )1/2 = det[A/(2π)]−1/2

• Remarks:
- In the second equality, we have performed a diagonalization to the matrixD = λiδij m′ = Um,D =

UAU−1

- We can then do each one dimensional Gaussian integral separately
- And use the invariance of the determinant under choice of basis

additional material
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Parenthesis: Multidimensional Gaussian Integrals

Parenthesis: Multidimensional Gaussian Integrals II

• We note the important relation for a Gaussian free energy (using invariance of tr under choice of basis),

WG = logZG = log det[A/(2π)]−1/2 = −1

2
tr logA+ const.

• For a fermionic Gaussian free energy (Grassmann variables), one obtains in contrast

W (F )
G = logZ(F )

G = log det[A/(2π)]+1/2 = +
1

2
tr logA+ const.

additional material
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Saddle Point Effective Potential
Quadratic fluctuations: Recovering the Bogoliubov Theory III

• We con now formulate the homogenous saddle point approximation for the effective action. Due to
homogeneity, we switch to the effective potential

U [φ∗,φ] ≡ Γ[φ∗,φ]

V/T

with quantization volume V/T =
´

dτ
´

d3x

• We obtain, with abbreviation ρ0 = φ∗
0φ0 (we can choose φ0 real so also φ∗

0φ
∗
0 = φ0φ0 = ρ0)

U [φ∗
0,φ0;µ;T ] ≈ −µρ0 +

g
2ρ0

2 + 1
2 tr logS

(2)

= −µρ0 +
g
2ρ

2
0 + T

∑

n

´ d3q
(2π)3 log det2×2

(

gρ0 −iωn + εq − µ+ 2gρ0
iωn + εq − µ+ 2gρ0 gρ0

)

= −µρ0 +
g
2ρ

2
0 + T

´ d3q
(2π)3 log

(

e
√

(εq−µ+2gρ0)2−(gρ0)2)/2T − e−
√

(εq−µ+2gρ0)2−(gρ0)2)/2T
)

+ const.

tr runs over all indices: frequency/ momentum and the indices of the 2 × 2 matrix accounting for the
complex boson. We use 2 log sinhx =

∑

n log(1 + x2/(nπ)2), sinhx = (expx − exp(−x))/2. The
(infinite) constant is irrelevant for thermodynamics.

additional material
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Quadratic fluctuations: Recovering the Bogoliubov Theory IV

• Effective Potential:

U [φ∗
0,φ0;µ;T ] = −µρ0 +

g
2ρ

2
0 + T

´ d3q
(2π)3 log

(

e
√

(εq−µ+2gρ0)2−(gρ0)2)/2T − e−
√

(εq−µ+2gρ0)2−(gρ0)2)/2T
)

+ const.

• Discussion:
- High temperature limit T → ∞: ρ0 = 0, µ < 0. U [0, 0;µ;T ] ≈ T

´ d3q
(2π)3 log

(

1− e−(εq−µ)/T ) + const.′

- Zero temperature limit T → 0: U [φ∗
0,φ0;µ;T ] ≈ 1

2

´ d3q
(2π)3

√

(εq − µ+ 2gρ0)2 − (gρ0)2)We can make
connection to Bogoliubov theory (next slide)

- NB: Though it seems that this theory interpolates well between low and high temperatures, it be-
comes problematic close to the finite temperature BEC phase transition

• The equation of state, i.e. the explicit expression for the density, can be obtained from the effective
potential

• Using the functional integral representation,

n = lim
τ→0,x→0

〈φ̂∗(τ,x)φ̂(0,0)〉 = −∂U/∂µ, φ̂(τ,x) = φ(τ,x) + δϕ(τ,x)

NB: This relation follows also using thermodynamics

Equation of State
additional material
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Recovering the Bogoliubov Theory
Quadratic fluctuations: Recovering the Bogoliubov Theory V

• We calculate the equation of state explicitly
• Within the saddle point approximation and the equilibrium value µ = gρ0, we find

n = φ∗
0φ0 + 1

2

ˆ

d3q
(2π)3

2gρ0√
2gρ0(εq+gρ0)

= φ∗
0φ0 +

ˆ

d3q
(2π)3 vq

• Discussion:
- Diverges linearly at high momenta
- This is because the functional integral does not respect normal ordering. Note, for bosonic fields φ

and operators a, 〈φ∗φ〉 = 1
2 〈φ

∗φ+ φφ∗〉 = 1
2 〈a

†a+ aa†〉 = 〈a†a〉+ 1
2 . For each momentum mode:

n = φ∗
0φ0 +

´ d3q
(2π)3 〈a

†
qaq〉 = φ∗

0φ0 +
´ d3q

(2π)3

(

〈δϕ∗
qδϕq〉 − 1

2

)

= φ∗
0φ0 +

1
2

´ d3q
(2π)3

( 2gρ0√
2gρ0(εq+gρ0)

− 1
)

= φ∗
0φ0 +

´ d3q
(2π)3 v

2
q

The Bogoliubov result is reproduced

additional material
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Summary: Weakly interacting Bosons

• We have applied the effective action to weakly interacting bosons

• Important concepts: 
- Classical Limit and Gross-Pitaevski Theory
- Spontaneous symmetry breaking 
- Phase/ amplitude fluctuations and Bogoliubov theory
- Goldstoneʼs theorem

• These concepts can be applied to many other physical situations. 

• We now use the effective action formalism to analyze weakly interacting fermions
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Weakly Interacting Fermions

�ψ↑ψ↓� �= 0

�ψ↑� = �ψ↓� = 0
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Degenerate Bose vs. Fermi Gases

Laser cooling
+

Evaporative cooling

Final Temperatures 
10-30 nK

Bosons Fermions

Alkaline atoms in different
hyperfine states

BEC
Quantum
Degenerate
Fermions

• Alkaline atoms (bosons and fermions) can be prepared in the quantum degenerate 
regime, using laser cooling and evaporative cooling

• The fermion spin is realized with two hyperfine states 

Typical Isotopes

Degenerate Boson vs. Fermions

• Bosons: commutator [b(x), b†(y)] = δ(x− y), [b(x), b(y)] = [b†(x), b†(y)] = 0

• Bose-Einstein distribution: nq = (exp( εq−µ
T )− 1)−1, εq = q2

2M , µ ≤ 0

• Fermions: Pauli principle c† 2σ = 0, anticommutator {cσ(x), c†σ′ (y)} = δσ,σ′δ(x − y), {cσ(x), cσ′ (y)} =

