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Quantum Phase Transitions:
General Overview
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What is a quantum phase transition?

e (Consider a Hamiltonian of the form:

H:H1—|—gH2

dimensionless parameter/\/

* Study the ground state behavior of the energy E'(g) = (G|H|G)

e Quantum phase transition: Nonanalytic dependence of the ground state
energy on coupling parameter g

e Two possibilities:
e parts commute, |[H1, H3] =0 e parts do not commute,[H1, Ha] # 0

E A °® buteigenvalues have crossing E 4 ® eigenvalues crossing develops in
the thermodynamic limit

(3
S
&
&N

~--

__f gap A
EGN {A

: > 5 G : —> g
ge Je

low eigenvalues of H

Literature: Subir Sachdev, Quantum Phase Transitions, Cambridge University Press (1999)
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What is a quantum phase transition?

H = H; +gH>
E A E A
<
¢ : > e : —
gc e

low eigenvalues of H

e The second possibility is more common and closer to the situation in
conventional classical phase transitions in the thermodynamic limit

e The first possibility often occurs only in conjunction with the second (ex:
Bose-Hubbard phase diagram)

e The phase transition is usually accompanied by qualitative change in the
correlations in the ground state
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What is a quantum phase transition?

e We concentrate on second order transitions (as those above)
e characteristic features:

- vanishing of the energy scale separating ground from excited states (gap) at the

transition point

- universal scaling close to criticality, critical exponent

‘I/Zd

A~ ‘g_gc

typical microscopic energy scale (in H)

- diverging length scale describing the decay of spatial correlations at the
transition point

f_l /\f\/ A|g — gc’V

typical microscopic length scale (e.g. lattice spacing)

- the ratio defines the dynamic critical exponent,

A~ g5
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Quantum vs. Classical Phase Transition

e A quantum phase transition strictly occurs only at zero temperature T=0
e Temperature always sets a minimal energy scale, preventing scaling of A
e Generic quantum phase diagram:

T A Disordered - classical description of critical
behavior applies if

s
~
airs
~

.. quantum critical hwiyp < kBT
region ...l

- This is always violated at low enough
" (possibly) ordered T: classical-quantum crossover

line of second order ﬁ .......
phase transitions N

symmetry without symmetry
breaking breaking
*)
9e J

e Phase transitions in classical models are driven by statistical (thermal)
fluctuations. They freeze to fluctuationless ground state at T=0

e Quantum models have fluctuations driven by Heisenberg uncertainty principle

= Quantum critical region features interplay of quantum (temporal) and statistical
(spatial) fluctuations
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Bosons in the Optical Lattice

System: We consider N bosonic particles moving on a lattice (“lattice gas”)
consisting of M lattice sites. The essential ingredients of the dynamics are

e hopping of the bosonic particles between lattice sites (kinetic energy)
e repulsive / attractive interaction between the particles (interaction energy)
e Bose statistics

hopping

interaction

cold atoms in an optical lattice (see below)
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Bose-Hubbard Model

gy
v v —~

- interaction engrgy
kinetic energy trapping potential 7\ /\ /\ /\

e Achieved via coherent manipulation of ultracold atoms. AVL# \0/\/\}//
J

e Ratio of kinetic and interaction energy tunable via lattice parameters (and
Feshbach resonances). In particular, reach interaction dominated regime.

—

e Possible to penetrate high density regime (12;) = (O(1). Not possible in the
continuum.

e The Bose-Hubbard model is an exemplary model for strongly correlated
bosons. It is not realized in condensed matter.

e Remark: strong interactions and high density not in contradiction to earlier scale considerations:

* strong interactions: J/U < 1 mainly from reduction of kinetic energy via lattice depth.
e High density due to strong localization of onsite wave function.
e For validity of lowest band approximation, it is however important that @ << A
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Kinetic vs. Interaction Domination - Limiting Cases

e @Goal: Find the ground state (gs) phase diagram for Bose-Hubbard model (T=0)
e Strategy: (i) analyze limiting cases, (ii) find interpolation scheme
 Restrict to the homogeneous system €; = ()

e Interaction dominated regime: set J = 0 lo | lo | lo | Io | Io |

~ A number eigenstates
- Purely local Hamiltonian: gs many-body wavefunction takes product form
1) = H |P)i
i

= Remains to analyze onsite problem only.

