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• Proof of principle: Driven Dissipative BEC
• Application I: Nonequilibrium phase transition from competing 

unitary and dissipative dynamics
• Application II: Cooling into antiferromagnetic and d-wave states of 

fermions 
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Condensed Matter
Many-Body States

Quantum Optics
Dissipation/Driving

 Part I: Quantum State Engineering in Driven Dissipative Many-Body Systems

Lecture Overview

Part II: Dissipative Generation and Analysis of 3-Body Hardcore Models

- Collaboration:  H. P. Büchler, A. Daley,  A. Kantian, B. Kraus, A. Micheli, A. Tomadin, 
W. Yi, P. Zoller

- Collaboration:  M. Baranov, A. J. Daley, M. Dalmonte, A. Kantian, J. Taylor, P. Zoller

Main theme: 
Dissipation can be turned into a favorable, controllable 
tool in cold atom many-body systems.

• Mechanism
• Experimental prospects, ground state preparation
• Application I: phase diagram for attractive 3-hardcore bosons
• Application II: atomic color superfluid for 3-component fermions
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Outline Part I: Cold Atoms
Engineering

Condensed Matter
Many-Body States

Quantum Optics
Dissipation/Driving

References:
SD, A. Micheli, A. Kantian, B. Kraus, H.P. Büchler, P. Zoller, Nature Physics 4, 878 (2008); 
B. Kraus, SD, A. Micheli, A. Kantian, H.P. Büchler, P. Zoller,  Phys. Rev. A 78, 042307 (2008)

F. Verstraete, M. Wolf, I. Cirac, Nature Physics 5, 633 (2009)

• Introduction: Open Systems in Quantum Optics

• Driven Dissipative BEC: 
- Mechanism for pure DBEC: Many-Body Quantum Optics
- Physical Implementation of DBEC: Reservoir Engineering, Bogoliubov bath

• Application I: Competition of unitary vs. dissipative dynamics
- first look: weak interactions
- strong interactions: nonequilibrium phase transition 

• Application II: Targeting pure fermion states
- An excited many-body state: η-condensate
- Antiferromagnetic and d-wave fermion states

Quantum State Engineering in Driven 
Dissipative Many-Body Systems
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• thermodynamic equilibrium
- standard scenario of condensed matter & cold atom physics

Quantum State Engineering in Many-Body Systems

• driven / dissipative dynamical equilibrium
- quantum optics

dρ

dt
= −i [H, ρ] + Lρ

master equation

bathsystem
drive

steady state

ρ(t) t→∞−−−→ ρss

!?= |D〉 〈D|

mixed state

pure state (“dark state”)competing dynamics

✓many body pure states / driven quantum phases 
✓mixed states ~ “finite temperature”
✓useful an interesting fermion states

H |Eg〉 = Eg |Eg〉 ρ ∼ e−H/kBT T→0−−−→ |Eg〉 〈Eg|

Hamiltonian (many body) cooling to ground state

✓interesting ground states
✓quantum phases

Liouvillian Engineering:

Hamiltonian Engineering:
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Open Quantum Systems
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system environment / 
bath

continuum bath of 
harmonic oscillatorsHB =

∫
dω ωb†ωbω quantum jump operators

polynomial in system 
operators

Open Quantum Systems

linear bath operator coupling to the system

Three approximations:
(1) Born approximation: 

(2) Markov approximation:

(3) Rotating wave approximation:

drive

system frequency

reservoir bandwidth

|g〉

|e〉

!

detuning
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Open Quantum Systems

bathsystem

➡ Eliminate bath degrees of freedom in second order time-dependent 
perturbation theory (Born approximation)

Liouvillian operator in Lindblad form

Trbath

   effective system dynamics from Master Equation (zero temperature bath)

quantum jump operators

• Structure: second order perturbation theory
• mnemonic: norm conservation
• but: 

➡ Purity is not conserved
➡ go for        

pure state: 

 -- “purity”
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➡ Engineer the jump operators          

• Stochastic Interpretation: Quantum Jumps

quantum jump operators

decay

damped Rabi oscillations

Open Quantum Systems

time evolution of upper state population of driven dissipative two-level system (single run)

|g〉

|e〉

!