{c†σ(x), c
†
σ′ (y)} = 0

• Fermi-Dirac distribution: nq = (exp( εq−µ
T ) + 1)−1, εq = q2

2M , µ > 0

• real space picture:
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Free Fermions and Fermi Momentum

• Collection of some useful formulae and abbreviations for 3D two-component fermions: 

• The equation of state for free fermions at zero temperature:

n = 2

�
d3q

(2π)3 (exp(
�q−µ
T + 1)−1 T→0−→ 2

�
d3q

(2π)3 θ(�q − µ) =
(2Mµ)3/2

3π2
≡ k3F

3π2

• The Fermi momentum k_F is defined as the momentum scale associated to the 
chemical potential of free fermions at T = 0

kF ≡ (2Mµ(free)
T=0 )1/2

�F =
k2F
2M

, TF =
�F
kB

• The Fermi momentum is a measure for the total density of a fermion system:
- It is a measure for the mean interparticle spacing 
- It is temperature and interaction independent
- In contrast, the chemical potential is a function of temperature and interactions

• The associated energy and temperature scales are the Fermi energy and the Fermi temperature

d = (3π2)1/3k−1
F

two spin states

66Thursday, April 8, 2010



Physical Picture for Weakly Attractive Fermions

• The low temperature physics of fermions is governed by 
the Pauli principle 

(1) Expression of a Fermi sphere in momentum space
(2) Absence of fermion condensation: 
(3) Local s-wave interactions of fermions are only possible for 

more than one spin state (ultracold atoms: hyperfine states)

Fermi distribution at low T

nq

kF

�ψσ� = 0

• Now we allow for weak 2-body s-wave attraction between 2 spin states of fermions

a < 0 |akF| ∼ |a/d| � 1

attractive scattering length weakness/diluteness condition

• A small interaction scale will not be able to substantially modify the Fermi sphere. 
This is the key to BCS theory

q

σ =↑, ↓
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Physical Picture for Weakly Attractive Fermions

Fermi surface

Cooper pairing: Local in 
momentum space

• However, pairing of fermions with momenta close to the 
Fermi surface is possible: “Cooper pairs”:

• These fermions attract each other with strength a

• The total energy of the system is lowered when 
- bosonic pairs with zero cm energy (total momentum 

zero) form: local in momentum space
- These pairs condense, i.e. occupy a single quantum 

state macroscopically:  

|akF| ∼ |a/d| � 1

• A small interaction scale will not be able to substantially 
modify the Fermi sphere

• Comments: 
• Distinguish pairing correlation from Bose condensation

• But: in both cases, spontaneous breaking of U(1) symmetry 

�ψ↑ψ↓� �= 0

Fermi distribution at low T

nq

kF
q

�ϕ� �= 0
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Action for weakly interacting fermionsAction for weakly interacting fermions

• Two-component fermions are described by a spinor

ψ(τ,x) =

(

ψ↑(τ,x)
ψ↓(τ,x)

)

, ψ†(τ,x) = (ψ∗
↑(τ,x),ψ

∗
↑(τ,x))

The components are Grassmann variables, i.e. they anticommute {ψσ(τ.x),ψσ′ (τ ′.x′)} = {ψ∗
σ(τ.x),ψ

∗
σ′ (τ ′.x′)} =

{ψσ(τ.x),ψ∗
σ′ (τ ′.x′)} = 0 (reflecting anticommutation relations for fermionic operators)

• The kinetic (single particle) term describes nonrelativistic propagation:

Skin =
∑

σ,σ′

ˆ

dτdx[ψσ(τ, x)(∂τ − %
2M − µ)δσσ′ψσ′(τ, x)] =

ˆ β

0
dτdx[ψ†(τ, x)(∂τ − %

2M − µ)ψ(τ, x)]

However, unlike bosons µ > 0 to ensure a fixed particle number
• Local s-wave two-body density-density interactions between the two spin states are described by

Sint =
g

2

ˆ β

0
dτdx[ψ†(τ, x)ψ(τ, x)]2

The precise relation of the coupling constant g < 0 to the scattering length a is discussed below
• Validity: as for bosons, in particular, a " d ∼ k−1

F

• Symmetries: as for the boson action, supplemented by global SU(2) spin rotation invariance
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Cooper Pairing and Hubbard-Stratonovich TransformationCooper pairs and Hubbard-Stratonovich Transformation I

• We perform a Hubbard Stratonovich transformation, which makes the expected pairing of the fermions
(〈ψ↑ψ↓〉 = 1

2 〈ψ
T εψ〉 #= 0) explict. There are 3 steps:

1. Rearrange the fermion fields into local singlets, to make the pairing explicit (Fierz transformation)

(ψ†ψ)2 = (ψ†δψ)2 = − 1
2 (ψ

†εψ∗)(ψT εψ), ε =

(

0 1
−1 0

)

2. Introduce a properly written factor of unity into the fermionic functional integral Z =
´

Dψ exp−(Skin+

Sint), (note
(

ψT εψ
)†

= −ψ†εψ∗; we use X = (τ,x),
´

X =
´

dτx,
´

Dψ =
´

D(ψ∗,ψ))

1 = N
´

Dϕ exp−
´

X m2(ϕ∗ + h
2m2ψ†εψ∗)(ϕ − h

2m2ψT εψ)

The parameters m2, h are real and m2 > 0 to make the Gaussian integral convergent but other-
wise arbitrary. The resulting partition function is (D = ∂τ − $

2M − µ)

Z = N
ˆ

Dψ)Dϕ exp−
ˆ

X

[

ψ†Dψ+m2ϕ∗ϕ+ h
2 (ϕψ

†εψ∗ − ϕ∗ψT εψ)− 1
4 (g +

h2

m2 )(ψ
†εψ∗)(ψT εψ)

]

3. For attractive interaction g < 0, we can now choose the parameters such that g = − h2

m2

- Then we get rid of the fermion interaction term
- Only this ratio is physical. We can redefine ϕ → hϕ and get

Z = N
ˆ

DψDϕ exp−SHS, SHS[ψ,ϕ] =

ˆ

X

[

ψ†Dψ + 1
|g|ϕ

∗ϕ+ 1
2 (ϕψ

†εψ∗ − ϕ∗ψT εψ)
]
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Cooper Pairing and Hubbard-Stratonovich Transformation

Cooper pairs and Hubbard-Stratonovich Transformation II

• We discuss the Hubbard-Stratonovich action

SHS[ψ,ϕ] =

ˆ

X

[

ψ†Dψ + 1
|g|ϕ

∗ϕ+ 1
2 (ϕψ

†εψ∗ − ϕ∗ψT εψ)
]