nin); = nin);

- Only onsite density operators occur, with (real space) occupation number eigenstates

= Onsite Hamiltonian also diagonal in this basis: Thus, minimize onsite energy and
find the optimal n for given mu:

for u/U < 0 n=>0 particle number quantization: for ranges of

for 0 < pu/U <1 n=1] the chemical potent_lal (particle reservoir), _the

for 1 < p/U<2 n=2 system draws an integer number out or it:
and so on “Mott states”
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lattice direction

Kinetic vs. Interaction Domination - Limiting Cases

lattice dispersion €q = —2J ) _cosqe),

e Kinetically dominated regime: set U=0 A
H = —JZbTb —uan
(4,5)

- Free bosons at T=0: Bose Einstein condensation!
- See that: Diagonalize with Fourier transformation

T momentum eigenstate
H = Z €q — )b bg oo

e @Ground state wave function: fixed particle number N (M - no. of lattice sites)

bT_O]UaC 1/2ZbT Nvac) I%I

- product state in momentum space, not in position space

e Work in grand canonical ensemble: coherent state with av. density (n;) = N/M

)= [T (075D pac),)

)

Nl/QbT

\*\ olvac) = e

ensures av. particle no.

(N/M)Y2 3, o]

= grand canonical ground state can be written as a product of onsite coherent states
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Intermediate summary

* Hopping J favors delocalizationinreal e [nteraction U favors localization in real
space: space for integer particle numbers:

* Condensate (local in momentum space!) e Mott state with quantized particle no.
e Fixed condensate phase: Breaking of e no expectation value: phase symmetry

phase rotation symmetry intact (unbroken)
<bz> ~ 6190
e Lo f[e]f[e][e]]e]

>

= Competition gives rise to a quantum phase transition as a function of

U/J

= | ink between extremes: position space product ground states, respectively
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Microscopic Derivation of the
Bose Hubbard Model
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Atoms in Optical Lattices < >

extent of atom much smaller
than laser wavelength

ap < A

e AC-Stark shift

- Consider an atom in its electronic ground state exposed to laser light at fixed position .

- Thelight be far detuned from excited state resonances: ground state experiences a second-
oder AC-Stark shift

0E; = a(w)]

with a(w) - dynamic polarizability of the atom for laser frequency w, I B2 - light intensity.
- Example: two-level atom {|g) , |e)}.

Rabi frequency AE = a(@) 4 (I ~|E]?)

NS (Z(O)) 1
— le)

02 :L
o =MiA L ey :

>

.

@ eg @

e — |9 j
L, . I
resonance A=W —weg AC Stark shift red detuned \' blue detuned

detuning from
QRGUA A<0,0E,<0 A>0,0E,>0
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Atoms in Optical Lattices

o standing wave laser configuration: E(Z,t) = €€ sin kz e~ + h.c.
e AC Starkshift as a function of position

/.\ /\ /\ /\ /\ Bloch bands

laser / V laser

hopplng

e The AC Starkshift appears as a conservative potential for the center-of-mass
motion of the atom

V()
1A

W) — (< V) ) 0(ED) (V@) = 0B, (@) =

where the position dependent AC-Stark shift appears as a (conservative)
“optical potential”

Vopt () = Vo sin® kx (k=2m/)\)
for the center-of-mass motion of the atom.

e The potential is periodic with lattice period A\/2, and thus supports a band

structure (Bloch bands). The depth of the potential is proportional to the
laser intensity
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Bloch Theorem for Periodic Potentials

o Consider a Hamiltonian (in 1D) H = %H/(:ﬁ) with periodic potential V (x) =
V(z 4 a). We are interested in the eigenfunctions Hy(z) = Ey(x). (We set
h=1).

o We define a translation operator T' = =% so that T (z) = ¥ (z + a).

