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Quantum Phase transitions: General Overview

Microscopic derivation of the Bose-Hubbard model

• What is a Quantum Phase transition?
• Example: Mott Insulator -- Superfluid transition

• Atoms in optical potentials
• Periodic potentials, Bloch theorem

• Bose-Hubbard model

Phase diagram of the Bose-Hubbard model
• Basic mean field theory: phase border and limiting cases
• Path integral formulation: excitation spectrum in the Mott 

phase and bicritical point

g

T

gc

quantum critical 
region

1.0

2.0

3.0

0.010 0.020 0.030
0.0
0.0

SF

MI

MI

MI

Thursday, April 8, 2010



Quantum Phase Transitions: 
General Overview
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What is a quantum phase transition?

Literature: Subir Sachdev, Quantum Phase Transitions, Cambridge University Press (1999)

• Consider a Hamiltonian of the form:
H = H1 + gH2

[H1, H2] = 0

dimensionless parameter 

• Study the ground state behavior of the energy 

• Quantum phase transition: Nonanalytic dependence of the ground state 
energy on coupling parameter g

E(g) = �G|H|G�

• Two possibilities:

• parts commute, 

• but eigenvalues have crossing

g g

EE

low eigenvalues of H

EG

gap ∆

• parts do not commute, 

• eigenvalues crossing develops in 
the thermodynamic limit 

[H1, H2] �= 0
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gc gc
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g g

EE

low eigenvalues of H

EG

gap ∆

H = H1 + gH2

What is a quantum phase transition?

• The second possibility is more common and closer to the situation in 
conventional classical phase transitions in the thermodynamic limit

• The first possibility often occurs only in conjunction with the second (ex: 
Bose-Hubbard phase diagram)

• The phase transition is usually accompanied by qualitative change in the 
correlations in the ground state

EG

gc gc
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What is a quantum phase transition?

• We concentrate on second order transitions (as those above)
• characteristic features: 

- vanishing of the energy scale separating ground from excited states (gap) at the 
transition point

- universal scaling close to criticality, 

∆ ∼ J |g − gc|νzd

critical exponent

- diverging length scale describing the decay of spatial correlations at the 
transition point

typical microscopic energy scale (in H)

ξ−1 ∼ Λ|g − gc|ν

typical microscopic length scale (e.g. lattice spacing)

- the ratio defines the dynamic critical exponent,

∆ ∼ ξ−zd
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Quantum vs. Classical Phase Transition

• A quantum phase transition strictly occurs only at zero temperature T=0

• Temperature always sets a minimal energy scale, preventing scaling of  

• Generic quantum phase diagram:

g

T

gc

Ordered with 
symmetry 
breaking 

(possibly) ordered 
without symmetry 
breaking 

Disordered

quantum critical 
region

∆

- classical description of critical 
behavior applies if  

line of second order 
phase transitions

- This is always violated at low enough 
T: classical-quantum crossover

�ωtyp � kBT

• Phase transitions in classical models are driven by statistical (thermal) 
fluctuations. They freeze to fluctuationless ground state at T=0

• Quantum models have fluctuations driven by Heisenberg uncertainty principle

➡ Quantum critical region features interplay of quantum (temporal) and statistical 
(spatial) fluctuations
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Bosons in the Optical LatticeBose Hubbard Model

System: We consider N bosonic particles moving on a lattice (“lattice gas”)
consisting of M lattice sites. The essential ingredients of the dynamics are

• hopping of the bosonic particles between lattice sites (kinetic energy)
• repulsive / attractive interaction between the particles (interaction energy)
• Bose statistics

Bose Hubbard (BH) Hamiltonian:

Ĥ = −J
∑

<ij>

b†i bj + 1
2U

∑

i

b†2i b2
i

= T̂ + V̂

• Second quantized notation:1 b and b†i denote destruction and creation op-
erators for bosons at lattice site i obeying commutation relations

[

bi, b
†
j

]

=

δij . The occupation number operator for site i is n̂i ≡ b†ibi.

• Kinetic energy: the first term is the kinetic energy T̂ = −J
∑

<ij> b†i bj. It
describes the hopping of electrons between adjacent lattice sites (notation
< i, j >) with tunneling amplitudes J > 0.

• Interaction energy: the second term V̂ = 1
2U

∑

i b†2i b2
i ≡ 1

2U
∑

i n̂i(n̂i − 1)
describes an on-site interaction U , when two bosons occupy the same site.
(Typically we assume U > 0, i.e repulsive interactions to guarantee stability.)

Physical realization: (we will return to the details later)

• Atomic physics: loading cold bosonic atoms (from a Bose Einstein conden-
sate) into an optical lattice

• Josephson junction array in mesoscopic solid state physics: in a super-
conductor electrons bind to form Cooper pairs, which behave as composite
bosons. As JJ array is an array (lattice) of superconducing island connected
by tunneling junctions.

Fock space:

• On a single lattice site we have configurations with no boson, one, two etc.
bosons: |ni〉i = 1√

n!
b†ni

i |vac〉 with ni = 0, 1, 2, . . . occupation numbers

• The total wave function of the system will be a superposition state

|Ψ〉 =
∑

{ni},
P

i ni=N

c{ni} |{ni}〉

The Hamiltonian preserves the particle number N̂ =
∑

i n̂i,
[

Ĥ, N̂
]

= 0,
which leads to the constraint

∑

i ni = N .

What we are interested in ...

• We will be mainly interested in the properties of the ground state of this
system, and low energy excitations. The central question will be the role
of interactions, in particular the competition between the kinetic energy and
interaction energy and the associated quantum phases and quantum phase
transitions.

• (Of course, finite temperature, and the complete phase diagram in the quan-
tum degenerate regime are also of interest.)

For the Bose Hubbard Model we expect ...

1By using the language of second quantization the symmetry of the many body wave function
for bosons Ψ(x1, . . . , xi, . . . , xj , . . . , xN ) = +Ψ(x1, . . . , xj , . . . , xi, . . . , xN ) under exchange
of particle coordinates xi ↔ xj is automatically built into the formalism.

4
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Bose-Hubbard Model

• Achieved via coherent manipulation of ultracold atoms.

• Ratio of kinetic and interaction energy tunable via lattice parameters (and 
Feshbach resonances). In particular, reach interaction dominated regime.

• Possible to penetrate high density regime                        . Not possible in the 
continuum. 

• The Bose-Hubbard model is an exemplary model for strongly correlated 
bosons. It is not realized in condensed matter.

H = −J

�

�i,j�

b
†
i bj − µ

�

i

n̂i +
�

i

�in̂i + 1
2U

�

i

n̂i(n̂i − 1)

U

J

�n̂i� = O(1)

• Remark: strong interactions and high density not in contradiction to earlier scale considerations:

• strong interactions:                mainly from reduction of kinetic energy via lattice depth.

• High density due to strong localization of onsite wave function.

• For validity of lowest band approximation, it is however important that

J/U � 1

a� λ

kinetic energy 
interaction energy 

trapping potential 
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Kinetic vs. Interaction Domination - Limiting Cases

• Interaction dominated regime: set J = 0

• Goal: Find the ground state (gs) phase diagram for Bose-Hubbard model (T=0)
• Strategy: (i) analyze limiting cases, (ii) find interpolation scheme
• Restrict to the homogeneous system �i = 0

- Purely local Hamiltonian: gs many-body wavefunction takes product form

➡ Remains to analyze onsite problem only.
- Only onsite density operators occur, with (real space) occupation number eigenstates

➡ Onsite Hamiltonian also diagonal in this basis: Thus, minimize onsite energy and 
find the optimal n for given mu:

|ψ� =
�

i

|ψ�i
n̂i|n�i = n|n�i

H = −µ

�

i

n̂i + 1
2U

�

i

n̂i(n̂i − 1) =
�

i

hi
number eigenstates 

n=1

for µ/U < 0 n = 0
for 0 < µ/U < 1 n = 1|
for 1 < µ/U < 2 n = 2

and so on

particle number quantization: for ranges of 
the chemical potential (particle reservoir), the 

system draws an integer number out or it:
“Mott states”
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Kinetic vs. Interaction Domination - Limiting Cases

• Kinetically dominated regime: set U=0

- Free bosons at T=0: Bose Einstein condensation! 
- See that: Diagonalize with Fourier transformation

momentum eigenstate 
q=0

H = −J

�

�i,j�

b
†
i bj − µ

�

i

n̂i

• Ground state wave function: fixed particle number N (M - no. of lattice sites)

- product state in momentum space, not in position space

• Work in grand canonical ensemble: coherent state with av. density 

b†N
q=0|vac� = (M−1/2

�

i

b†i )
N |vac�

�n̂i� = N/M

eN1/2b†q=0 |vac� = e(N/M)1/2 P
i b†i |vac� =

�

i

�
e((N/M)1/2b†i )|vac�i

�

➡ grand canonical ground state can be written as a product of onsite coherent states

ensures av. particle no. 