• The interacting fermion theory is mapped into a coupled fermion-boson theory.
• The boson field represents Cooper pairs, φ ∼ ψ↑ψ↓. A nonzero expectation value φ = 〈ϕ〉 %= 0 breaks

the U(1) symmetry and describes Cooper pair condensation
• The theory is quadratic in the fermions. We introduce Nambu-Gorkov fields ΨT = (ψT ,ψ†) to make

this explicit,
SHS =

1

2

ˆ

X

[

ΨTS(2)[ϕ]Ψ+ 1
|g|ϕ

∗ϕ
]

, S(2)[ϕ] =

(

−ϕ∗ε −Dδ
Dδ ϕε

)

They can be eliminated by Gaussian integration. However, the result is an interacting boson theory
due to the dependence S(2)[ϕ]

• The BCS approximation consists in neglecting the fluctuations of the bosonic Cooper pair field: Mean
field approximation for the boson dofs
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BCS Effective Action

BCS Effective Action

• We implement the above strategy on the effective action for homogeneneous classical field configura-
tions, 1

Γ[ψcl,φ]/(V/T ) = − log
´

DδψDδϕ exp−SHS[ψcl + δψ,φ+ δϕ]

= 1
|g|φ

∗φ− log
´

Dδψ exp−SHS[δψ,φ]/(V/T )

• Due to the approximation on ϕ, SHS is now truly quadratic, in the background of a classical field φ. It is
useful to switch to momentum space where

SHS[δψ,φ] = 1
2

´

Q ΨT (−Q)S(2)[φ]Ψ(Q),

S(2)[φ] =

(

−φ∗ε −(−iωn + εq − µ)δ
(iωn + εq − µ)δ φε

)

, Ψ(Q) =

(

ψ(Q)
ψ∗(−Q)

)

• NB: the classical field couples φψ∗
↑(Q)ψ∗

↓(−Q). Interpretation similar to Bogoliubov theory: creation of
fermions with opposite momenta out of the Cooper pair condensate

• Evaluation of the Grassmann Gaussian integral (2 log coshx =
∑

n log(1 + x2/((n+ 1/2)π)2)):

Γ[ψcl,φ]/(V/T ) = 1
|g|φ

∗φ− 1
2 tr logS

(2)[φ]/(V/T )

= 1
|g|φ

∗φ− 2T
´ d3q

(2π)3 log cosh(Eq/2T ) + const.

Eq =
√

(εq − µ)2 + φ∗φ

• NB: The homogeneous BCS effective action depends on the chemical potential µ and on the U(1)
invariant combination ρ = φ∗φ, Γ = Γ[µ, ρ]

1

- The fermion field expectation takes the physical value ψcl = 0 but serves to carry out successive derivatives to generate the 1PI
correlation functions

BCS Effective Action I

• We implement the above strategy on the effective action for homogeneneous classical field configura-
tions, 1

Γ[ψcl,φ]/(V/T ) = − log
´

DδψDδϕ exp−SHS[ψcl + δψ,φ+ δϕ]

= 1
|g|φ

∗φ− log
´

Dδψ exp−SHS[δψ,φ]/(V/T )

• Due to the approximation on ϕ, SHS is now truly quadratic, in the background of a classical field φ. It is
useful to switch to momentum space where

SHS[δψ,φ] = 1
2

´

Q ΨT (−Q)S(2)[φ]Ψ(Q),

S(2)[φ] =

(

−φ∗ε −(−iωn + εq − µ)δ
(iωn + εq − µ)δ φε

)

, Ψ(Q) =

(

ψ(Q)
ψ∗(−Q)

)

• NB: the classical field couples φψ∗
↑(Q)ψ∗

↓(−Q). Interpretation similar to Bogoliubov theory: creation of
fermions with opposite momenta out of the Cooper pair condensate

1

- The fermion field expectation takes the physical value ψcl = 0 but serves to carry out successive derivatives to generate the 1PI
correlation functions

φ∗

ψ↑(Q)

ψ↓(−Q)

annihilation process of two oppositely 
directed fermions into the pair condensate
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BCS Effective Action

BCS Effective Action II

• Evaluation of the Grassmann Gaussian integral (2 log coshx =
∑

n log(1 + x2/((n+ 1/2)π)2))

Γ[ψcl,φ]/(V/T ) = 1
|g|φ

∗φ− 1
2 tr logS

(2)[φ]/(V/T )

= 1
|g|φ

∗φ− 2T
´ d3q

(2π)3 log cosh(Eq/2T ) + const.

Eq =
√

(εq − µ)2 + φ∗φ

• NB: The homogeneous BCS effective action depends on the chemical potential µ and on the U(1)
invariant combination ρ = φ∗φ, Γ = Γ[µ, ρ]
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Spontaneous Symmetry Breaking

Cuts through potential landscape for U(1) symmetric theory

Symmetric phase Critical point Symmetry broken phase φφφ

U(φ∗φ)U(φ∗φ) U(φ∗φ)

Spontaneous Symmetry Breaking

• The phase transition towards a state with macroscopic Cooper pairing at low T can be obtained from
analyzing symmetry breaking patterns

• Study the field equation/ equilibrium condition for the effective potential U [µ, ρ] = Γ[µ, ρ]/(V/T ),

∂U
∂φ∗

= φ · ∂U
∂ρ

!
= 0

• There are three possibilities:
1. Spontaneously symmetry broken phase: φ,φ∗ != 0, ∂U

∂ρ = 0

2. “Symmetric” phase: φ = φ∗ = 0, ∂U
∂ρ != 0

3. Critical point: φ = φ∗ = 0, ∂U
∂ρ = 0

• NB: in the symmetry broken phase,∂U∂ρ = 0 signals the vanishing mass of the Golstone mode
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Critical Temperature and a Problem at Large Momenta

q

g(q)

Λ ∼ a−1
BohrkF a−1

Naive implementation 
of interaction

True interaction 
potential: 

Smooth cutoffSharp cutoff

Critical Temperature and a Problem at Large Momenta

• We focus on the critical point for the Cooper instability first, i.e. we study ∂U
∂ρ

∣

∣

ρ=0
= 0. Explicitly:

0 = −1

g
− 1

2

ˆ

d3q
(2π)3

1

εq − µ
tanh

(

εq − µ)

2T

)

=
1

|g| −
1

4π2

ˆ

dq
q2

q2/(2M)− µ
tanh

(

q2/(2M)− µ)

2T

)

• The integral is linearly divergent, as the integrand tends to 1 for large momenta q → ∞: “Ultraviolet
divergence”

• This is because we have assumed spatially local interactions, i.e. constant in momentum space up to
arbitrarily large momenta