- T is unitary, and thus has eigenfunctions T'¢,(z) = €"“¢,(x) with o =
(—m, 7] real.
- Because ¢, (z + a) = e'®¢,(x) we can write ¢, (z) = e*“u,(x) with peri-
odic Bloch functions uq () = uq(xz + a) .
e We have [H,T] = 0, and we can find simultaneous eigenfunctions of { H, T’}

Hopg(x) = Egoq(:v)
Tpqg(z) = e"py(x)

with g € [—7/a, 7 /a]. We call hg quasimomentum.
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Bloch Theorem for Periodic Potentials

e Eigenstates of the Hamiltonian thus have the form

0§ (2) = e ui (z) g € [-n/a,7/a]

and the Bloch functions uff’) (x) are eigenstates of

houg () = ((ﬁ oy (zw) ug” (x) = Mg ()

2m

guantum number of the
eigenstate (-> Bloch

band index) spatial dependence of
\“\ ; wave function
(4
” )( x)

q

P

quasimomentum due to
lattice periodicity
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Solution of Schroedinger Equation for 1D optical lattice
\ [
NNANANL
\ [\ V [
v V

Harmonic approximation (1D): For deep lattices we can ignore tunneling. As-
suming V, > 0 we have for the lowest states a harmonic oscillator potential

1
V(z) = Vysin?(kz) = Vy (kz)° ~ imVQ:I:Z

with trapping frequency v = \/4Vy E'r/h and with recoil frequency /energy Er =
h?k? /2m. (TypciallyEr ~ kHz, and V; ~ few tens of kHz.)

The ground state wave function

1 2 /002
— —x~/(2a5)
¢n20<x) 7_‘_1/2&0 €

has size ag = /h/mv < \/2, and we are in the Lamb-Dicke limit n = 27a¢ /) <
1.
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Band Structure

ga /7 qa/m

Bloch wave functions and bands (1D): In general the eigen-solutions of the
time-independent Schrodinger equation with periodic potential, H,,4(z) = €p4%¥nq(a
has the form 1,,,(x) = €% u,,(z) with (periodic) Bloch wave functions u,,(z) =
unq(x + a), ¢ the quasimomentum in the first Brillouin zone —7/a < q¢ < +7/a,
andn = 0,1, ... labelling the Bloch bands.
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Lowest Two Bloch Bands for V,=5 Eg

7
E/ER
band 6}
: A
separation

5|
WBloch ~ V 4VoER

4l
oscillat\o\r%vel

spacing sl /
bandwidth
4. 4§ ¥
validity: - 05 0 0.5 1 J
lowest bands only qa

duced the Hamiltonian
1= =7 (blbir + bl 1b0) = D" bl

with the tight-binding dispersipn relation

6—2JCO@}W/Q <q<m7/a).

For well separated bands the Bloch band calculation fits this relation well. This
is typically fulfilled for the lowest bands.
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Wannier functions

Wannier functions (1D): Instead of Bloch wave functions we can also work with
Wannier wave functions

a . discrete Fourier
@”))(a;) ~ \ 9 Z Wn (2 — )€™, transform

Tr;=1a

x/a trade
_ e _iqx; quasimomentum
Wn(T @) = \ 27 /_W/a dg ting(v) € for site index
which are localized around a particular lattice site x; = ia with 7 =0, £1, ... .

The Bloch and Wannier wave functions are complete set of functions

Wannier function

WY

harmonic oscillator function
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Bose Hubbard Hamiltonian

Starting point:

Many body Hamiltonian of a dilute gas of bosonic atoms

Hamiltonian

= [#0d@ |- 19+ vii@)| §@) + 5o [ el @ @d@i@

with V(%) a single particle trapping potential (below: the optical lattice), and
g = 2¥% where a is the scattering length.

This is valid under the assumption:
e The gas is sufficiently dilute so that only two body interactions are important,
we can treat the composite atoms as bosons

e The enery / temperature are sufficiently small that two-body interactions re-
duce to s-wave scattering, parametrized by the scattering length a.

e Note: Fermions can be treated analogously: Fermi Hubbard model
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Bose Hubbard Hamiltonian

spatially localized
Wannier functions

We expand the field operators in Wannier functions of the lowest band

() = 3 w(@ = )b, N /\ /\ i\

to obtain the Bose Hubbard model

H = =) Jyblo;+ 10> bl I
17 )

with hopping J;; = [ &zw(Z — ;) [—%VQ + Vo(f)} w(Z — &;) and interaction

U = 1g [z |w(@)|" valid for J,U, kpT < hiwploch.
(tight binding lowest band approximation)

additionally, we are bound to interactions
(scattering lengths) ; extent of Wannier function This is not true close to
g << a,()’ (1 —= — here, it means lattice spacing Feshbach resonances!
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Bose Hubbard Parameters