lattice dispersion �q = −2J
�

λ

cosqeλ

H =
�

q

(�q − µ)b†qbq

lattice direction
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Intermediate summary

• Interaction U favors localization in real 
space for integer particle numbers: 

• Mott state with quantized particle no.
• no expectation value: phase symmetry 

intact (unbroken)

• Hopping J favors delocalization in real 
space: 

• Condensate (local in momentum space!)
• Fixed condensate phase: Breaking of 

phase rotation symmetry

➡ Competition gives rise to a quantum phase transition as a function of 

�bi� ∼ eiϕ

U/J
➡ Link between extremes: position space product ground states, respectively 
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Microscopic Derivation of the 
Bose Hubbard Model
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Atoms in Optical Lattices

∆ < 0, δEg < 0 ∆ > 0, δEg > 0

Cold Atoms in Optical Lattices

Optical Lattices

• AC-Stark shift
- Consider an atom in its electronic ground state exposed to laser light at fixed position !x.
- The light be far detuned from excited state resonances: ground state experiences a second-

oder AC-Stark shift
δEg = α(ω)I

with α(ω) - dynamic polarizability of the atom for laser frequency ω, I ∝ !E2 - light intensity.
- Example: two-level atom {|g〉 , |e〉}.

• For standing wave laser configuration !E(!x, t) = !eE sinkx e−iωt + h.c., AC-
Stark shift is a function of position: It generates an optical potential

Vopt(!x) ≡ δEg(!x) = !
Ω2(!x)

4∆

Example: for a two-level atom {|g〉 , |e〉} in the RWA the AC-Starkshift is given
by δEg(!x) = !

Ω2("x)
4∆ with Rabi frequeny Ω and detuning ∆ = ω − ωeg (Ω $ ∆).

Note that for red detuning (∆ < 0) the ground state shifts down δEg < 0, while
for blue detuning (∆ > 0) we have δEg > 0.

Optical Lattice (here 1D):

• standing wave laser configuration: !E(!x, t) = !eE sin kx e−iωt + h.c.

• AC Starkshift as a function of position
• The AC Starkshift appears as a conservative potential for the center-of-mass

motion of the atom

i!
∂ψ(!x, t)

∂t
=

(

−
!2

2m
∇2 + Vopt(!x)

)

ψ(!x, t) (Vopt(!x) ≡ δEg(!x) = !
Ω2(!x)

4∆
)

where the position dependent AC-Stark shift appears as a (conservative)
“optical potential”

Vopt(x) = V0 sin2 kx (k = 2π/λ)

for the center-of-mass motion of the atom.
• The potential is periodic with lattice period λ/2, and thus supports a band

structure (Bloch bands). The depth of the potential is proportional to the
laser intensity

2

detuning from 
resonance ∆ = ω − ωeg

Rabi frequency

Ω� ∆

δEg = � Ω2

4∆

λ

∼ aB
aB � λ

extent of atom much smaller 
than laser wavelength

ωeg

Thursday, April 8, 2010



laser laser

hopping

Bloch bands

Cold Atoms in Optical Lattices

Optical Lattices

AC-Stark shift: We consider an atom in its electronic ground state exposed to
laser light at fixed position �x. If the light is far detuned from excited state reso-
nances, the ground state will experience a second-oder AC-Stark shift δEg(�x) =
α(ω)I(�x) with α(ω) the dynamic polarizability of the atom for frequency ω, and
I(�x) the light intensity.

Example: for a two-level atom {|g� , |e�} in the RWA the AC-Starkshift is given
by δEg(�x) = �Ω2(�x)

4∆ with Rabi frequeny Ω and detuning ∆ = ω − ωeg (Ω � ∆).
Note that for red detuning (∆ < 0) the ground state shifts down δEg < 0, while
for blue detuning (∆ > 0) we have δEg > 0.

Optical Lattice (here 1D):

• standing wave laser configuration: �E(�x, t) = �eE sin kx e−iωt + h.c.
• AC Starkshift as a function of position
• The AC Starkshift appears as a conservative potential for the center-of-mass

motion of the atom

i�∂ψ(�x, t)
∂t

=
�
− �2

2m
∇2 + Vopt(�x)

�
ψ(�x, t) (Vopt(�x) ≡ δEg(�x) = �Ω2(�x)

4∆
)

where the position dependent AC-Stark shift appears as a (conservative)
“optical potential”

Vopt(x) = V0 sin2 kx (k = 2π/λ)

for the center-of-mass motion of the atom.
• The potential is periodic with lattice period λ/2, and thus supports a band

structure (Bloch bands). The depth of the potential is proportional to the
laser intensity

Single Atom moving in an Optical Potential: If we include the motion of the
atom we derive the Schrödinger Equation

i�∂ψ(�x, t)
∂t

=
�
− �2

2m
∇2 + Vopt(�x)

�
ψ(�x, t) (Vopt(�x) ≡ δEg(�x) = �Ω2(�x)

4∆
),

(Rem.: decoherence due to spontaneous emission from excited state suppressed
by Γ/∆� 1)

Example 1 FORT: far off-resonant light trap from focused laser beam for red
detuning.

Example 2 Optical Lattice: standing light wave generated by counterpropagat-
ing light beams, e.g. in 1D �E(�x, t) = �eE sin kxe−iωt + c.c. (k = 2π/λ) so that

Vopt(x) = V0 sin2 kx,

which corresponds to a periodic array of microtraps with lattice period a = λ/2
and lattice depth V0 ∼ |E|2 tunable / controlled by the laser intensity.

Discussion:

Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-
suming ∆ > 0 so that V0 > 0 we have for the lowest states a harmonic oscillator
potential

V (x) = V0 sin2(kx) ≈ V0 (kx)2 ≈ 1
2
mν2x2

with trapping frequencyν =
√

4V0ER/� and with recoil frequency ER ≡ �2k2/2m.
(TypciallyER ∼ kHz, and V0 ∼ few tens of kHz.)

(Note: the recoil frequency ER provides a natural energy scale for the depth of
the optical lattice V0/ER � 1.)

20
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- Because φα(x + a) = e
iαφα(x) we can write φα(x) = e

iα
uα(x) with peri-

odic Bloch functions uα(x) = uα(x + a) .

• We have [H,T ] = 0, and we can find simultaneous eigenfunctions of {H,T}

Hϕq(x) = Eϕq(x)
Tϕq(x) = e

iqaϕq(x)

with q ∈ [−π/a, π/a]. We call �q quasimomentum.

• Eigenstates of the Hamiltonian thus have the form

φ(n)
q (x) = e

iqx
u

(n)
q (x) q ∈ [−π/a, π/a]

and the Bloch functions u
(n)
q (x) are eigenstates of

ĥqu
(n)
q (x) ≡

�
(p̂ + q)2

2m
+ V (x̂)

�
u

(n)
q (x) = �(n)

q u
(n)
q (x)

Note: the Bloch functions can be expanded in a Fourier series

u
(n)
q (x) =

1√
2π

+∞�

j=−∞
c
(n,q)
j e

ikjx (kj = 2πj/a)

Discussion:

Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-

suming ∆ > 0 so that V0 > 0 we have for the lowest states a harmonic oscillator
potential

V (x) = V0 sin2(kx) ≈ V0 (kx)2 ≈ 1
2
mν2

x
2

with trapping frequencyν =
√

4V0ER/� and with recoil frequency ER ≡ �2
k

2
/2m.

(TypciallyER ∼ kHz, and V0 ∼ few tens of kHz.)

(Note: the recoil frequency ER provides a natural energy scale for the depth of

the optical lattice V0/ER � 1.)

The ground state wave function

ψn=0(x) =
�

1
π1/2a0

e−x2/(2a2
0)

has size a0 =
�

�/mν � λ/2, i.e we are in the Lamb-Dicke regime η = 2πa0/λ�
1.

Bloch wave functions and bands (1D): In general the eigen-solutions of the

time-independent Schrödinger equation with periodic potential, Hψnq(x) = �nqψnq(x),
has the form ψnq(x) = e

iqx
unq(x) with (periodic) Bloch wave functions unq(x) =

unq(x + a), q the quasimomentum in the first Brillouin zone −π/a < q ≤ +π/a,

and n = 0, 1, . . . labelling the Bloch bands.

Plots:

Wannier functions (1D): Instead of Bloch wave functions we can also work with

Wannier wave functions

unq(x) =
�

a

2π

�

xi

wn(x− xi)eixiq,

wn(x− xi) =
�

a

2π

ˆ π/a

−π/a
dq unq(x) e−iqxi

which are localized around a particular lattice site xi = ia with i = 0,±1, . . . .