• In reality, this is not the case. There is a (smooth) momentum cutoff at large momenta. Details of the
precise cutoff function should not matter (cf. discussion of effective theories above)
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Ultraviolet Renormalization
Ultraviolet Renormalization

• The problem is cured by a proper ultraviolet (UV) renormalization procedure:
- Introduce a (sharp) UV cutoff Λ in the momentum space integral (UV regularization)
- Interpret g as “bare” coupling with cutoff dependence, g = gΛ
- Trade the bare coupling for a physical observable: Require that ∂U/∂ρ performed in vacuum (µ =

0 (n = 0), T = 0, ρ = 0) produce the physical inverse scattering length (UV renormalization):

∂U
∂ρ

∣

∣

∣

vac
= − 1

gΛ
− 1

4π2

ˆ Λ

dq
q2

q2/(2M)
= − 1

gΛ
− MΛ

2π2

!
= − 1

gp
= − M

4πa

NB: The relation between gΛ and a is not perturbative; a more systematic treatment uses gΛ(q) =
gΛθ(Λ − q) and interprets the above equation as a resummed loop equation; the relation between
a physical fermionic two-body coupling gp and a scattering lenght is a = Mgp/(4π)

• The renormalized equation for the critical temperature reads

0 = −1

a
− 2

π

ˆ

dq

[

q2

q2 − 2Mµ
tanh

(

q2/(2M)− µ)

2T

)

− 1

]

It will be analyzed below

bosons: 8pi;
bosons indistinguishable, 
fermions distinguishable 
(spin)
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The Equation of StateThe Equation of State

• The explicit expression for the density is obtained from

nΛ = −∂U
∂µ

= −
ˆ

d3q
(2π)3 tanh(Eq/2T )

Again, the expression is UV divergent, here ∼ Λ3

• Using tanh(x/2) = 1− 2(expx+ 1)−1, we split the integral into a physical (depending on µ and ρ) and
an unphysical contribution:

nΛ = 2

(
ˆ

d3q
(2π)3

1

eEq/T + 1
−
ˆ

d3q
(2π)3

1
2

)

The overall factor of two counts the degenerate spin states
• Interpretation:

- First term: involves the Fermi-Dirac distribution. The physical density is

n = 2

ˆ

d3q
(2π)3

1

eEq/T + 1

- Second term: Unobservable zero-point energy shift due to the fact that the functional integral does
not respect operator ordering: consider single fermion mode field ψ and associated operator c
({c, c†} = 1),

〈ψ∗ψ〉 = 1
2 〈ψ

∗ψ − ψψ∗〉 = 1
2 〈c

†c− cc†〉 = 〈c†c〉 − 1
2
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BCS Equations for the Critical Temperature
BCS Equations for the Critical Temperature I

• We have derived two equations governing the thermodynamics of weakly interacting fermions:
- The equation of state

n = 2

ˆ

d3q
(2π)3

1

e(εq−µ)/T + 1

- The equation for the critical temperature

0 = −1

a
− 2

π

ˆ

dq

[

q2

q2 − 2Mµ
tanh

(

q2/(2M)− µ)

2T

)

− 1

]

• Given µ we could solve the second equation. For T/TF " 1, the corrections to the chemical potential
from εF = µ(T = a = 0) are negligible. We therefore work with µ ≈ εF
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The Critical Temperature

divergent part of the integrand, 
and distribution function (dashed)

T̃ = 0.001

T̃ = 0.01

T̃ = 0.1green:

blue:

red:0

BCS Equations for the Critical Temperature II

• We rescale momenta and energies as q̃ = q/kF, Ẽ = E/εF. The dimensionless critical temperature is
determined from

0 =
1

|akF|
− 2

π

ˆ

dq̃

[

q̃2

q̃2 − 1
tanh

(

q̃2 − 1)

2T̃

)

− 1

]

• For T̃ → 0, the integral develops a logarithmic divergence at the Fermi surface where q̃ = 1. Thus, the
equation has a solution for arbitrarily weak interaction a if T is lowered sufficiently

• This establishes the BCS transition with critical temperature

Tc

εF
=

8γ

πe2
e−

π
2|akF|

The exponential dependence reflects the log divergence. The prefactor is ≈ 0.61 with the Euler con-
stant γ ≈ 1.78

• For T < Tc a gap ρ > 0 develops to cure the log divergence
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BCS Equations for the Gap at Zero Temperature
BCS Equations for the Gap at T=0

• We have derived two equations governing the thermodynamics of weakly interacting fermions at T = 0:
- The equation of state

n = 2

ˆ

d3q
(2π)3

1

eEq/T + 1

- The dimensionless equation for the gap ρ = φ∗φ (from ∂U/∂ρ = 0 in the presence of symmetry
breaking ρ != 0 and T = 0)

0 =
1

|akF|
− 2

π

ˆ

dq̃

[

q̃2

Ẽq

− 1

]

with Eq =
√

(εq − µ)2 + ρ

• The scale T is exchanged for the scale ρ, wich now regularizes the log divergence. Again, for ρ/TF # 1,
the corrections to the chemical potential from εF = µ(T = a = 0) are negligible. We therefore work
with µ ≈ εF

• This establishes the BCS gap at zero temperature (π/γ ≈ 1.76)

ρ(T = 0)

εF
=

8

e2
e−

π
2|akF| =

π

γ

Tc

εF
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Fermion Gap and Superfluidity 

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

q
q ∼

√
�F

“gap”

• Below the critical temperature, a “gap” opens up

• This means that single fermion excitations are suppressed even very close to the 
Fermi surface (unlike the behavior above T_c). The spectrum is given by 

Eq =
�
( q2

2M − µ)2 + ρ
�1/2

ρ

• The suppression of single fermion excitations is responsible for superfluidity:

• The low lying modes are bosonic phonons with linear dispersion

• This ensures superfluidity according to Landauʼs criterion
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Summary: Weakly Interacting Fermions

• We have derived BCS theory within the effective action formalism
- Condensation of the fermion field is impossible due to Pauliʼs principle, but a 

second order pairing correlation can develop.
- The BCS mechanism builds on two cornerstones: 

• the sharpness of the Fermi surface, guaranteed by 

• Cooper pairing of fermions close to the Fermi surface with opposite momenta

- Pairing is introduced in the functional integral by a Hubbard-Stratonovich 
transformation, mapping the purely fermionic to a fermion-boson theory

- BCS theory integrates out the quadratic fermions and treats the bosons classically
- The exponential dependence of critical temperature and gap at zero temperature 

persists to arbitrarily small interactions. It can be traced to a logarithmic divergence 
at the Fermi surface. 