Parameters as function of laser intensity

) b) 100 ——— 10’
Ua \\
Eas | J/E
10 10
g T
Al 15 25
X Vy/Eg
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Laser Control: Kinetic vs. Potential Energy

e shallow lattice : weak laser

J large
* deep lattice: intense laser

;J smalla

weakly interacting system:
J>U
(kinetic energy >> interactions)

laser parameters
(time dependent)

strongly interacting system:
J<<U
(kinetic energy << interactions)
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Optical Lattice Configurations
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Optical Lattice Configurations

Q
—pP—0 O o O
O O—C Q

square lattice

I

triangular lattice
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Phase Diagram
of the
Bose Hubbard Model

'u/U3.0 d=3
20}

1.0F

00
00 0.010 0020  0.030

J/U
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Mean Field Theory
* Interpolation scheme encompassing the full range J/U.

e Main ingredient: Based on above discussion, construct local mean field Hamiltonian

HMF) _ Zh H=-J]) blb —uznﬂr Uznz

(1,9)

full Bose Hubbard Hamiltonian
hi = —pi; 4+ SUR (R — 1) — J2(0*b; + b)) + Jzp* ¢
“

n; = b);b,,; coordination number

, _ 2z = 2d (cubic lattice)
e Discussion:

e Derivation: Decompose b; = ¢ + 0b; , neglect (5b2§5bj terms, rewrite in terms of b,
e The problem is reduced to an onsite problem
e 17 isthe “mean field”

- information on other other sites only via averages

- if nonzero, assumes translation invariance but spontaneous phase symmetry breaking

e Validity: approximation neglects spatial correlations via local form

- becomes exact in infinite dimensions (Metzner and Vollhardt '89)
- reasonable in d=2,3 (T=0)
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Phase Diagram: Derivation

e Assume second order phase transition and follow Landau procedure:

¢ Study ground state energy

E() = const. +m?[y[* + O([¢]*)

e Determine zero crossing of mass term

e (Calculate E in second order perturbation theory

hy = R + 0V

smallness parameter close
to phase transition

WO = —pi + LUR (R — 1) + J 2™

Vi = Jz(b; + b))
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Phase Diagram: Derivation

e Zero order Hamiltonian h(O) : diagonal in Fock basis {|n)},n =0,1,2, ...

e The eigenvalues are EY = —un+ :Un(n — 1) + Jz¢?
e The ground state energies for given p are

20 _ 0 for p <0
" —un+iURMA — 1)+ Jz¢p? forUm—1) <pu<Un

e The second order correction to the energy is

(2) _ (| V;n)|? n n+1
o %Em) Y = (=) Ua—1) - p—Un

o For E = const. + m?1? + ... the phase transition happens at (ji = 1/ Jz,U = U/ Jz)

m? n n+1
— +

E— =0
Jz Un—-1)—-—p p—Un

Bose-Hubbard phase border
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Phase Diagram: Overall Shape
This gives the phase diagram as a function of /U and J/U.

20} Un—-1)—p p—Un

NB: for non-commensurate (= integer)
fillings, superfluidity persists for U -> O:
excess particles condense.

10}

leflelle]le]le]

“Mott Lobe” 004 —_—
00 0010 0020 0030

===

J/U

Simple picture:

MI: Quantization of particle number SF: Quantization of phase

» [N’ @] — 1”7 - conjugate variables
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Limiting cases: Weak coupling, Superfluid

e Consider site dependent mean fields, h; = —un; + %Uﬁi(m —1) — JZ<,-|7;> (zp;-‘bz- + wjb:f) + const.
e Consider the equation of motion for the order parameter:
- Heisenberg equation of motion for onsite Hamiltonian:

Orp = —ilhi, pl, p = )3, |¢>=H|w>i

- Equation of motion for the order parameter:

10p); = 10str(bip) = —J Z v — pi(ng)y + U(n;b;)

- Weak coupling: assume coherent states b;|1); = ;|v); |1b;) = e~ 1¥il"/2 Z

(71%)
Afi= Z f; — [i lattice Laplacian K K

Gl shift: defines zero of kinetic energy

= At weak coupling, the (lattice) Gross-Pitaevski equation is reproduced
= certain spatial fluctuations are included: scattering off the condensate

= dispersion:
Wq = \/Eq(2U¢*¢ + €q) €q = 2J Z(l — cos aqy)
A
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Limiting cases: Strong coupling, Mott Insulator

e Mean field Mott state : |n) = [, |n:) = n~ /2], by‘\vac): Quantization of particle number
e Discussion:
- Within mean field, Mott-ness follows as a consequence of purity:

* assume mechanism that suppresses SF off-diagonal order: p diagonal, 1 = trp = [, trip; hom.