• Averaging over “quantum trajectories” generates all correlation functions
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Driven Dissipative BEC
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ρ(t) t→∞−−−→ |g+〉 〈g+|

➡ Driven dissipative dynamics “purifies” the state

|g+〉➡ is a “dark state” decoupled from light

Dark States in Quantum Optics

• Goal: pure BEC as steady state solution, independent of initial density matrix:

• Such situation is well-known quantum optics (three level system): optical pumping 
(Kastler,  Aspect, Cohen-Tannoudji; Kasevich, Chu; ...)

cα|g+〉 = 0

➡ Dark state is Eigenstate of jump operators with zero Eigenvalue
➡ Time evolution stops when system is in DS: pure steady state

ρ(t)−→ |BEC〉〈BEC| for t → ∞
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• Λ-system: three electronic levels (VSCPT by Aspect, Cohen-Tannoudji; Kasevich, Chu)

dark state bright state

• 1 atom on 2 sites

1 2

J

(a†1 + a†2) |vac〉 (a†1 − a†2) |vac〉
symmetric anti-symmetric

pumping into symmetric state

“in-phase” “out-of-phase”

➡ “phase locking”: like a BEC

 ~ dissipative Josephson junction

An Analogy
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Driven Dissipative lattice BEC 

ci j = (a†
i +a†

j)(ai−a j)

• Consider jump operator:

(1) BEC state is a dark state:

(ai−a j)∑
!

a†
! = ∑

!

a†
!(ai−a j)+∑

!

δi!−δ j!

(2) BEC state is the only dark state:

|BEC〉 =
1

N!

(
∑
!

a†
!

)N
|vac〉

•                 has no eigenvalues(a†
i +a†

j)

•                 has unique zero eigenvalue

(ai−a j) ∀i−→ (1− eiqeλ)aq ∀q

(ai−a j)

   nearest neighbours

ci j|BEC〉 = 0 ∀i
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(3) Uniqueness: |BEC> is the only stationary state (sufficient condition)

If there exists a stationary state which is not a dark state, then there must exist a 
subspace of the full Hilbert space which is left invariant under the set {cα}

ρ(t) t→∞−−→ |D〉〈D|

(4) Compatibility of unitary and dissipative dynamics

      be an eigenstate of H, |D〉 H |D〉 = E |D〉

• Long range order in many-body system from quasi-local dissipative operations

• Uniqueness: Final state independent of initial density matrix

• Criteria are general: jump operators for AKLT states (spin model), eta-states 
(fermions), d-wave states (fermions, next lecture)

Driven Dissipative lattice BEC 
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Physical Realization: Reservoir Engineering
A. Griessner, A. Daley et al. PRL 2006;  NJP 2007 

(noninteracting atom)

• much lower energy scales...

• driven two-level atom + spontaneous 
emission

• reservoir: vacuum modes of the 
radiation field (T=0)

• ω∼ 2π×1014Hz

|g〉

|e〉

! ! optical 
photon

atom
laser photon

Quantum optics ideas/techniques
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Physical Realization: Reservoir Engineering
A. Griessner, A. Daley et al. PRL 2006;  NJP 2007 

(noninteracting atom)

• much lower energy scales...