-  Like the condensation amplitude for bosons, the pairing correlation breaks the     
U(1) symmetry. The finite gap prevents single fermion excitations and leads to 
superfluidity

akF � 1

82Thursday, April 8, 2010



Experimental (Ir)relevance of Weakly Interacting Atomic 
Fermions

• We compare the critical temperatures for a noninteracting BEC and weakly 
attractive fermions

- Free bosons of mass M undergo condensation at 

• additionally, cooling of degenerate fermions is experimentally more challenging 
due to Pauli blocking 

nλdB = ζ(3/2), λdB = (2π/(MT ))1/2

- Rewrite by using definitions from fermions n = k3F/(3π
2), �F = k2F/(2M)

T (BEC)
c

�F
= 4π(3π2ζ(3/2))−2/3

≈ 0.69 = O(1)

T (BCS)
c

�F
=

8γ

πe2
e−

π
2|akF| ≈ 0.61e−

π
2|akF|

- In contrast, the BCS critical temperature is exponentially small for  akF � 1

• On the other hand, note a (formal) exponential increase of T_c for rising           i.e. 
towards strong interactions

• Q: What is the fate of the exponential increase in T_c for rising 

• A: BCS-BEC crossover

akF

akF
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Strong Interactions 
and 

the BCS-BEC Crossover

(akF)−10
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Physical picture: BCS-BEC Crossover

• fermions with attractive interactions • weakly interacting bosons

➡  BCS superfluidity at low T ➡ Bose-Einstein Condensate (BEC) at low T

• We have discussed two cornerstones for quantum condensation phenomena:

 bosons could be realized as  
tightly bound molecules 

(“effective theory”)
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Physical picture: BCS-BEC Crossover

• fermions with attractive interactions • weakly interacting bosons

➡  BCS superfluidity at low T

•  Localization in position space
•  Delocalization in momentum space

(akF)−10

In the strongly interacting regime, no simple ordering principle is known:
➡ Challenge for Many-Body methods

• We have discussed two cornerstones for quantum condensation phenomena:

 bosons could be realized as  
tightly bound molecules 

(“effective theory”)

• There is an experimental knob to connect these scenarios: Feshbach resonances

• microscopically, the phenomenon is due to a bound state formation at the resonance 
• from a many-body perspective, the phenomenon is understood as 

1

akF
= 0

➡ Bose-Einstein Condensate (BEC) at low T
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fermion field:
two hyperfine states 

examples: 

``open channel''

``closed channel''

∆E

Microscopic Origin: Feshbach Resonances
ψ =

�
ψ↑
ψ↓

�

ν

|ν, kBT | � |∆E|

• Start from fermions: (Euclidean) Action

• Consider a second interaction channel with bound state close to 
scattering threshold V=0, detuned by 

ν

• Detuning     can be controlled with magnetic field

ν(B) = µB(B −B0)

magnetic moment resonance position

ν

6Li,40 K

V(r)

r

Sψ[ψ] =

�
dτd3x

�
ψ†(∂τ − �

2M )ψ + λψ

2 (ψ†ψ)2
�
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Microscopic Origin: Feshbach Resonances

bosonic molecule field:

• (background scattering in open channel)
• Feshbach coupling: width of resonance
• detuning: distance from resonance

• Effective Model to describe this situation: 
Interconversion of two fermions into a molecule 

interconversion:
Feshbach, Yukawa term

• Parameters:
λψ

ν

ψ↑

ψ↓ molecule formation

h

h
φ∗

``open channel''

``closed channel''

∆E

|ν, kBT | � |∆E|

ν
V(r)

r

• NB: cf. BCS Cooper pairing with condensate amplitude:

φ∗(τ,x) φ∗(ω,q)or

φ∗
0 = const.

• Now we allow for dynamic bosonic degrees of freedom

Sφ[φ] =

�
dτddxφ∗(∂τ − �

4M + ν)φ

SF [ψ,φ] = −h

�
dτddx

�
φ∗ψ↑ψ↓ − φψ∗

↑ψ
∗
↓
�
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Relation to a strongly interacting theory

• take constrained “broad resonance” limit: 
pointlike interactions εM

S = Sψ + Sφ + SF [ψ,φ]

δS

δφ∗ = 0

• Total action:

• Field equations:

• Formally solve for         , and insert solution into the Feshbach termφ,φ∗

ψ↑

ψ↓ ψ†
↓

ψ†
↑

1

ν

⇒ (∂t − �
4M + ν)φ = hψ↑ψ↓

⇒ φ =
h

∂t − �
4M + ν

ψ↑ψ↓

h h

h → ∞, h2

ν → const.

S = Sψ +

�
dτd3xψ↑ψ↓

h2

∂t−
�
2M +ν

ψ†
↑ψ

†
↓

S → Sψ + h2

ν

�
dτd3xψ†

↑ψ
†
↓ψ↑ψ↓ = Sψ − 1

2
h2

ν

�
dτd3x (ψ†ψ)2
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scattering length a and binding energy

εM

abg

a(B)

B

Relation to a strongly interacting theory

• pointlike/broad resonance limit: The action 
takes the form

a =
4πλeff

ψ

M

scattering length 
(nonidentical fermions)

effective fermionic 
interaction

➡ resonant (divergent) interaction at B_0

ν(B) = µB(B −B0)• remember

observation of divergent scattering length
Ketterle Group, MIT (1999)

bosonic sodium

S[ψ] =

�
dτddx

�
ψ†(∂t − �

2M )ψ +
λeff
ψ

2 (ψ†ψ)2
�

λeff
ψ = λψ − h2

ν(B)

• in the following, we shall ignore the background 
scattering for simplicity
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Regimes in the BCS-BEC Crossover

➡ three regimes

a > 0, |a/d| � 1

a < 0, |a/d| � 1

|a/d| � 1

weakly interacting (dilute) fermions

strong interactions, dense

molecular bound states: dilute bosons
➡ see below!