The Bloch and Wannier wave functions are complete.

Generalizations:

We can generate 2D, and 3D potentials by adding optical potentials in differ-

ent spatial directions. For lasers with different frequencies the interference

21

Bloch Theorem for Periodic Potentials

Cold Atoms in Optical Lattices

Optical Lattices

AC-Stark shift: We consider an atom in its electronic ground state exposed to
laser light at fixed position �x. If the light is far detuned from excited state reso-
nances, the ground state will experience a second-oder AC-Stark shift δEg(�x) =
α(ω)I(�x) with α(ω) the dynamic polarizability of the atom for frequency ω, and
I(�x) the light intensity.

Example: for a two-level atom {|g� , |e�} in the RWA the AC-Starkshift is given
by δEg(�x) = �Ω2(�x)

4∆ with Rabi frequeny Ω and detuning ∆ = ω − ωeg (Ω � ∆).
Note that for red detuning (∆ < 0) the ground state shifts down δEg < 0, while
for blue detuning (∆ > 0) we have δEg > 0.

Optical Lattice (here 1D):

• standing wave laser configuration: �E(�x, t) = �eE sin kx e
−iωt + h.c.

• AC Starkshift as a function of position
• The AC Starkshift appears as a conservative potential for the center-of-mass

motion of the atom

i�∂ψ(�x, t)
∂t

=
�
− �2

2m
∇2 + Vopt(�x)

�
ψ(�x, t) (Vopt(�x) ≡ δEg(�x) = �Ω2(�x)

4∆
)

where the position dependent AC-Stark shift appears as a (conservative)
“optical potential”

Vopt(x) = V0 sin2
kx (k = 2π/λ)

for the center-of-mass motion of the atom.
• The potential is periodic with lattice period λ/2, and thus supports a band

structure (Bloch bands). The depth of the potential is proportional to the
laser intensity

Single Atom moving in an Optical Potential: If we include the motion of the
atom we derive the Schrödinger Equation

i�∂ψ(�x, t)
∂t

=
�
− �2

2m
∇2 + Vopt(�x)

�
ψ(�x, t) (Vopt(�x) ≡ δEg(�x) = �Ω2(�x)

4∆
),

(Rem.: decoherence due to spontaneous emission from excited state suppressed
by Γ/∆ � 1)

Example 1 FORT: far off-resonant light trap from focused laser beam for red
detuning.

Example 2 Optical Lattice: standing light wave generated by counterpropagat-
ing light beams, e.g. in 1D �E(�x, t) = �eE sin kxe

−iωt + c.c. (k = 2π/λ) so that

Vopt(x) = V0 sin2
kx,

which corresponds to a periodic array of microtraps with lattice period a = λ/2
and lattice depth V0 ∼ |E|2 tunable / controlled by the laser intensity.

Review: Bloch’s Theorem for Periodic Potentials

• Consider a Hamiltonian (in 1D) Ĥ = p̂2

2m +V (x̂) with periodic potential V (x) =
V (x + a). We are interested in the eigenfunctions Hψ(x) = Eψ(x). (We set
� = 1).

• We define a translation operator T = e
−ip̂a so that Tψ(x) = ψ(x + a).

- T is unitary, and thus has eigenfunctions Tφα(x) = e
iαφα(x) with α =

(−π, π] real.
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- Because φα(x + a) = e
iαφα(x) we can write φα(x) = e

iα
uα(x) with peri-

odic Bloch functions uα(x) = uα(x + a) .

• We have [H,T ] = 0, and we can find simultaneous eigenfunctions of {H,T}

Hϕq(x) = Eϕq(x)
Tϕq(x) = e

iqaϕq(x)

with q ∈ [−π/a, π/a]. We call �q quasimomentum.

• Eigenstates of the Hamiltonian thus have the form

φ(n)
q (x) = e

iqx
u

(n)
q (x) q ∈ [−π/a, π/a]

and the Bloch functions u
(n)
q (x) are eigenstates of

ĥqu
(n)
q (x) ≡

�
(p̂ + q)2

2m
+ V (x̂)

�
u

(n)
q (x) = �(n)

q u
(n)
q (x)

Note: the Bloch functions can be expanded in a Fourier series

u
(n)
q (x) =

1√
2π

+∞�

j=−∞
c
(n,q)
j e

ikjx (kj = 2πj/a)

Discussion:

Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-

suming ∆ > 0 so that V0 > 0 we have for the lowest states a harmonic oscillator
potential

V (x) = V0 sin2(kx) ≈ V0 (kx)2 ≈ 1
2
mν2

x
2

with trapping frequencyν =
√

4V0ER/� and with recoil frequency ER ≡ �2
k

2
/2m.

(TypciallyER ∼ kHz, and V0 ∼ few tens of kHz.)

(Note: the recoil frequency ER provides a natural energy scale for the depth of

the optical lattice V0/ER � 1.)

The ground state wave function

ψn=0(x) =
�

1
π1/2a0

e−x2/(2a2
0)

has size a0 =
�

�/mν � λ/2, i.e we are in the Lamb-Dicke regime η = 2πa0/λ�
1.

Bloch wave functions and bands (1D): In general the eigen-solutions of the

time-independent Schrödinger equation with periodic potential, Hψnq(x) = �nqψnq(x),
has the form ψnq(x) = e

iqx
unq(x) with (periodic) Bloch wave functions unq(x) =

unq(x + a), q the quasimomentum in the first Brillouin zone −π/a < q ≤ +π/a,

and n = 0, 1, . . . labelling the Bloch bands.

Plots:

Wannier functions (1D): Instead of Bloch wave functions we can also work with

Wannier wave functions

unq(x) =
�

a

2π

�

xi

wn(x− xi)eixiq,

wn(x− xi) =
�

a

2π

ˆ π/a

−π/a
dq unq(x) e−iqxi

which are localized around a particular lattice site xi = ia with i = 0,±1, . . . .

The Bloch and Wannier wave functions are complete.

Generalizations:

We can generate 2D, and 3D potentials by adding optical potentials in differ-

ent spatial directions. For lasers with different frequencies the interference
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- Because φα(x + a) = e
iαφα(x) we can write φα(x) = e

iα
uα(x) with peri-

odic Bloch functions uα(x) = uα(x + a) .
• We have [H,T ] = 0, and we can find simultaneous eigenfunctions of {H,T}

Hϕq(x) = Eϕq(x)
Tϕq(x) = e

iqaϕq(x)

with q ∈ [−π/a, π/a]. We call �q quasimomentum.
• Eigenstates of the Hamiltonian thus have the form

φ(n)
q (x) = e

iqx
u

(n)
q (x) q ∈ [−π/a, π/a]

and the Bloch functions u
(n)
q (x) are eigenstates of

ĥqu
(n)
q (x) ≡

�
(p̂ + q)2

2m
+ V (x̂)

�
u

(n)
q (x) = E

(n)
q u

(n)
q (x)

Note: the Bloch functions can be expanded in a Fourier series

u
(n)
q (x) =

1√
2π

+∞�

j=−∞
c
(n,q)
j e

ikjx (kj = 2πj/a)

Solution of the Schrödinger Equation for the Optical Lattice (1D)

Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-
suming V0 > 0 we have for the lowest states a harmonic oscillator potential

V (x) = V0 sin2(kx) ≈ V0 (kx)2 ≈ 1
2
mν2

x
2

with trapping frequency ν =
√

4V0ER/� and with recoil frequency ER ≡ �2
k

2
/2m.

(TypciallyER ∼ kHz, and V0 ∼ few tens of kHz.)

(Note: the recoil frequency ER provides a natural energy scale for the depth of
the optical lattice V0/ER � 1.)

The ground state wave function

ψn=0(x) =
�

1
π1/2a0

e−x2/(2a2
0)

has size a0 =
�

�/mν � λ/2, and we are in the Lamb-Dicke limit η = 2πa0/λ�
1.

Bloch wave functions and bands (1D): In general the eigen-solutions of the
time-independent Schrödinger equation with periodic potential, Hψnq(x) = �nqψnq(x),
has the form ψnq(x) = e

iqx
unq(x) with (periodic) Bloch wave functions unq(x) =

unq(x + a), q the quasimomentum in the first Brillouin zone −π/a < q ≤ +π/a,
and n = 0, 1, . . . labelling the Bloch bands.

Plots:

Wannier functions (1D): Instead of Bloch wave functions we can also work with
Wannier wave functions

unq(x) =
�

a

2π

�

xi

wn(x− xi)eixiq,

wn(x− xi) =
�

a

2π

ˆ π/a

−π/a
dq unq(x) e−iqxi

which are localized around a particular lattice site xi = ia with i = 0,±1, . . . .
The Bloch and Wannier wave functions are complete.