(> pm)™

x Zero temperature: pure state, 1 = trp? = [], tr;p? hom o pp )™
* only solution is p,, = 0p.n

- Quantization of particle number within Ml is an exact result in the sense <b}LbZ~> =N

«+ at J =0, Mott state |7) is (i) exact ground state, (ii) eigenstate to particle number N = > N,
(iii) separated from other states by gap ~ U

« Kinetic perturbation Hyn = —J 3", ., blb;
« commutes with N, [Hyin, N] = 0

= switching on J adiabatically, the ground state remains exact eigenstate to
number operator. Assuming translation invariance gives exact result

(bib;) =7

- Implication: the Mott insulator is an incompressible state, % —0
U
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Excitation spectrum in the Mott phase

e We are looking for the single particle dispersion relation Wq
This is a dynamical quantity: hard to get within Hamiltonian framework above
Path integral formulation of the Bose-Hubbard model

7 = tre PH = /Da, exp —SpH|a]

S |a] = Sioc|a] + Skinlal

B/2
Sloc [a] — / dr Z [CL;I< ((97 — ,LL)CL@' + %Ua,,’f 2&?} local contribution

—B/2 i
B/2 bi-local contribution; for
% . .
Skin [CL] = dr E tz-jaz- a; nearest-neighbour hopping
—B/2 — o==1
" ti=—T) Sijtoes  A=1,y,z
A
e Discussion: 7 spatial directions

- Nonrelativistic action (on the lattice)

- Note symmetry (T=0): temporally local gauge invariance a; — a;e:*(7). w— 4+ i0-¢(7)
- so far: weak coupling problems J>>U, decoupling in the interaction U

- now: Mott physics, i.e. strong coupling problem U>>J: decoupling in J
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Decoupling in J: Hopping Expansion

Spulal = Sieclal + Skinla]
~ U ~ J
e Goal: treat the strong coupling problem U>>J via decoupling in J
e Hubbard-Stratonovich transformation:
Z = [ Daexp—Sgula] = N [ DaDy exp —Spnla] + [ dr Y, ti; (V] — af) (¢ — ay)
= N [ DaDy exp —Siecla] + [ dr Y, tij (iv; — fa; — ja)= N [ Dy exp —Ser[t)]
Sett[] = [dr Y7ty —loglexp — [dr 37, (¥Fa; + jaf) sy,

(0)s,,. = JDaO exp—Sioola

e Discussion

- Form of intermediate action identical to mean field decoupling above (for site dependent mean
fields)

- The effective action Se[1] can now be calculated perturbatively
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Decoupling in J: Hopping Expansion

e expansion in powers of the hopping
{exp — /dTth‘j(iﬁ%' + 05050 = 1+ Y <[/ dr Y tij(rag +1;a)™) s,
ij m=1 ij

— note: averages of odd powers of a; or a} vanish in the Mott state
e To lowest order, the effective action thus reads

Sonlv) = [ dr 3 01 (s (7) + [ drdr’ 3 st (g (7) sl ()

iji’j’

e Discussion

- the approach is inherently perturbative: no known closed form expression for above average

- the hopping expansion does not lead to an exact solution of the problem: Z = [ D1 exp —Ses[t/]
would need to be calculated for this purpose

- the hopping expansion is closely related to the mean field approximation (see below)
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Quadratic Effective Action

e The correlation functions (a;(7)a’ (7'))s,, can be evaluated explicitly since the local onsite problem is
solved exactly

e The effective action is then, in frequency and momentum space and for nearest neighbour hopping

SR = [ Ly ()G (w, ()

— n+1 n
G (w,q) =€q—€g (—iw?i—;—l-ﬁU + iw—l—u—?ﬁ—l)U) , €q=2J) ) cosqe,

e Evaluating G~'(w = 0,q = 0) reproduces the above mean field result (¢, = Jz): The fluctuations
included here are the same, but their spatial and temporal dependence is resolved within the functional
integral formulation

e The frequency dependence is dictated by the temporally local gauge invariance to —iw —

e The quasiparticle spectrum obtains from the poles of the Green’s function analytically continued to real

frequencies,
|

G w—iw,q) =0
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Excitation Spectrum: Particles and Holes " i=3