• We identify the inverse scattering length as an adequate “crossover parameter”

since the Feshbach resonance is located at the zero crossing of the detuning ν(B)

a−1(B) = −Mν(B)

4πh2

• Compare the scattering length to the mean interparticle spacing d = (3π2n)−1/3

• Cf. microscopic justification: a/d > 1 does not invalidate the microscopic Hamiltonian (as 
could be suspected from the discussion of weakly interacting gases). The relevant ratio for 
the validity is                                        . Feshbach resonances violate the generic relation                    rvdW /d, rvdW /λdB � 1
rvdW /a ≈ 1 : “anomalously large scattering length”

91Thursday, April 8, 2010



Evaluation Strategy: Effective Action

• So far: microscopic physics of few scattering particles

• Quantize the many-body theory via functional integral for the effective action

• Effective action includes all quantum and statistical fluctuations by 
integrating over all possible paths 

• Leverages over the intuition from classical physics: 
• symmetries
• action principle, field equation

• Lends itself for powerful modern field theory techniques

Γ[χ] = − log

�
Dδχ exp−S[χ+ δχ] δΓ[χ]

δχ = 0

δS[χ]
δχ = 0S[χ]

➡ Consider S, the classical action: 

➡ The effective action is given by 

• Result:
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Integrating out the fermions

• For practical purposes, the Feshbach type action is favorable: 
- the potential bosonic bound state is already explicit
- NB: can be seen as result of Hubbard-Stratonovich transformation of fermionic theory
- for simplicity restrict to broad resonance limit, no background coupling 

• This theory is quadratic in the fermions

=
1

2

�

Q
(ΨT ,ΦT )

�
S(2)
FF 0

0 S(2)
BB

��
Ψ
Φ

�

Fourier transform

Nambu-Gorkov fields

Ψ =

�
ψ
ψ∗

�

Φ =

�
φ
φ∗

�

• fermions can be integrated out

• the result is a (nontrivial) purely bosonic theory, to be analyzed subsequently

S(2)
FF [φ] =

�
−�αβhφ∗ −PF (−Q)δαβ
PF (Q)δαβ �αβhφ

�

- Inverse propagator matrix depends on the fluctuating bosonic field

spin indices

PF (Q) = iω + q2

2M − µ

S(2)
BB =

�
0 ν − 2µ

ν − 2µ 0

�

boson carries two atoms

S[ψ] =

�
dτd3x

�
ψ†(∂t − �

2M − µ)ψ + (ν − 2µ)φ∗φ− h(φ∗ψ↑ψ↓ − φψ∗
↑ψ

∗
↓
�
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Gaussian Integral for Fermions

• Effective Action:
Ψ0 = 0 (Pauli principle)

= − log

�
DδΦ exp−Sint[Φ0 + δΦ]

Sint[Φ] = S(cl)
φ [Φ]− 1

2
log detS(2)

FF [Φ] = S(cl)
φ [Φ]− 1

2
Tr logS(2)

FF [Φ].

with intermediate action

composite field expectation value
(condensation for               )Φ0 �= 0

Φ• The Tr Log term features arbitrary powers of      (compatible with symmetries)
➡ This gives rise to an effective bosonic theory 

�
(ν − 2µ)φ∗φ

Γ[Ψ0,Φ0] = − log

�
DδΨDδΦ exp−S[Ψ0 + δΨ,Φ0 + δΦ]
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Effective Quadratic Theory for Bosons

- The coefficients are given by the classical + fluctuation contributions, e.g.

• Integrating out the fermions yields bosonic theory: Interpretation?

• Progress can be made by expansion in fluctuation field powers:

−1

2
Tr log

�
PF + F

�
= −1

2
Tr logPF − 1

2
TrP−1

F F +
1

4
Tr(P−1

F F)2 + ...

-       depends on the condensate 
-     is the “fluctuation matrix”

Φ0PF
F ∼ δΦ

O(δΦ) O(δΦ2)
vanishes due to 
field equation

• Good qualitative understanding at arbitrary temperature: Truncate after quadratic term

• Yields effective Bogoliubov theory for boson fluctuations

Pφ(K) = ν − h2

�

Q

PF (−Q−K)PF (Q)

P |2|
F (Q)P |2|

F (Q+K)

K = (ω,k)
frequency and 

momentum= iZφω + Aφ

4M k2 +m2
φ + ...

low energy/derivative expansion

“mass term”

SBog =
1

4
Tr(P−1

F F)2 =
1

2

�

K

�
δφ(−K), δφ∗(K)

�� λφ(K)φ∗
0φ

∗
0 Pφ(K)

Pφ(−K) λφ(K)φ0φ0

��
δφ(K)

δφ∗(−K)

�

= S(2)
FF [Φ].
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Crossover Effective Potential I

• The steps in summary (and a last one...): Effective Potential

Γ[Φ0] = − log

�
DδΦ exp−Sint[Φ0 + δΦ]

integration of fermion fluctuations

quadratic expansion of boson fluctuations

integration of quadratic boson fluctuations

“classical contribution”: 
condensed bosons 

fermionic fluctuations
bosonic fluctuations 

(approximation)

≡ V/T U [φ∗φ]

effective potential: 
homogeneous contribution to 

effective action

= V/T
�
(−2µ+ ν)φ∗

0φ0 − 1
2Tr logPF [φ

∗
0φ0] +

1
2Tr logPB [φ

∗
0φ0]

�

important in regime: BEC BCS BEC

=

�

Q

�
(ν − 2µ)φ∗

0φ0 − 1
2Tr logPF [φ

∗
0φ0]

�
− log

�
DδΦ exp−SBog[δΦ]
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Crossover Effective Potential II

• The Crossover Physics can now be extracted from the Effective Potential

Self-consistency relations for 
the solution of the crossover 

thermodynamics 

• The effective potential depends on      and

• These quantities will be determined by: 
• The gap equation

• The equation of state 

U [ρ;µ] = (−2µ+ ν)ρ− 1
2Tr logPF [ρ;µ] +

1
2Tr logPB [ρ;µ] ρ = φ∗

0φ0

perform spin and 
frequency traces

 - single fermion excitation energies, coefficients from fermionic action

 - coefficients: integrals from TrLog + derivative expansion

 - mu-dependence: mainly m2
φ(µ)

µ ρ

= (ν − 2µ)ρ− 2T

�
d3q

(2π)3
log cosh(E(F)

q /2T ) + T

�
d3q

(2π)3
log sinh(E(B)

q /2T )

E(F)
q =

�
( q2

2M − µ)2 + h2ρ
�1/2

E(B)
q =

�
(Aφq

2 +m2
φ)

2 + 2λφρ(Aφq
2 +m2

φ)
�1/2

 - effective boson excitation energies
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The Gap Equation and Spontaneous Symmetry Breaking

• field equation for the effective action:

• the effective potential depends only on homogeneous field configuration

• due to U(1) (global phase) symmetry, it only depends on the invariant  

δΓ[φ0(x)
∗,φ0(x)]

δφ0(y)
= 0

∂U [φ∗
0φ0]

∂φ0
= ∂U [ρ]

∂ρ φ∗
0 = 0

ρ = φ∗
0φ0

• if the symmetry is broken spontaneously,             , then we must have φ∗
0 �= 0