• driven two-level atom + spontaneous 
emission

• reservoir: vacuum modes of the 
radiation field (T=0)

• ω∼ 2π×1014Hz

|g〉

|e〉

! ! optical 
photon

atom
laser photon

Quantum optics ideas/techniques

?
(many body) cold atom systems
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• driven two-level atom + spontaneous 
emission

• reservoir: vacuum modes of the 
radiation field (T=0)

•

BECBEC |0〉

|1〉

“phonon”

• trapped atom in a BEC reservoir

laser assisted atom + BEC collision

Physical Realization: Reservoir Engineering
A. Griessner, A. Daley et al. PRL 2006;  NJP 2007 

(noninteracting atom)

ω∼ 2π×1014Hz ωbd ∼ 2π× kHz

|g〉

|e〉

! ! optical 
photon

atom
laser photon
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• driven two-level atom + spontaneous 
emission

• reservoir: vacuum modes of the 
radiation field (T=0)

•
• reservoir: Bogoliubov excitations of the BEC 

(at temperature T)

•

BECBEC |0〉

|1〉

“phonon”

• trapped atom in a BEC reservoir

laser assisted atom + BEC collision

Physical Realization: Reservoir Engineering
A. Griessner, A. Daley et al. PRL 2006;  NJP 2007 

(noninteracting atom)

ω∼ 2π×1014Hz ωbd ∼ 2π× kHz

|g〉

|e〉

! ! optical 
photon

atom
laser photon
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1 2

Ω b†(a1−a2)+h.c.

a1 a2

b   Rabi frequency

(1)  Coherent excitation with opposite 
sign of Rabi frequency

   antisymmetric

Physical Realization
   Schematic

• level structure: optical superlattice

   In practice

laser

ci j = (a†
i +a†

j)(ai−a j)

• coherent excitation: Raman laser
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1 2

a1 a2

b

reservoir 

(2)  Dissipative decay back: 
coupling of upper level to reservoir

κ(a†
1 +a†

2)b∑
k

(rk + r†
k)

   symmetric

Physical Realization
   Schematic    In practice

laser

BEC = reservoir of
Bogoliubov excitations

• coupling to system: interspecies interaction   

➡                       :  effective 
zero temperature reservoir
TBEC! ωbd

• short coherence length in bath provides quasi-local dissipative 
processes, but not mandatory for our setup to work

ωbd

ci j = (a†
i +a†

j)(ai−a j)
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1 2

(3) adiabatic elimination of auxiliary 
level, trace out the bath

 Effective single band jump operators

c12 = (a†
1 +a†

2)(a1−a2)

Physical Realization

• Long range phase coherence from quasi-local 
dissipative operations

• - Coherent drive: locks phases
- Dissipation: randomizes
- Conspiracy: purification

• The coherence of the driving laser is mapped 
on the matter system

• Setting is therefore robust

Comments:

Many sites: Array of dissipative junctions
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Competition of unitary vs. dissipative 
dynamics
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• 3D:     true (depleted) condensate, fixed phase: Bogoliubov theory
• 1,2D:   phase fluctuations destroy long range order: Luttinger theory

Effects of finite interactions

 treating interactions in 

interacting Hamiltonian 
dynamics not compatible

Competition 

dissipative dynamics 
favors pure BEC state

dρ

dt
= −i [H, ρ] + Lρ

H = −J
∑

<i,j>

a†iaj + U
∑

i

a†2i a2
i

• weak coupling 

• Strong coupling, 3D
• mixed state Gutzwiller Ansatz
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Weak Coupling: Linearized jump operators

• momentum space jump operators are nonlocal nonlinear objects

• In a linearized theory the reduce to (any dimension)

• bosonic mode operators: depopulation of momentum q in favor of condensate
• zero mode explicit:
• lead to momentum dependent decay rate 

cq,λ =
1

Md/2 ∑
k

(1+ eikeλ)(1− e−i(k+q)eλ)a†
kak+q

cq,λ = fq,λaq fq,λ = 2
√

n(1− e−iqeλ)

κq = ∑
λ

κ| fq,λ|2 ∼ q2

• Interpretation:

fq=0,λ = 0

k+q

k

momentum

q

k = 0

accumulation
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Many-Body Master Equation

Eq

κq

π
a

−π
a

•  Interpretation: How close are we 
to the GS of the Hamiltonian?

q

+ anticommutator term

generalized Bogoliubov coefficients

Bogoliubov / hydrodynamic excitation

∂tρ =−i
E
2

[d†d,ρ]

squeezing“heating”“cooling”