Generalizations:

We can generate 2D, and 3D potentials by adding optical potentials in differ-
ent spatial directions. For lasers with different frequencies the interference
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- Because φα(x + a) = e
iαφα(x) we can write φα(x) = e

iα
uα(x) with peri-

odic Bloch functions uα(x) = uα(x + a) .
• We have [H,T ] = 0, and we can find simultaneous eigenfunctions of {H,T}

Hϕq(x) = Eϕq(x)
Tϕq(x) = e

iqaϕq(x)

with q ∈ [−π/a, π/a]. We call �q quasimomentum.
• Eigenstates of the Hamiltonian thus have the form

φ(n)
q (x) = e

iqx
u

(n)
q (x) q ∈ [−π/a, π/a]

and the Bloch functions u
(n)
q (x) are eigenstates of

ĥqu
(n)
q (x) ≡

�
(p̂ + q)2

2m
+ V (x̂)

�
u

(n)
q (x) = E

(n)
q u

(n)
q (x)

Note: the Bloch functions can be expanded in a Fourier series

u
(n)
q (x) =

1√
2π

+∞�

j=−∞
c
(n,q)
j e

ikjx (kj = 2πj/a)

Solution of the Schrödinger Equation for the Optical Lattice (1D)

Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-
suming V0 > 0 we have for the lowest states a harmonic oscillator potential

V (x) = V0 sin2(kx) ≈ V0 (kx)2 ≈ 1
2
mν2

x
2

with trapping frequency ν =
√

4V0ER/� and with recoil frequency / energy ER ≡
�2

k
2
/2m. (TypciallyER ∼ kHz, and V0 ∼ few tens of kHz.)

(Note: the recoil frequency ER provides a natural energy scale for the depth of
the optical lattice V0/ER � 1.)

The ground state wave function

ψn=0(x) =
�

1
π1/2a0

e−x2/(2a2
0)

has size a0 =
�

�/mν � λ/2, and we are in the Lamb-Dicke limit η = 2πa0/λ�
1.

Bloch wave functions and bands (1D): In general the eigen-solutions of the
time-independent Schrödinger equation with periodic potential, Hψnq(x) = �nqψnq(x),
has the form ψnq(x) = e

iqx
unq(x) with (periodic) Bloch wave functions unq(x) =

unq(x + a), q the quasimomentum in the first Brillouin zone −π/a < q ≤ +π/a,
and n = 0, 1, . . . labelling the Bloch bands.

Plots:

Wannier functions (1D): Instead of Bloch wave functions we can also work with
Wannier wave functions

unq(x) =
�

a

2π

�

xi

wn(x− xi)eixiq,

wn(x− xi) =
�

a

2π

ˆ π/a

−π/a
dq unq(x) e−iqxi

which are localized around a particular lattice site xi = ia with i = 0,±1, . . . .
The Bloch and Wannier wave functions are complete.

Generalizations:

We can generate 2D, and 3D potentials by adding optical potentials in differ-
ent spatial directions. For lasers with different frequencies the interference
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Solution of Schroedinger Equation for 1D optical lattice
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- Because φα(x + a) = e
iαφα(x) we can write φα(x) = e

iα
uα(x) with peri-

odic Bloch functions uα(x) = uα(x + a) .
• We have [H,T ] = 0, and we can find simultaneous eigenfunctions of {H,T}

Hϕq(x) = Eϕq(x)
Tϕq(x) = e

iqaϕq(x)

with q ∈ [−π/a, π/a]. We call �q quasimomentum.
• Eigenstates of the Hamiltonian thus have the form

φ(n)
q (x) = e

iqx
u

(n)
q (x) q ∈ [−π/a, π/a]

and the Bloch functions u
(n)
q (x) are eigenstates of

ĥqu
(n)
q (x) ≡

�
(p̂ + q)2

2m
+ V (x̂)

�
u

(n)
q (x) = E

(n)
q u

(n)
q (x)

Note: the Bloch functions can be expanded in a Fourier series

u
(n)
q (x) =

1√
2π

+∞�

j=−∞
c
(n,q)
j e

ikjx (kj = 2πj/a)

Solution of the Schrödinger Equation for the Optical Lattice (1D)

Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-
suming V0 > 0 we have for the lowest states a harmonic oscillator potential

V (x) = V0 sin2(kx) ≈ V0 (kx)2 ≈ 1
2
mν2

x
2

with trapping frequency ν =
√

4V0ER/� and with recoil frequency / energy ER ≡
�2

k
2
/2m. (TypciallyER ∼ kHz, and V0 ∼ few tens of kHz.)

(Note: the recoil frequency ER provides a natural energy scale for the depth of
the optical lattice V0/ER � 1.)

The ground state wave function

ψn=0(x) =
�

1
π1/2a0

e−x2/(2a2
0)

has size a0 =
�

�/mν � λ/2, and we are in the Lamb-Dicke limit η = 2πa0/λ�
1.

Bloch wave functions and bands (1D): In general the eigen-solutions of the
time-independent Schrödinger equation with periodic potential, Hψnq(x) = �nqψnq(x),
has the form ψnq(x) = e

iqx
unq(x) with (periodic) Bloch wave functions unq(x) =

unq(x + a), q the quasimomentum in the first Brillouin zone −π/a < q ≤ +π/a,
and n = 0, 1, . . . labelling the Bloch bands.

Plots:

Wannier functions (1D): Instead of Bloch wave functions we can also work with
Wannier wave functions

unq(x) =
�

a

2π

�

xi

wn(x− xi)eixiq,

wn(x− xi) =
�

a

2π

ˆ π/a

−π/a
dq unq(x) e−iqxi

which are localized around a particular lattice site xi = ia with i = 0,±1, . . . .
The Bloch and Wannier wave functions are complete.

Generalizations:

We can generate 2D, and 3D potentials by adding optical potentials in differ-
ent spatial directions. For lasers with different frequencies the interference
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Lowest Two Bloch Bands for V0=5 ER

- Because φα(x + a) = e
iαφα(x) we can write φα(x) = e

iα
uα(x) with peri-

odic Bloch functions uα(x) = uα(x + a) .
• We have [H,T ] = 0, and we can find simultaneous eigenfunctions of {H,T}

Hϕq(x) = Eϕq(x)
Tϕq(x) = e

iqaϕq(x)

with q ∈ [−π/a, π/a]. We call �q quasimomentum.
• Eigenstates of the Hamiltonian thus have the form

φ(n)
q (x) = e

iqx
u

(n)
q (x) q ∈ [−π/a, π/a]

and the Bloch functions u
(n)
q (x) are eigenstates of

ĥqu
(n)
q (x) ≡

�
(p̂ + q)2

2m
+ V (x̂)

�
u

(n)
q (x) = E

(n)
q u

(n)
q (x)

Note: the Bloch functions can be expanded in a Fourier series

u
(n)
q (x) =

1√
2π

+∞�

j=−∞
c
(n,q)
j e

ikjx (kj = 2πj/a)

Solution of the Schrödinger Equation for the Optical Lattice (1D)

Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-
suming V0 > 0 we have for the lowest states a harmonic oscillator potential

V (x) = V0 sin2(kx) ≈ V0 (kx)2 ≈ 1
2
mν2

x
2

with trapping frequency ν =
√

4V0ER/� and with recoil frequency / energy ER ≡
�2

k
2
/2m. (TypciallyER ∼ kHz, and V0 ∼ few tens of kHz.)

(Note: the recoil frequency ER provides a natural energy scale for the depth of
the optical lattice V0/ER � 1.)

The ground state wave function

ψn=0(x) =
�

1
π1/2a0

e−x2/(2a2
0)

has size a0 =
�

�/mν � λ/2, and we are in the Lamb-Dicke limit η = 2πa0/λ�
1.

Bloch wave functions and bands (1D): In general the eigen-solutions of the
time-independent Schrödinger equation with periodic potential, Hψnq(x) = �nqψnq(x),
has the form ψnq(x) = e

iqx
unq(x) with (periodic) Bloch wave functions unq(x) =

unq(x + a), q the quasimomentum in the first Brillouin zone −π/a < q ≤ +π/a,
and n = 0, 1, . . . labelling the Bloch bands.

Compare: Bloch bands in tight binding approximation. Above we intro-
duced the Hamiltonian

Ĥ = −J

�

i

�
b
†
i bi+1 + b

†
i+1bi

�
=

�

q

�qb
†
qbq

with the tight-binding dispersion relation

�q = −2J cos qa (−π/a < q ≤ π/a).

For well separated bands the Bloch band calculation fits this relation well. This
is typically fulfilled for the lowest bands.