∂U [ρ]
∂ρ = 0

• simplifications:

gap equation (cf. fully analogous treatment in BCS theory)

recapitulation

• NB: This criterion based on symmetry breaking works throughout the whole 
crossover. At T=0, the symmetry will be broken for any value of scattering length. 
Therefore, there is no quantum phase transition, but only a crossover phenomenon 

√
ρ0
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The Equation of State 

• In our approximation, there are three additive contributions to U. Thus

• We would like to consider a situation with fixed density

• Our problem is formulated in the grand canonical ensemble, S �
�

dtd3x(−µψ†ψ)

chemical potential

• The density can be obtained from the effective potential:

= −∂U
∂µ

classical bosonic 
condensate contribution

fermionic (quasiparticle)  
contribution

contribution of fermions 
bound in bosons

➡ definite interpretations only possible in the BCS and BEC limits 

~ integral over Fermi 
distribution

~ integral over Bose 
distribution

in the presence of 
condensates

= 2φ∗
0φ0 + nF + nB effective bosonic 

propagator

n = 2φ∗
0φ0 +

1
2TrP

−1
F +Tr 12P

−1
B

N/V = lim
x→0

�δψ†(x)δψ(0)� = lim
x→0

�
Dδψ[δψ†(x)δψ(0)] exp−S[ψ0 + δψ]/N
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The Extended Mean Field Theory of the BCS-BEC Crossover
• The two self-consistency equations from the Effective Potential read

- The Gap equation

UV Renormalization: in 
complete analogy to BCS 

theory

- The Equation of State

NB: Bosonic contribution 
neglected for simplicity

�3 �2 �1 0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

�3 �2 �1 0 1 2
�5

�4

�3

�2

�1

0

1

➡ What do these solutions tell us?

µ• Solve for      and ρ

• Plot as a function of dimensionless crossover parameter

(akF )
−1 (akF )

−1

n = k3
F

3π2
Fermi 

momentum
(a/d)−1 = (akF )

−1

0 0

∆ = h2ρ
µ

�F

�F = k2
F

2M

Fermi energy

n = −∂U
∂µ = 2φ∗

0φ0 + nF + nB

a−1 = −M
4π

ν
h2

0 =
∂U
∂ρ

= ν − 2µ− h2

2

�
d3q

(2π)3 [
1

E(F)
q

tanh
E(F)

q

2T − 1

E(F)
q

|φ=µ=0]
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The Extended Mean Field Theory of the BCS-BEC Crossover
• The two self-consistency equations from the Effective Potential read

- The Gap equation

- The Equation of State

NB: Bosonic contribution 
neglected for simplicity

�3 �2 �1 0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

�3 �2 �1 0 1 2
�5

�4

�3

�2

�1

0

1 ∆ = h2ρ

µ• Solve for      and ρ

• Plot as a function of dimensionless crossover parameter

(akF )
−1 (akF )

−1

n = k3
F

3π2
Fermi 

momentum
(a/d)−1 = (akF )

−1

BCS 
regime

strongly 
interacting

BEC 
regime

BEC 
regime

strongly 
interacting

BCS 
regime

0 0

➡ Discuss the limiting cases!

µ

�F

�F = k2
F

2M

Fermi energy

a−1 = −M
4π

ν
h2

UV Renormalization: in 
complete analogy to BCS 

theory

0 =
∂U
∂ρ

= ν − 2µ− h2

2

�
d3q

(2π)3 [
1

E(F)
q

tanh
E(F)

q

2T − 1

E(F)
q

|φ=µ=0]

n = −∂U
∂µ = 2φ∗

0φ0 + nF + nB
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The limiting cases: BCS limit

�3 �2 �1 0 1 2
�5

�4

�3

�2

�1

0

1

(akF )
−1

• Solution above: µ
�F

→ 1

➡ The EoS reduces to 

BCS 
regime
µ

�F

n = 2φ∗
0φ0 + nF + nB → nF

➡ The gap equation can be solved analytically

➡ Expression of a Fermi surface, weakly 
interacting fermion gas is approached

• Simplifications

➡ NB: For broad resonances: h → ∞, ν ∝ h2

cf. above: BCS Gap equation reproduced

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

single fermion excitation spectrum

qq ∼
√
�F

∆ = h2ρ
“gap”

ν−2µ
h2 → ν

h2 = − 4π
M a−1

0 = ν−2µ
h2 − 1

2

�
d3q

(2π)3 [
1

E(F)
q

tanh
E(F)

q

2T − 1

E(F)
q

|φ=µ=0]

E(F)
q =

�
( q2

2M − µ)2 + h2ρ
�1/2

0 = − 1
a − M

8π

�
d3q

(2π)3 [
1

E(F)
q

tanh
E(F)

q

2T − 1

E(F)
q

|φ=µ=0]
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The limiting cases: BCS limit

• The result for the gap: 

➡ Condensation is very weakly expressed: only 
Fermions close to Fermi surface contribute

Fermi surface

• Strongly expressed Fermi surface
• Interpretations:

➡ Scattering/Pairing highly local in momentum space

Locality in momentum space

Delocalization in position space

�3 �2 �1 0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

• Comparison to full result

�2 0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

(akF )
−1

(akF )
−1

➡ Strong deviations from BCS result once 

(akF )
−1 ∼ −1

∆ = h2ρ

ρ/n

∆ = 0.61�F e
− π

2akF

Fermi distribution

q

nq

kF

slight cheating here, this plots 
the renormalized condensate 

(below)
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The limiting cases: BEC limit

�3 �2 �1 0 1 2
�5

�4

�3

�2

�1

0

1

(akF )
−1

BEC 
regime

µ

�F

• Solution above: µ
�F

→ −∞

single Fermion excitation spectrum

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

µ/�F ≈ 1
µ/�F � 0

∆ = h2ρ

➡ Strong gap        develops on the normal (        ) 
sector of the inverse fermion propagator

−µ

➡ Interpretation?

               is identified as the fluctuation correction 
to the bosonic mass term

ψ†ψ

ψψ

E(F)
q =

�
( q2

2M − µ)2 + h2ρ
�1/2

➡ However, there is a piece from the anomalous part 
that is independent of −µ

➡ The fermion density can be written

nF = 1
2TrP

−1
F → −

∂∆m2
φ

∂µ
φ∗
0φ0

∆m2
φ
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Renormalized Condensate