+2κ(u2dρd† + v2d†ρd−σuv(d†ρd† +dρd)

cf. thermal reservoir 

v2
q, u2

q = v2
q +1

N, N +1

➡  Intrinsic heating/cooling, though reservoir is at T = 0

linear sound mode

•  Diagonalize H
• consider equation for single mode
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 Characterization of Steady State: Density Operator 

• linearized ME exactly solvable: Gaussian density operator 
   for each mode expressible as

➡ mixed state with

〈d†
qdq〉

‣role of temperature played by interaction

• at low momenta, resemblance to thermal state:

ρk = exp
(
−βkb†

kbk
)

 with squeezed operators b (Bogoliubov transformation)

coth2 (βk/2) =
κ2

k +(εk +Un)2

κ2
k +E2

k

βk ≈
Ek
Teff

, Teff =
Un
2

κq

Eq

π
a

−π
a

q
linear sound mode
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Correlations in various dimension: 3D
• Steady state: condensate depletion:

• Approach to the steady state: 

• power-law: Many-body effect due to mode continuum
• sensitive probe to interactions: cf. for noninteracting system

n0,eq−n0(t)∼
√

Un
8J

1
2κn

t−1

n0,eq−n0(t)∼ t−3/2

• universal at late times

• small depletion justifies Bogoliubov theory
• squeezing and mixing effects tied to interaction strength (unlike th. equilibrium)

nD = n−n0 =
1
2

Z dq
v0

(Un)2

κ2
q +E2

q
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• steady state well understood as thermal Luttinger liquid
• similar results for temporal correlations (from ME via quantum regression theorem)
• weak effect of dissipation on phase fluctuations: 

• Steady State: quasi-condensates in low “temperature” phase

E q ∼ |q|,κ q ∼ q2

Correlations in various dimension: 1/2D

TKT = πJn! Teff Teff = Un/2 x0 = 2κn(TeffJ)−1/2

Kosterlitz-Thouless temperature 
of 2D quasi-condensate

Dissipative coupling: 
only sets cutoff scale  

〈a†
xa0〉 ∼ 〈exp i(φx−φ0)〉 ∼

{
e−

Teff
8Jn x, d = 1

(x/x0)−Teff/4TKT , d = 2
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• Buildup of spatial correlations from disordered state

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

{
e−|x|/ξ t = 0

(x/x0)
− Teff

4TKT e−
x2

4ξ
√

πκnt t → ∞
Ψt(x,0)∼

 broadening of Gaussian governed 
by time-dependent length scale 

xt = 2(πξ2κnt)1/4

2D: Real Time Evolution
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Strong Coupling: Nonequilibrium Phase Transition

•  Analogy to Mott insulator / Superfluid quantum phase transition : 

✓phase transition (temperature T)

✓quantum phase transition (g)

• Differences: 

with A. Tomadin

➡ Expect phase transition as function of 

• enhancement of superfluidity:            Hopping J              driven dissipation 

• suppression of superfluidity:              interaction U         interaction U  

➡ Competition of two unitary evolutions vs. competition of unitary and dissipative evolution
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• Interaction U favors localization in real 
space for integer particle numbers: 

• Mott state with quantized particle no.
• no expectation value: phase symmetry intact 

(unbroken)

• Hopping J favors delocalization in real space: 
• Condensate (local in momentum space!)
• Fixed condensate phase: Breaking of phase 

rotation symmetry

➡ Competition gives rise to a quantum phase transition as a function of 

〈bi〉 ∼ eiϕ

U/J

Reminder: Mott Insulator-Superfluid Phase Transition
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• Interpolation scheme encompassing the full range        .  
- Main ingredient: product wave function ansatz

J/U

• Validity: approximation neglects all spatial correlations
- becomes exact in infinite dimensions
- reasonable in d=2,3 (T=0)

|ψ〉 =
∏

i

|ψ〉i, |ψ〉i =
∑

n

f (i)
n |n〉i, i〈ψ|ψ〉i = 1∀i

wave function normalization

fn = δn,m

fn =
√

N/n!e−N/2

complex amplitudes

Mott state Coh. state: Poisson Statistics

Reminder: Gutzwiller Ansatz

- Limiting cases (homogeous, drop site index, amplitudes chosen real): 