Wannier functions (1D): Instead of Bloch wave functions we can also work with
Wannier wave functions

unq(x) =
�

a

2π

�

xi

wn(x− xi)eixiq,

wn(x− xi) =
�

a

2π

ˆ π/a

−π/a
dq unq(x) e−iqxi
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- Because φα(x + a) = e
iαφα(x) we can write φα(x) = e

iα
uα(x) with peri-

odic Bloch functions uα(x) = uα(x + a) .
• We have [H,T ] = 0, and we can find simultaneous eigenfunctions of {H,T}

Hϕq(x) = Eϕq(x)
Tϕq(x) = e

iqaϕq(x)

with q ∈ [−π/a, π/a]. We call �q quasimomentum.
• Eigenstates of the Hamiltonian thus have the form

φ(n)
q (x) = e

iqx
u

(n)
q (x) q ∈ [−π/a, π/a]

and the Bloch functions u
(n)
q (x) are eigenstates of

ĥqu
(n)
q (x) ≡

�
(p̂ + q)2

2m
+ V (x̂)

�
u

(n)
q (x) = E

(n)
q u

(n)
q (x)

Note: the Bloch functions can be expanded in a Fourier series

u
(n)
q (x) =

1√
2π

+∞�

j=−∞
c
(n,q)
j e

ikjx (kj = 2πj/a)

Solution of the Schrödinger Equation for the Optical Lattice (1D)

Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-
suming V0 > 0 we have for the lowest states a harmonic oscillator potential

V (x) = V0 sin2(kx) ≈ V0 (kx)2 ≈ 1
2
mν2

x
2

with trapping frequency ν =
√

4V0ER/� and with recoil frequency / energy ER ≡
�2

k
2
/2m. (TypciallyER ∼ kHz, and V0 ∼ few tens of kHz.)

(Note: the recoil frequency ER provides a natural energy scale for the depth of
the optical lattice V0/ER � 1.)

The ground state wave function

ψn=0(x) =
�

1
π1/2a0

e−x2/(2a2
0)

has size a0 =
�

�/mν � λ/2, and we are in the Lamb-Dicke limit η = 2πa0/λ�
1.

Bloch wave functions and bands (1D): In general the eigen-solutions of the
time-independent Schrödinger equation with periodic potential, Hψnq(x) = �nqψnq(x),
has the form ψnq(x) = e

iqx
unq(x) with (periodic) Bloch wave functions unq(x) =

unq(x + a), q the quasimomentum in the first Brillouin zone −π/a < q ≤ +π/a,
and n = 0, 1, . . . labelling the Bloch bands.

Compare: Bloch bands in tight binding approximation. Above we intro-
duced the Hamiltonian

Ĥ = −J

�

i

�
b
†
i bi+1 + b

†
i+1bi

�
=

�

q

�qb
†
qbq

with the tight-binding dispersion relation

�q = −2J cos qa (−π/a < q ≤ π/a).

For well separated bands the Bloch band calculation fits this relation well. This
is typically fulfilled for the lowest bands.

Wannier functions (1D): Instead of Bloch wave functions we can also work with
Wannier wave functions

u
(n)
q (x) =

�
a

2π

�

xi=ia

wn(x− xi)eixiq,

wn(x− xi) =
�

a

2π

ˆ π/a

−π/a
dq unq(x) e−iqxi

21

which are localized around a particular lattice site xi = ia with i = 0,±1, . . . .

The Bloch and Wannier wave functions are complete set of functions

Generalizations:

We can generate 2D, and 3D potentials by adding optical potentials in differ-
ent spatial directions. For lasers with different frequencies the interference
terms average out, and the potentials are additive. Example: in 3D V (�x) =�3

j=1 V0j sin2(kxj).

Laser configurartions / lattice configurations; tricks with light polarization; disor-
der potential via laser speckles; back ground harmonic trapping potentials etc.

Rem.: Compare with solid state physics, where periodic potential for electrons
are generated by ions oscillating around equilibrium positions (phonons); fast
electron and slow ion motion (Born-Oppenheimer).

Bose (and Fermi) Hubbard Models

Goal: we are interested in the many body dynamics

22
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Wannier function

discrete Fourier 
transform

trade 
quasimomentum 

for site index

Thursday, April 8, 2010



which are localized around a particular lattice site xi = ia with i = 0,±1, . . . .

The Bloch and Wannier wave functions are complete set of functions

Generalizations:

We can generate 2D, and 3D potentials by adding optical potentials in differ-
ent spatial directions. For lasers with different frequencies the interference
terms average out, and the potentials are additive. Example: in 3D V (�x) =�3

j=1 V0j sin2(kxj).

Laser configurartions / lattice configurations; tricks with light polarization; disor-
der potential via laser speckles; back ground harmonic trapping potentials etc.

Rem.: Compare with solid state physics, where periodic potential for electrons
are generated by ions oscillating around equilibrium positions (phonons); fast
electron and slow ion motion (Born-Oppenheimer).

Bose (and Fermi) Hubbard Models

Many body Hamiltonian of a dilute gas of bosonic atoms

Hamiltonian

H =
ˆ

d
3
xψ̂†(�x)

�
− �2

2m
∇2 + V0(�x)

�
ψ̂(�x) +

1
2
g

ˆ
d
3
xψ̂†(�x)ψ̂†(�x)ψ̂(�x)ψ̂(�x)

with V0(�x) a single particle trapping potential (below: the optical lattice), and
g = 4π�as

m , where a is the scattering length.

This is valid under the assumption:

• The gas is sufficiently dilute so that only two body interactions are important,
we can treat the composite atoms as bosons

• The enery / temperature are sufficiently small that two-body interactions re-
duce to s-wave scattering, parametrized by the scattering length as.

Bose Hubbard Hamiltonian

Lit.: D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys Rev.
Lett. 81, 3108 (1998)

We expand the field operators in Wannier functions of the lowest band

ψ̂(�x) =
�

i

w(�x− �xi)bi

to obtain the Bose Hubbard model

Ĥ = −
�

ij

Jijb
†
i bj + 1

2U

�

i

b
†2
i b

2
i

with hopping

Jij =
ˆ

d
3
xw(�x− �xi)

�
− �2

2m
∇2 + V0(�x)

�
w(�x− �xj)

and interaction
U =

1
2
g

ˆ
d
3
x |w(�x)|2

valid for J, U, kBT � �ωBloch.
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Bose Hubbard Hamiltonian

• Note: Fermions can be treated analogously: Fermi Hubbard model 

Starting point:
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which are localized around a particular lattice site xi = ia with i = 0,±1, . . . .

The Bloch and Wannier wave functions are complete set of functions

Generalizations:

We can generate 2D, and 3D potentials by adding optical potentials in differ-
ent spatial directions. For lasers with different frequencies the interference
terms average out, and the potentials are additive. Example: in 3D V (�x) =�3

j=1 V0j sin2(kxj).

Laser configurartions / lattice configurations; tricks with light polarization; disor-
der potential via laser speckles; back ground harmonic trapping potentials etc.

Rem.: Compare with solid state physics, where periodic potential for electrons
are generated by ions oscillating around equilibrium positions (phonons); fast
electron and slow ion motion (Born-Oppenheimer).

Bose (and Fermi) Hubbard Models

Many body Hamiltonian of a dilute gas of bosonic atoms

Hamiltonian

H =
ˆ

d
3
xψ̂†(�x)

�
− �2

2m
∇2 + V0(�x)

�
ψ̂(�x) +

1
2
g

ˆ
d
3
xψ̂†(�x)ψ̂†(�x)ψ̂(�x)ψ̂(�x)

with V0(�x) a single particle trapping potential (below: the optical lattice), and
g = 4π�as

m , where a is the scattering length.

This is valid under the assumption:

• The gas is sufficiently dilute so that only two body interactions are important,
we can treat the composite atoms as bosons

• The enery / temperature are sufficiently small that two-body interactions re-
duce to s-wave scattering, parametrized by the scattering length as.

Bose Hubbard Hamiltonian

Lit.: D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys Rev.
Lett. 81, 3108 (1998)

We expand the field operators in Wannier functions of the lowest band

ψ̂(�x) =
�

i

w(�x− �xi)bi

to obtain the Bose Hubbard model

Ĥ = −
�

ij

Jijb
†
i bj + 1

2U

�

i

b
†2
i b

2
i

with hopping Jij =
´

d
3
xw(�x − �xi)

�
− �2

2m∇
2 + V0(�x)

�
w(�x − �xj) and interaction

U = 1
2g
´

d
3
x |w(�x)|4 valid for J, U, kBT � �ωBloch.