• We consider the equation of state in the BEC regime:

n = 2φ∗
0φ0 + nF + nB → (2− ∂∆m2

φ

∂µ )φ∗
0φ0 + nB = −∂m2

φ

∂µ φ∗
0φ0 + nB

total mass term: 
classical + fluctuations

• We consider the bosonic density further (T=0):

nB = − ∂
∂µ

1
2Tr logPB [ρ;µ] ≈ −∂m2

φ

∂µ Tr logP−1
B [ρ;µ]

Bosonic propagator

PB =

�
λφ(K)φ∗

0φ
∗
0 Pφ(K)

Pφ(−K) λφ(K)φ0φ0

�
• For                      the bosonic propagator matrix simplifies to µ → −∞

Zφ := − 1
2

∂m2
φ

∂µ

→ Zφ

�
2aZφφ∗

0φ
∗
0 iω + q2

4M + 2aZφφ∗
0φ0

−iω + q2

4M + 2aZφφ∗
0φ0 2aZφφ0φ0

�

is ubiquitous to all the formulas here

• We observe that the expression 

• We introduce a renormalized condensate density as φ̃∗φ̃ = Zφφ
∗
0φ

∗
0
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The limiting cases: BEC limit
• Expressing all quantities in terms of the renormalized condensate gives:

• Equation of state 

➡ Reduction to an effective theory of “renormalized” bosonic bound states

• Mass 2M

• Interaction strength 2a

• Atom number 2
Local objects in position space

• All reference to the concrete value of Z is gone in the renormalized quantities

• Macroscopic measurements probe the renormalized quantities

• Microscopic probes can measure Z, but this is beyond the scope here

• NB: While boson mass and atom number follow from symmetry, the interaction 
strength 2a is an approximation. The exact answer is 0.6a (four-body problem)

• with renormalized inverse boson 
propagator

n = 2φ̃∗
0φ̃0 + 2TrP̃B

−1
= 2φ̃∗

0φ̃0 + 2ñB

P̃B = PB/Zφ =

�
2aφ̃∗

0φ̃
∗
0 iω + q2

4M + 2aφ̃∗
0φ̃0

−iω + q2

4M + 2aφ̃∗
0φ̃0 2aφ̃0φ̃0

�
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Connection to Scattering Physics: Vacuum limit

• Heuristics: Study the gap equation (broad resonance) for

∆
�F

= 0.61 e
− π

2akF

➡ The density scale k_F (also: temperature) have disappeared from the gap equation: 
➡ only two-body physics left!
➡ Very different from BCS limit, cf.

µ
�F

→ −∞

1
a =

�
−µ · 2M
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Connection to Scattering Physics: Vacuum limit

➡ microscopic origin of the crossover is bound state formation

• More systematically: Project on physical vacuum by 

- Diluting procedure:
- Getting cold:

Γk→0(vak) = lim
kF→0

Γk→0
��
T/εF >Tc/εF =const.

d ∼ k−1
F → ∞

T ∼ εF
n =

k3
F

3π2

• The chemical potential plays the role of half the binding 
energy

• Smooth crossover terminates in sharp 
       “second order phase transition” in vacuum

Ebind = −1/(Ma2)
�3 �2 �1 0 1 2
�5

�4

�3

�2

�1

0

1

µ

molecular bound 
state formation

two-body vs. many-body
(akF )

−1

Ebind/2
atom scattering 

threshold

• NB: Using this vacuum procedure, the above functional integral treatment solves 
the two-body scattering problem -- as quantum mechanics would do
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Finite Temperatures

�2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

BEC limit: Free bosons 
of atom number 2, mass 
2M

BCS limit: 
BCS theory

• So far: Crossover Physics at T=0

• The above formalism is readily applied to finite temperature: 
Frequency integration -> Matsubara sum

• Finite temperature phase diagram:

Tc
�FNormal state

Superfluid state

(akF )
−1

T (BEC)
c

�F
= 2π(6π2ζ(3/2))−2/3 ≈ 0.218
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Beyond mean field effects and challenges
at very different scales:

�2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

(akF)−1

Tc

Many-Body fermion 
physics:
Thermodynamic scales

few-body physics of 
effective dimers:
microscopic scales

two-body bound state

critical behavior: 
long distance scales

zero crossing of fermion 
chemical potential

n =
k3

F
3π2 ,T

εM =− 1
Ma2 � T,

k2
F

2M

kld � n1/3,T 1/2,ε1/2
M

Challenges beyond Mean Field 

Strategy: Find an interpolation scheme which incorporates known physical 
effects in the limiting cases

Methods: t-matrix approaches, 2PI Effective Action, Functional RG, ...
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microscopic thermodynamic long distance

n =
k3

F
3π2 ,T

kld � n1/3,T 1/2,ε1/2
MεM =− 1

Ma2

Tc

c−1
!2 0 2 4 6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

FIG. 1: Black line: FRG including particle-hole fluctuations; Orange line: FRG with-

out particle-hole fluctuations; Green line: BCS result; Red line: Gorkov’s correction;

Yellow line: Free BEC; Blue line: Interacting BEC with FRG• Accurate treatment of molecular scattering physics in BEC regime 
• Accurately reproduce Gorkov effect in the BCS regime from rebosonization procedure
• Long wavelengths: second order phase transition 

(akF)−1

Tc

εF

FRG
+Rebos.

FRG

Gorkov

zero crossing of fermion 
chemical potential

Results beyond Mean Field 
• Functional RG treatment: connecting micro- and macrophysics, 

unified treatment of physics on various scales 

S. Flörchinger, M. Scherer, 
SD, C. Wetterich
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Experiments in the BCS-BEC Crossover

Innsbruck, 2004 

pairing gap 
release energy 

ENS, 2004 

collective modes 

Duke ´04, Innsbruck 2004 & `06 

BEC BCS 

vortices MIT, 2005 

JILA, 2005 

pair correlations 
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Summary: BCS-BEC Crossover 

• We have discussed a simple approximation scheme based on the effective action 
capturing the qualitative features of the BCS-BEC crossover at zero and finite 
temperatures 

- The BCS-BEC crossover interpolates between the two cornerstones for quantum 
condensation phenomena, BCS and BEC type superfluidity

- The microscopic origin is a Feshbach resonance. The divergence of the scattering 
length is accompanied by the formation of a bosonic bound state. There are three 
regimes for the many-body physics

- The crossover from BCS to BEC regimes may be viewed as a localization process in 
real space, or a delocalization in momentum space

- Though there are profound quantitiative changes in the thermodynamics, the ground 
state symmetry properties are unchanged: Crossover instead of quantum phase 
transition

weakly interacting (dilute) fermions

dense regime, strong interactions

molecular bound states: dilute bosons

a < 0, |akF| � 1

|akF| � 1

a > 0, |akF| � 1
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