20

SF

e Solving G} (w — iw, q) =0 yields the quasiparticle dispersion

&=

wy =-p+Y@2n-1) -2+ é\/eg —2(20 + 1)Ueq + U2 M /U

e For p within the Mott phase, w} > 0 and wg < 0. They correspond to quasiparticle and quasihole
excitations.

e If we are interested in the true excitation spectrum, we need to consider that the quasiholes are prop-
agating backward in time. The true particle and hole excitation energies are therefore

Bf =g = (- p+ §@0—1) - ) + 3/ — 2020+ 1)Ueq + U2

e Generically, both branches of the spectrum are gapped: E;—L:O =0U) >0

e Study the phase border for Jz < U, defined with G~!(w = 0,q = 0) =0 — terit (U) in the upper
branch of the lobe:

. . . . . . n U+Jz
- there is a gapless particle with quadratic dispersion for q — 0, B ~ (1 + U2 5 ge, =
2J >, (1 — cosqey) = Jq?
- there is a gapped hole with gap A = Eq—o = /J22 —2(2n + 1)U Jz + U?
e For the lower branch of the lobe and J> < U, the holes disperse £, ~ Jq? and the particles are
gapped with A ~ U
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'u/U3.0 d=3

Bicritical point: Change of Universality Class

20

e The interpretation in terms of particle and hole excitation only holds for Jz < U

— . J/U
0.0 0.010 0.020 0.030

e In general, at the phase transition there is one gapless mode. Choosing it to set the zero of energy,
the gap of the other mode is given by

A=El_o+E_o=+Jz2—202n+1)UJz+ U?

e Atthe tip of the lobe, U/Jz = 2n+ 1+ /(2n + 1)2 — 1 and thus A = 0: there are two gapless modes
(particle-hole symmetry)

e The excitation spectrum at this point is dominanted by the square root for q — 0 and reads

Ef = 1,/2@n+ 1)U + J2)deq ~ |q

e The spectrum changes form a nonrelativistic spectrum E ~ g2 (dynamic exponent z; = 2) to a rela-
tivistic spectrum E ~ |q| (dynamic exponent z; = 1)

= At a generic point on the phase border, the system is in the z_d = 2 O(2) universality class
= At the tip of the lobe, the system is in the z_d = 1 O(2) universality class
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Bicritical point: Symmetry Argument

e We show that the change in universality class at the tip of the lobe is not an artifact of mean field theory
e The full effective action (including fluctuations) at low energies has a derivative expansion

T[] = /wzaT + Y02+ m?+ Y4+ M) + .

e At the phase transition, we have m? = 0. At the tip of the lobe, we have additionally(vertical tangent)

2
om” _
O

e Using the invariance under temporally the local symmetryy) — ¢e'?™), u — 1 +10,0(7), we find the
Ward identity (¢ = (w, q))

COu O dyr(q)d(q)

b=0ig=0 O(iw) dv*(q)ov(q) ‘w:o;qzo =7

Om? 0 62T ‘ 0 62T

e Thus, there cannot be a linear time derivative ath the tip of the lobe, Z = 0. The leading frequency
dependence is quadratic
== /U

moving in positive mu

roo

00

moving in positive mu
direction suppresses SF

8m2 direction enhances SF
— >0 Om>
o — <0
O
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Experimental signatures 1: Interference

@
» spatial correlation function (bf)[)',) ‘ ® ‘ ‘ ¢ ‘ ‘ © ‘ ‘ © ‘ ‘ © |
> X

superfluid Mott

Ba

> X
off-diagonal long range order: .
. no interference
interference
(’)(T} /)_3) ~ I‘;‘v‘:; Wk <b(',b.f> ~ ”(1()(1.‘3 exp signature
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Interference Patterns
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Experimental Signatures 2: Mott Gap

 The gap in the Mott phase causes staggered structure in density profile

(1) Consider situation
lattice + trapping energy

A
I

(2) Assume local density approximation: local applicability of mean field theory

play) = p—V(z), V(z) = sa;