22

spatially localized 
Wannier functions

U
J

Bose Hubbard Hamiltonian

(tight binding lowest band approximation)

additionally, we are bound to interactions 
(scattering lengths)

here, it means lattice spacingg � a0, a
extent of Wannier function This is not true close to 

Feshbach resonances!
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Parameters as function of laser intensity

Bose Hubbard Parameters

H = −J

�

�i,j�

b
†
i bj +

�

i

�in̂i +
1
2U

�

i

n̂i(n̂i − 1)
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Laser Control: Kinetic vs. Potential Energy

• shallow lattice : weak laser

weakly interacting system: 
J >> U

(kinetic energy >> interactions)

J large

U small

strongly interacting system: 
J << U

(kinetic energy << interactions)

laser parameters
(time dependent)

J small

U large

• deep lattice: intense laser
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Laser Beams

Very Strong

weaker

Optical Lattice Configurations
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 square lattice

 triangular lattice

laser

Optical Lattice Configurations
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Phase Diagram 
of the 

Bose Hubbard Model

1.0

2.0

3.0

0.010 0.020 0.030
0.0
0.0

SF

MI

MI

MI
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Mean Field Theory
• Interpolation scheme encompassing the full range        .  J/U

•   Main ingredient: Based on above discussion, construct local mean field Hamiltonian

H = −J

�

�i,j�

b
†
i bj − µ

�

i

n̂i +
1
2U

�

i

n̂i(n̂i − 1)

full Bose Hubbard Hamiltonian

coordination number 
z = 2d (cubic lattice)• Discussion:

• Derivation: Decompose                       , neglect             terms, rewrite in terms of

• The problem is reduced to an onsite problem

•     is the “mean field”:
- information on other other sites only via averages 
- if nonzero, assumes translation invariance but spontaneous phase symmetry breaking

• Validity: approximation neglects spatial correlations via local form
- becomes exact in infinite dimensions (Metzner and Vollhardt ʼ89)
- reasonable in d=2,3 (T=0)

bi = ψ + δbi δb†i δbj bi

ψ

n̂i = b†i bi

H
(MF) =

�

i

hi

hi = −µn̂i +
1
2Un̂i(n̂i − 1)− Jz(ψ∗bi + ψb†i ) + Jzψ∗ψ
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Phase Diagram: Derivation

• Assume second order phase transition and follow Landau procedure:

•  Study ground state energy

• Determine zero crossing of mass term

• Calculate E in second order perturbation theory

E(ψ) = const. +m2
|ψ|2 +O(|ψ|4)

h(0)
i = −µn̂i +

1
2Un̂i(n̂i − 1) + Jzψ∗ψ

hi = h(0)
i + ψVi

smallness parameter close 
to phase transition

Vi = Jz(bi + b†i )
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Phase Diagram: DerivationOutline

• Zero order Hamiltonian h(0)
i : diagonal in Fock basis {|n〉}, n = 0, 1, 2, ...

• The eigenvalues are E(0)
n = −µn+ 1

2Un(n− 1) + Jzψ2

• The ground state energies for given µ are

E(0)
n̄ =

{

0 for µ < 0

−µn̄+ 1
2Un̄(n̄− 1) + Jzψ2 for U(n̄− 1) < µ < Un̄

• The second order correction to the energy is

E(2)
n̄ = ψ2

∑

n!=g

|〈n̄|Vi|n〉|2

E(0)
n̄ − E(0)

n

= (Jzψ)2
(

n̄

U(n̄− 1)− µ
+

n̄+ 1

µ− Un̄

)

• For E = const.+m2ψ2 + ... the phase transition happens at (µ̄ = µ/Jz, Ū = U/Jz)

m2

Jz
= 1 +

n̄

Ū(n̄− 1)− µ̄
+

n̄+ 1

µ̄− Ū n̄
= 0

•
• A quantum computer with N qubits can simulate such a problem. This is why a quantum computer

can easily outperform a classical computer in this task. Thus it is of interest to build quantum simulators
to solve / simulate many body dynamics.
- analog quantum simulator: we build a “analog” physical system consisting of N spins and Hamil-

tonian H with controllable external parameters (magnetic fields, ...). We will discuss below exam-
ples of analog quantum simulators for bose and fermi Hubbard (lattice) models with cold atoms in
optical lattices.

Bose-Hubbard phase border
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1.0

2.0

3.0

0.010 0.020 0.030
0.0
0.0

SF

MI

MI

MI

with z the number of nearest neighbors.

Computer Program: For given J , U and chemical potential µ perform the fol-
lowing calcuations.

1. Asume ψ �= 0.

2. Solve the Schrödinger equation (*) for the lowest eigenvalue � and normal-
ized eigenvector |φi� =

�∞
n=0 fn |n�i

3. Calculate the new ψ from the {fn}.

Repeat until {fn} and thus ψ converge.

Cases: For a given {J, U, µ} two cases are possible:

• if ψ �= 0 we have a superfluid phase, and
• if ψ = 0 we have a Mott phase. The transition between these phases will

occur for a certain critical Uc/J . It is a second order transition.

This gives the phase diagram as a function of µ/U and J/U .

Finally, we plot �n̂i� = n as a function of µ to determine the chemical potential
for a given density n = N/M .

11

Phase Diagram: Overall Shape

1 +
n̄

Ū(n̄− 1)− µ̄
+

n̄+ 1

µ̄− Ū n̄
= 0

“Mott Lobe”

NB: for non-commensurate (= integer) 
fillings, superfluidity persists for U -> 0: 
excess particles condense.

MI: Quantization of particle number SF: Quantization of phase 

Simple picture:

”[N̂ , ϕ̂] = i” - conjugate variables
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Limiting cases: Weak coupling, Superfluid

➡ At weak coupling, the (lattice) Gross-Pitaevski equation is reproduced
➡ certain spatial fluctuations are included: scattering off the condensate
➡ dispersion: 

Limiting cases: Weak coupling

• Consider site dependent mean fields, hi = −µn̂i + 1
2Un̂i(n̂i − 1)− J

∑

〈j|i〉(ψ
∗
j bi + ψjb

†
i ) + const.

• Consider the equation of motion for the order parameter:
- Heisenberg equation of motion for onsite Hamiltonian:

∂tρ = −i[hi, ρ], ρ = |ψ〉〈ψ|, |ψ〉 =
∏

i

|ψ〉i

- Equation of motion for the order parameter:

i∂tψi ≡ i∂ttr(biρ) = −J
∑

〈j|i〉

ψi − µ〈n̂i〉+ U〈n̂ibi〉

- Weak coupling: assume coherent states bi|ψ〉i = ψi|ψ〉i

i∂tψi = −J
∑

〈j|i〉

ψi − µψ∗
i ψi + Uψ∗

i ψ
2
i = −J%ψi − µ′ψ∗

i ψi + Uψ∗
i ψ

2
i

• At weak coupling, the (lattice) Gross-Pitaevski equation is reproduced

Consider a system of N spin-1/2 particles or qubits on a lattice. Its state vector lives in the product Hilberg
space H = {|↑〉 , |↓〉}⊗N ≡ {|0〉 , |1〉}⊗N , and is in general a superposition

|Ψ〉 =
∑

{σi=0,1}

cσ1σ2...cN |σ1,σ2, . . . ,σN 〉

= c0...00 |0 . . . 00〉+ c0...01 |0 . . . 01〉+ . . .+ c1...11 |1 . . . 11〉

of the exponentially large number 2N of basis states. When solving the time-dependent or time-independent
Schrödinger equation with some many body Hamiltonian Ĥ involving non-trivial interactions we are faced
with the problem of solving differential equations of eigenvalue problems involving the 2N coefficients
cσ1σ2...cN .

• For large N solving such a system exactly on a computer is difficult if not fundamentally impossible.
Example: even for a moderate number of N = 300 spins or qubits this would require us to store and
solve for 2300 complex coefficients in a computer. This is roughly the number of atoms in the visible
universe.

• In practice, however, depending of the specific problem and questions asked we can often make
(clever) approximations to these wave functions, as in the case of mean field theories based on in-
dependent particle models, for ground states and low energy excitations in 1D systems (density renor-
malization group, DMRG), or Monte Carlo simulations. But for some fundamental problems no such
(controlled) approximations are known at present, an example being the fermionic Hubbard model for
high-Tc.

• A quantum computer with N qubits can simulate such a problem. This is why a quantum computer
can easily outperform a classical computer in this task. Thus it is of interest to build quantum simulators
to solve / simulate many body dynamics.
- analog quantum simulator: we build a “analog” physical system consisting of N spins and Hamil-

tonian H with controllable external parameters (magnetic fields, ...). We will discuss below exam-
ples of analog quantum simulators for bose and fermi Hubbard (lattice) models with cold atoms in
optical lattices.