• Mott state with particle number m: 
• coherent state:
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Mixed State Gutzwiller Approach

Interpretation:
✓ off-diagonal: SF
✓ diagonal: atom statistics

Br = {n̂, b, b†, 1}

Γr,r′
=





〈n̂2〉 〈b†n̂〉 −〈bn̂〉 −〈n̂〉
〈n̂b〉 〈n̂〉 −〈b2〉 〈b〉

−〈n̂b†〉 −〈b†2〉 〈n̂〉 + 1 〈b†〉
−〈n̂〉 −〈b†〉 〈b〉 〈1〉





Properties of ME:
✓ trace conserving
✓ mean particle number 

conserving

ρ(t) = ∏
i

ρi(t), ρi(t) = ∑
nm

|n〉i〈m|ρ(i)
nm(t)

ρ̇ = −i
[
−ZJ(〈b〉b† + 〈b†〉b)+ 1

2Ub†2b2,ρ
]

+Zκ∑r,r′ Γr,r′
{

2BrρB†r′ −B†r′Brρ−ρB†r′Br
}

➡  Nonlinear Mean Field Master Equation for reduced density operator (drop index)

ρk = Tr!=k ρ

with correlation matrix

• Product ansatz for the density operator (instead of wave function)

• Project on on-site density operator: 

• Nonlinearity emerging in approximation to linear qm equation: similar GP 
equation
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•            : pure coherent state solution 
• Phase transition: Non-analyticity develops for
• above critical point: thermal state: “fixed temperature” given by mean particle density N; 

no other scale appears
• No signatures of Mott physics due to strong mixing effect of U: unlike Bose-Hubbard 

case of two unitary tendencies at T=0: 
• no superfluid:

• purity at T=0:
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0

0.2

0.4
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S
/S

n̄

U/zK
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superfluid thermal 
state

time
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interaction U
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superfluid thermal 
state

time

ρn,n =
n̄n

(n̄ + 1)n+1

t→ ∞
U → 0

Driven Dissipative Phase Transition
• Dynamic generation of the phase transition from initial coherent state

Mott state
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Exact calculations for N=6 sites
A. Tomadin
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Nonequilibrium Phase Diagram

stable condensate

stable thermal

unstable
condensate

unstable

thermal

• Initialization: Coherent state, U=J=0

• follow time evolution of the system

• U/K transition:
- interaction driven (like quantum PT)
- terminates in thermal state (like classical finite temperature PT)

•   Add negative J (via phase imprinting): further competition through dynamical instability
- no stable equilibrium state (no dynamical fixed point)
- dynamical limit cycle?

dynamically unstable: 
negative curvature of 
dispersion

dynamically stable: 
positive curvature of 
dispersion

π/a

π/2a

Classification?

dynamically 
unstable
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Dissipative Driving of Fermions

- Excited states: η Condensate
- Cooling into Antiferromagnetic and d-Wave States
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• η-state: exact excited (i.e. metastable) eigenstate of the two-species 
Fermi Hubbard Hamiltonian in d dimensions [Yang ’89]

H(η†)N |0〉 = NU(η†)N |0〉

η-particle

exact eigenstate,
off-diagonal long range order

Cooling to Excited States: η-Condensate 

η† =
1

Md/2 ∑
i

φiη†
i

η†
i = f †

i↑ f †
i↓

φi =±1

η-condensate• local “doublon”

• checkerboard superposition

• N-η-condensate: 

H = −J ∑
〈i, j〉,σ

f †
iσ f jσ +U ∑

i
f †
i↑ f †

i↓ fi↓ fi↑

Thursday, October 22, 2009



• Small scale simulations (open BC) demonstrate η condensation for jumps

• Interpretation: Quantum Jump picture

c(1)
i j = (η†

i −η†
j)(ηi +η j)

c(2)
i j = ni↑ f †

i↓ f j↓ +n j↑ f †
j↓ fi↓

Cooling to Excited States: η-Condensate 

• H generates spin-up and down configurations on each pair of sites 
(for any initial density matrix)