(3) The incompressibility within Mott state leads to (2d)
n=2

density: “wedding
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Experimental Signatures 2: Mott Gap

density:
g Wwedding cake

* Experiment: n=
e 3D isotropic trap
* resolve x-y-integrated density profile in z-direction
* total density (grey)
* singly occupied sites (red)
* doubly occupied sites (blue)

N =1x10° N =1x10°
£ sl ® +. SF P S, Ml e Superfluid region:
8 .l > .\ | |« Thomas-Fermi quadratic shape
& F o0%% o B L) . . . . .
A oo, Il £ ‘ e resolution of singly and doubly sites from Poissonian
Z # 0, % e number statistics for SF state
0 }goett * te % {} 8'8"° 4  { 88‘; 1 . .
g g #* w1 e Mott insulator region
v SR | e e e.g. for spherical Mott shells of Radius R at the core
s 15| € ot {1 d ] : .
£ £ M wo,, M of the trap, integrated profile:
g 10 f YN ] v(R; z) = const. x max(0, R? — 2?)
& sevgpt °° “ee ] H 1 i
g s L s | gorstibontony 1  profile for inner shell of radius R_2, n=2:
0 ;.,",' o ‘ °z“:°‘ l’»3.0 K 9 ovg,“ I/(Rl; Z) -- red line
Shewte? | otpebob{jeetets] | Belews e profile of outer shell of radius R_1, n=1
-20 -10 0 10 2 -2 -10 0 10 2
2 Position (um) Z Position (um) V(Rl; Z) — V(Rz; Z) -- blue line
N =2x10° N = 3.5 x 10°
Bloch group, 2006 /d:cdy@(RQ—(x2+y2+22)) = 27r/drr0((R2—z2)—r2) = mmax (0, R* —2?)
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Summary

e Cold bosonic atoms loaded into optical lattices allow to implement an interacting
many-body system with quantum phase transition with no counterpart in condensed
matter physics

Optical lattices are standing wave laser configurations which couple to atoms via a position
dependent AC Stark shift

In an accessible parameter regime the microscopic model for bosonic atoms reduces to a
single band Bose-Hubbard model with parameters J (kinetic energy) and onsite interaction U

In such systems, it is possible to realize high densities (O(1)) and strong interactions U>J

The competition of kinetic and interaction energy g = J/U gives rise to a quantum phase
transition for commensurate fillings n=1,2,...

The strong coupling “Mott phase” is an ordered phase (quantized particle number) without
symmetry breaking

One characteristic property is incompressibility, which has been observed in experiments
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Effective Lattice Hamiltonian
harmonic oscillator function

H— /a; ———M+v< )+ Vipt (%) Jax + gi2]

Wannier function

e Start from our model Hamiltonian, add optical potential:

e Periodicity of the optical potential suggests expansion of field operators into localized
lattice periodic Wannier functions (complete set of orthogonal functions)

ax = Y wWp(x

-/

band index minimum position

* For low enough energies (temperature), we can restrict to lowest band:

T,U,J < ViVoEr Er = /@m) —=n=0 N\ [\ [\ [\

* Then we obtain the single band (Bose-) Hubbard model S l #UV \ /
Hea o - n Y a4 Y a0 -1 Y MY
(4,9) i i i

J—— / At () (— 12 /2mA — Ve () wo (@ — A/2)
U:g/dazlwo(aj)]4 : 10’ c——5—40
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Cold Atoms in Optical Lattices

Optical Lattices

AC-Stark shift: We consider an atom in its electronic ground state exposed to
laser light at fixed position Z. If the light is far detuned from excited state reso-
nances, the ground state will experience a second-oder AC-Stark shift 6 E,(Z) =
a(w)I(Z) with a(w) the dynamic polarizability of the atom for frequency w, and
I (%) the light intensity.

AE = a(w)] , (I~ |&]?)

I

— |e) |

|

nonresonant I

laser l
lw, 0]

— |g) ﬁ| ¢

_ I

AC Stark shift red detuned V' blue detuned

Example: for a two-level atom {|g),|e)} in the RWA the AC-Starkshift is given

by 6E,(%) = hﬂif) with Rabi frequeny €2 and detuning A = w — w4 (2 < A).

Note that for red detuning (A < 0) the ground state shifts down /£, < 0, while
for blue detuning (A > 0) we have éE, > 0.
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