- digital quantum simulator: the time evolution e−iHt can be decomposed in the sense of the Trot-
ter formula into a sequence of single and two qubit gates. Of course, a freely programmable general
purpose quantum computer will provide such a quantum simulator. However, in many cases one
gets away with a special and thus simpler set of quantum gates: for example, a spatially homoge-
neous system can be simulated with parallel quantum gates and without individual addressing of
qubits. A quantum simulator will, therefore, be more like a special purpose quantum computer.

ωq =
�

�q(2Uψ∗ψ + �q) �q = 2J
�

λ

(1− cos aqλ)

�fi =
�

�j|i�

fj − fi
µ� = µ+ Jz

shift: defines zero of kinetic energy
lattice Laplacian

|ψi� = e−|ψi|2/2
∞�

n=0

ψn
i√
n!
|n�
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Limiting cases: Strong coupling, Mott Insulator

➡ switching on J adiabatically, the ground state remains exact eigenstate to   
number operator. Assuming translation invariance gives exact result

�b†i bi� = n̄

- Implication: the Mott insulator is an incompressible state, ∂�N̂�
∂µ

= 0

Limiting cases: Strong coupling

• Mean field Mott state : |n̄〉 =
∏

i |n̄i〉 = n̄−M/2
∏

i b
†n̄
i |vac〉: Quantization of particle number

• Discussion:
- Within mean field, Mott-ness follows as a consequence of purity:

∗ assume mechanism that suppresses SF off-diagonal order: ρ diagonal, 1 = trρ =
∏

i triρi
hom.
=

(
∑

pm)M

∗ Zero temperature: pure state, 1 = trρ2 =
∏

i triρ
2
i
hom.
= (

∑

p2m)M

∗ only solution is pm = δn,n̄

- Quantization of particle number within MI is an exact result in the sense 〈b†i bi〉 = n̄

∗ at J = 0, Mott state |n̄〉 is (i) exact ground state, (ii) eigenstate to particle number N̂ =
∑

i n̂i,
(iii) separated from other states by gap ∼ U

∗ kinetic perturbation Hkin = −J
∑

〈i,j〉 b
†
ibj

∗ commutes with N̂ , [Hkin, N̂ ] = 0
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Excitation spectrum in the Mott phase
• We are looking for the single particle dispersion relation 

• This is a dynamical quantity: hard to get within Hamiltonian framework above

• Path integral formulation of the Bose-Hubbard model

ωq

• Discussion: 
- Nonrelativistic action (on the lattice)
- Note symmetry (T=0): temporally local gauge invariance 
- so far: weak coupling problems J>>U, decoupling in the interaction U
- now: Mott physics, i.e. strong coupling problem U>>J: decoupling in J

bi-local contribution; for 
nearest-neighbour hopping

local contribution

Z = tre−βĤ =

�
Da exp−SBH[a]

SBH[a] = Sloc[a] + Skin[a]

Sloc[a] =

� β/2

−β/2
dτ

�

i

�
a∗i (∂τ − µ)ai +

1
2Ua∗ 2

i a2i
�

tij = −J
�

σλ

δi,j+σeλ

Skin[a] =

� β/2

−β/2
dτ

�

i,j

tija
∗
i aj σ = ±1

λ = x, y, z
spatial directions

ai → aie
iφ(τ), µ → µ+ i∂τφ(τ)
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Decoupling in J: Hopping Expansion

Decoupling in J: Hopping Expansion

• Hubbard-Stratonovich transformation:

Z =
´

Da exp−SBH[a] = N
´

DaDψ exp−SBH[a] +
´

dτ
∑

ij tij(ψ
∗
i − a∗i )(ψj − aj)

= N
´

DaDψ exp−Sloc[a] +
´

dτ
∑

ij tij(ψ
∗
i ψj − ψ∗

i aj − ψja∗i )= N
´

Dψ exp−Seff[ψ]

Seff[ψ] =
´

dτ
∑

ij tijψ
∗
i ψj − log〈exp−

´

dτ
∑

ij(ψ
∗
i aj + ψja∗i 〉Sloc

〈O〉Sloc
=
´

DaO exp−Sloc[a]

• Discussion
- Form of intermediate action identical to mean field decoupling above (for site dependent mean

fields)
- The effective action Seff[ψ] can now be calculated perturbatively

• Goal: treat the strong coupling problem U>>J via decoupling in J

SBH[a] = Sloc[a] + Skin[a]

∼ U ∼ J
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Decoupling in J: Hopping Expansion
Decoupling in J: Hopping Expansion

• expansion in powers of the hopping

〈exp−
ˆ

dτ
∑

ij

tij(ψ
∗
i aj + ψja

∗
i )〉Sloc = 1 +

∞
∑

m=1

〈[
ˆ

dτ
∑

ij

tij(ψ
∗
i aj + ψja

∗
i )]

2m〉Sloc

→ note: averages of odd powers of ai or a∗i vanish in the Mott state
• To lowest order, the effective action thus reads

Seff[ψ] =

ˆ

dτ
∑

ij

tijψ
∗
i (τ)ψj(τ) +

ˆ

dτdτ ′
∑

iji′j′

tijti′j′ψ
∗
j (τ)ψj′ (τ

′)〈ai(τ)a∗i (τ ′)〉Sloc

• Discussion
- the approach is inherently perturbative: no known closed form expression for above average
- the hopping expansion does not lead to an exact solution of the problem: Z =

´

Dψ exp−Seff[ψ]
would need to be calculated for this purpose

- the hopping expansion is closely related to the mean field approximation (see below)
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Quadratic Effective Action
Quadratic Effective Action

• The correlation functions 〈ai(τ)a∗i′ (τ ′)〉Sloc can be evaluated explicitly since the local onsite problem is
solved exactly

• The effective action is then, in frequency and momentum space and for nearest neighbour hopping

S(2)
eff [ψ] =

´

dω
2π

ddq
(2π)dψ

∗
q(ω)G

−1(ω,q)ψq(ω)

G−1(ω,q) = εq − ε2q

(

n̄+1
−iω−µ+n̄U + n̄

iω+µ−(n̄−1)U

)

, εq = 2J
∑

λ cosqeλ

• Evaluating G−1(ω = 0,q = 0) reproduces the above mean field result (εq = Jz): The fluctuations
included here are the same, but their spatial and temporal dependence is resolved within the functional
integral formulation

• The frequency dependence is dictated by the temporally local gauge invariance to −iω − µ

• The quasiparticle spectrum obtains from the poles of the Green’s function analytically continued to real
frequencies,

G−1(ω → iω,q)
!
= 0

Thursday, April 8, 2010



Excitation Spectrum: Particles and Holes

Excitation Spectrum

• Solving G−1(ω → iω,q)
!
= 0 yields the quasiparticle dispersion

ω±
q = −µ+ U

2 (2n̄− 1)− εq
2 ± 1

2

√

ε2q − 2(2n̄+ 1)Uεq + U2

• For µ within the Mott phase, ω+
q ≥ 0 and ω−

q ≤ 0. They correspond to quasiparticle and quasihole
excitations.

• If we are interested in the true excitation spectrum, we need to consider that the quasiholes are prop-
agating backward in time. The true particle and hole excitation energies are therefore

E±
q = ±ω±

q = ±
(

− µ+ U
2 (2n̄− 1)− εq

2

)

+ 1
2

√

ε2q − 2(2n̄+ 1)Uεq + U2

• Generically, both branches of the spectrum are gapped: E±
q=0 = O(U) > 0

• Study the phase border for Jz % U , defined with G−1(ω = 0,q = 0)
!
= 0 −→ µcrit(U) in the upper

branch of the lobe:
- there is a gapless particle with quadratic dispersion for q → 0, E+

q ≈ (1 + (n̄+1)U+Jz
∆

)

δεq, δεq =
2J

∑

λ(1− cosqeλ) ≈ Jq2

- there is a gapped hole with gap ∆ = Eq=0 =
√

Jz2 − 2(2n̄+ 1)UJz + U2

• For the lower branch of the lobe and Jz % U , the holes disperse E−
q ≈ Jq2 and the particles are

gapped with ∆ ≈ U

1.0

2.0

3.0

0.010 0.020 0.030
0.0
0.0

SF

MI

MI

MI
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Bicritical point: Change of Universality Class

The Tip of the Lobe: Bicritical Point

• The interpretation in terms of particle and hole excitation only holds for Jz ! U

• In general, at the phase transition there is one gapless mode. Choosing it to set the zero of energy,
the gap of the other mode is given by

∆ = E+
q=0 + E−

q=0 =
√

Jz2 − 2(2n̄+ 1)UJz + U2

• At the tip of the lobe, U/Jz = 2n̄+ 1 +
√

(2n̄+ 1)2 − 1 and thus ∆ = 0: there are two gapless modes
(particle-hole symmetry)

• The excitation spectrum at this point is dominanted by the square root for q → 0 and reads

E±
q = 1

2

√

(2(2n̄+ 1)U + Jz)δεq ∼ |q|

• The spectrum changes form a nonrelativistic spectrum E ∼ q
2 (dynamic exponent zd = 2) to a rela-

tivistic spectrum E ∼ |q| (dynamic exponent zd = 1)

1.0

2.0

3.0

0.010 0.020 0.030
0.0
0.0

SF

MI

MI

MI

➡ At a generic point on the phase border, the system is in the z_d = 2 O(2) universality class
➡ At the tip of the lobe, the system is in the z_d = 1 O(2) universality class
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Bicritical point: Symmetry ArgumentThe Tip of the Lobe: Bicritical Point

• We show that the change in universality class at the tip of the lobe is not an artifact of mean field theory
• The full effective action (including fluctuations) at low energies has a derivative expansion

Γ[ψ] =

ˆ

ψ∗[Z∂τ + Y ∂2
τ +m2 + ...]ψ + λ(ψ∗ψ)2 + ...

• At the phase transition, we have m2 = 0. At the tip of the lobe, we have additionally(vertical tangent)

∂m2

∂µ
= 0

• Using the invariance under temporally the local symmetryψ → ψeiθ(τ), µ → µ + i∂τθ(τ), we find the
Ward identity (q = (ω,q))

−∂m2

∂µ
= − ∂

∂µ

δ2Γ

δψ∗(q)δψ(q)

∣

∣

∣

ψ=0;q=0
=

∂

∂(iω)

δ2Γ

δψ∗(q)δψ(q)

∣

∣

∣

ψ=0;q=0
= Z

• Thus, there cannot be a linear time derivative ath the tip of the lobe, Z = 0. The leading frequency
dependence is quadratic

1.0

2.0

3.0

0.010
0.020

0.030
0.00.0

SF

M
I

M
I

M
I

moving in positive mu 
direction suppresses SF

µ/U

→ ∂m2

∂µ
> 0

moving in positive mu 
direction enhances SF

→ ∂m2

∂µ
< 0
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• spatial correlation function

Mottsuperfluid

off-diagonal long range order:

interference
no interference

exp signature

Experimental signatures 1: Interference
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M. Greiner, I. Bloch, T. Hänsch et al., Nature Jan 3 2002

freezesuperfluid meltMott superfluid

interference NO interference interference

spatial correlation functions:

off-diagonal 
longrange order

Interference Patterns
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Experimental Signatures 2: Mott Gap 

xy

density: “wedding 
cake”n=1

n=2

• The gap in the Mott phase causes staggered structure in density profile

lattice + trapping energy
(1) Consider situation

(2) Assume local density approximation: local applicability of mean field theory

µ(xi) = µ− V (xi), V (xi) =
k
2x

2
i

(3) The incompressibility within Mott state leads to  (2d) 

∂�N̂�
∂µ

= 0
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Experimental Signatures 2: Mott Gap 

SF MI

MI MI

Bloch group, 2006

N = 1× 105 N = 1× 105

N = 2× 105 N = 3.5× 105

xy

density: 
“wedding cake”n=1

n=2
• Experiment:

• 3D isotropic trap
• resolve x-y-integrated density profile in z-direction

• total density (grey)
• singly occupied sites (red)
• doubly occupied sites (blue)

• Superfluid region:
• Thomas-Fermi quadratic shape
• resolution of singly and doubly sites from Poissonian 

number statistics for SF state
• Mott insulator region

• e.g. for spherical Mott shells of Radius R at the core 
of the trap, integrated profile:

• profile for inner shell of radius R_2, n=2:

• profile of outer shell of radius R_1, n=1

�
dxdyθ(R2−(x2+y2+z2)) = 2π

�
drrθ((R2−z2)−r2) = πmax(0, R2−z2)

ν(R; z) = const.×max(0, R2 − z2)

ν(R1; z)− ν(R2; z)

ν(R1; z) -- red line 

-- blue line 
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Summary

• Cold bosonic atoms loaded into optical lattices allow to implement an interacting 
many-body system with quantum phase transition with no counterpart in condensed 
matter physics 
• Optical lattices are standing wave laser configurations which couple to atoms via a position 

dependent AC Stark shift
• In an accessible parameter regime the microscopic model for bosonic atoms reduces to a 

single band Bose-Hubbard model with parameters J (kinetic energy) and onsite interaction U
• In such systems, it is possible to realize high densities (O(1)) and strong interactions U>J
• The competition of kinetic and interaction energy g = J/U gives rise to a quantum phase 

transition for commensurate fillings n=1,2,...
• The strong coupling “Mott phase” is an ordered phase (quantized particle number) without 

symmetry breaking
• One characteristic property is incompressibility, which has been observed in experiments
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Effective Lattice Hamiltonian

• Start from our model Hamiltonian, add optical potential:

H =
�

x

�
a
†
x

�
− �

2m
− µ + V (x) + Vopt(x)

�
ax + gn̂

2
x

�

• Periodicity of the optical potential suggests expansion of field operators into localized 
lattice periodic Wannier functions (complete set of orthogonal functions) 

ax =
�

i,n

wn(x− xi)bi,n

• For low enough energies (temperature), we can restrict to lowest band:
band index minimum position

• Then we obtain the single band (Bose-) Hubbard model

H = −J

�

�i,j�

b
†
i bj − µ

�

i

n̂i +
�

i

�in̂i + 1
2U

�

i

n̂i(n̂i − 1)

n̂i = b†i bi

U

J

T, U, J �
�

4V0ER, ER = k2/(2m)→ n = 0

U = g

�
dx|w0(x)|4

J = −
�

dxw∗
0(x)(−�2/2m�− Vopt(x))w0(x− λ/2)
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Cold Atoms in Optical Lattices

Optical Lattices

AC-Stark shift: We consider an atom in its electronic ground state exposed to
laser light at fixed position �x. If the light is far detuned from excited state reso-
nances, the ground state will experience a second-oder AC-Stark shift δEg(�x) =
α(ω)I(�x) with α(ω) the dynamic polarizability of the atom for frequency ω, and
I(�x) the light intensity.

Example: for a two-level atom {|g� , |e�} in the RWA the AC-Starkshift is given
by δEg(�x) = �Ω2(�x)

4∆ with Rabi frequeny Ω and detuning ∆ = ω − ωeg (Ω � ∆).
Note that for red detuning (∆ < 0) the ground state shifts down δEg < 0, while
for blue detuning (∆ > 0) we have δEg > 0.

Single Atom moving in an Optical Potential: If we include the motion of the
atom we derive the Schrödinger Equation

i�∂ψ(�x, t)
∂t

=
�
− �2

2m
∇2 + Vopt(�x)

�
ψ(�x, t) (Vopt(�x) ≡ δEg(�x) = �Ω2(�x)

4∆
),

where the position dependent AC-Stark shift appears as a (conservative) “opti-
cal potential” for the center-of-mass motion of the atom.

(Rem.: decoherence due to spontaneous emission from excited state suppressed
by Γ/∆� 1)

Example 1 FORT: far off-resonant light trap from focused laser beam for red
detuning.

Example 2 Optical Lattice: standing light wave generated by counterpropagat-
ing light beams, e.g. in 1D �E(�x, t) = �eE sin kxe

−iωt + c.c. (k = 2π/λ) so that

Vopt(x) = V0 sin2
kx,

which corresponds to a periodic array of microtraps with lattice period a = λ/2
and lattice depth V0 ∼ |E|2 tunable / controlled by the laser intensity.

Discussion:

Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-
suming ∆ > 0 so that V0 > 0 we have for the lowest states a harmonic oscillator
potential

V (x) = V0 sin2(kx) ≈ V0 (kx)2 ≈ 1
2
mν2

x
2

with trapping frequencyν =
√

4V0ER/� and with recoil frequency ER ≡ �2
k

2
/2m.

(TypciallyER ∼ kHz, and V0 ∼ few tens of kHz.)

(Note: the recoil frequency ER provides a natural energy scale for the depth of
the optical lattice V0/ER � 1.)

The ground state wave function

ψn=0(x) =
�

1
π1/2a0

e−x2/(2a2
0)

has size a0 =
�

�/mν � λ/2, i.e we are in the Lamb-Dicke regime η = 2πa0/λ�
1.

Bloch wave functions and bands (1D): In general the eigen-solutions of the
time-independent Schrödinger equation with periodic potential, Hψnq(x) = �nqψnq(x),
has the form ψnq(x) = e

iqx
unq(x) with (periodic) Bloch wave functions unq(x) =

unq(x + a), q the quasimomentum in the first Brillouin zone −π/a < q ≤ +π/a,
and n = 0, 1, . . . labelling the Bloch bands.

Plots:
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