•        associates into local doublons

•        creates checkerboard superposition: η condensate

c(2)
i j

c(1)
i j

➡ May be conceptually interesting
➡ However, these jump operators are two-body: difficult to engineer
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• High temperature superconductivity
- discovered in 1986 (Müller, Bednorz): cuprates show 

superconductivity at unconventionally high temperature 
- riddle: attraction from repulsion

• microscopically, strong Coulomb onsite repulsion 
• still, observe pairing of fermions with d-wave symmetry

• Minimal model: 2d Fermi-Hubbard model 

- realistic for cuprate high-temperature superconductors?
- hard to solve: strongly interacting fermion theory

• no controlled analytical approach available
• numerically (classical computer) intractable

Experimental phase diagram 
for cuprates

➡ Quantum simulation of the Fermi-Hubbard model in optical lattices?

Motivation: Cooling Fermion Systems
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Quantum Simulation of Fermion Hubbard model

• Clean realization of fermion Hubbard model possible
• Detection of Fermi surface in 40K (M. Köhl et al. PRL 94, 080403 (2005))

• Fermionic Mott Insulators (R. Jördens et al. Nature 455, 204 (2008); U. 
Schneider et al., Science 322, 1520 (2008))

• Cooling problematic: small d-wave gap sets tough requirements 

• Existing proposal: Adiabatic quantum simulation (S. Trebst et al. PRL 96, 250402 (2006))

• Start from a pure initial state of noninteracting model
• Adiabatically transform to unknown ground state of interacting model
• Concrete scheme: find path protected by large gaps: 

• prepare RVB ground state on isolated 2x2 plaquettes

• couple these plaquettes to arrive at many-body ground state

Unitary continuum Fermi gas SF transition

Current lattice experimentsCritical temperature 
for d-wave SF

BCS superconductors

➡ Still need to be 10-100x cooler  
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•  Roadmap: 
(1) Precool the system (lowest Bloch band)

(2) Dissipatively prepare pure (zero entropy) state close to the expected ground state: 
- energetically close
- symmetry-wise close
- spin-wise close

(3) Adapted adiabatic passage to the Hubbard ground state 
- switch dissipation off
- switch Hamiltonian on

Dissipative Quantum State Engineering Approach

Precooling Dissipative Cooling
Adapted 
adiabatic 
passage
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The State to Be Prepared 

- phase coherence: delocalization of singlet pairs

- pairing in the singlet channel

- transformation under spatial rotations: “d-wave”

•  What does the state have in common with the expected 
Hubbard ground state 

d-wave SC

(1) Quantum numbers

Pauli matrix 

two-component spinor mean field (product) state

➡ The state shares the symmetries of Hubbard GS
➡ No phase transition will be crossed in preparation process

- in the talk, we mainly consider 1-dimensional analog for simplicity: 

++-

-
...

...
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The State to Be Prepared 

- off-site pairing                     avoids excessive 
double occupancy

- the pairs are quasi-local, i.e. have a short 
coherence length in accord with observation 
in cuprates

•  What does the state have in common with the expected 
Hubbard ground state 

(2) Energetically close? Not known, but: 

Pauli matrix 

two-component spinor mean field (product) state

➡ State can be expected to be convenient starting point not too close to half filling

doping not too close to AF 

cf onsite pairing: 
superfluidity decreases 
due to strong correlations 

(A. Paramekanti, N. Trivedi, M. 
Randeria, PRB 70, 054504 (2004))
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Relation to the BCS Wavefunction 

•usually, fixed phase (coherent state) wave function
Fixed particle number 
wavefunction 

BCS amplitude
BCS gap

dispersion

chemical 
potential

• distinct limits:

- localized in momentum space
- delocalized in position space 
- delocalized in momentum space
- localized in position space 

“BCS limit”

“BEC / molecular 
limit” 

•  Relation to our state: 

➡ State shares the symmetries, but can be energetically very different

“BCS limit”

“BEC/molecular limit”
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Setting

• Goal: Construct jump operators with unique mean field dark states: 

mean field (product) state

(sufficient for normal 
ordered jump operators)solve: 

• Requirements for implementation:

• non-hermitian
• particle number conserving
• quasi-local: j close central site i
• single-particle operation

dark state

this is what the eta 
operators suffered from!
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• Antiferromagnetic “Neel state” is a product of AF “unit cell” operators 

• Set of jump operators (one dimension):

doubly degenerate

• Action of jump operators
•       : Pauli blocking

•       :  spin transport

bipartite lattice with sublattices A,B

0

flip!

flip!

Pauli matrices 

Antiferromagnetic Jump Operators

• Construct jump operators for antiferromagnetism as a preparation
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d-Wave Jump Operators

homogeneous product but delocalized pairs

• Second equality: interpret the state as a symmetrically delocalized AF
• Set of jump operators:

shift invariance

• Action of jump operators
•       : Pauli blocking

•       : spin transport
• both: phase coherence via 
delocalization

flip & 
delocalize

➡ Combine fermionic Pauli blocking with delocalization as for bosons
➡ Pauli blocking is the reason for single particle nature of operators

• Rewrite the d-wave state in terms of AF unit cell operators:
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Uniqueness

• Recall: Unique dark state <-> state reached independent of initial condition

• Evidence for uniqueness from small scale numerical simulations 
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• Understanding can be gained from symmetry considerations

• H is semi-positive 
• an exact GS is the above d-wave (E=0)
• unique iff no symmetry T such that 

• Symmetries: 
- Translations
- global phase rotations U(1)
- global spin rotations SU(2) for                     ,

- additional discrete symmetry on bipartite lattice for             spoils uniqueness 

• Uniqueness of dark state equivalent to uniqueness of ground state (GS) of 

Uniqueness

d-wave is an 
eigenstate to these

SU(2) symmetry; 
the jump operators 
are SU(2) vectors

➡ Avoid symmetries
➡ All three operators needed for uniqueness

bipartite (periodic BC) not bipartite (PBC)

A

A B

AB B

-> effective Hamiltonian
[ ]
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Comments on the effective Hamiltonian

• H is semi-positive 
• an exact unique GS is the above d-wave state(E=0)
• GS is GS for each      separately: projectors on GS

• Amusing parallel: Above Hamiltonian is a parent Hamiltonian for the d-wave state

➡ completely analogous to e.g. AKLT model
➡ there, ground state is valence bond solid with exponentially decaying correlations 
➡ different: state has long range order due to strong delocalization
➡ study excitations

• mean field decoupling

• “diagonal” contributions              from normal ordering 

order parameter-like structure: 
macroscopically populated
-> replace by c-number mean field
(-> loose particle number cons.) single fermion gap 

➡ single fermion excitations are gapped: important for adabatic passage
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• Any pairing product state can be characterized by 3 quantum numbers 

pairing momentum pairing distance

• Jump operators constructed for all k, mu, and n >0 (displayed just for completeness...)

➡ arbitrary n > 0 pairing states can be targeted
➡ d-wave not distinguished, but off-site pairing special
➡ symmetries of the state inherited by the parent Hamiltonian 

Arbitrary phase coherent pairing states

• Examples: s-wave BCS
eta-state
d-wave like state
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Implementation of d-wave jump operators

• Decisive property: single-particle nature of the jump operators 
• Implement Fourier transformed operators: 

• Basic physical ingredients: 
• Dissipation: Emission in cavity 
• Use Earth Alkaline atoms in 
state dependent superlattice

• Engineering requirements:
• Spin imprinting: Light Polarization
• Momentum transfer: Laser angle 
(incoherent beams)
• cos q dependence: Quantum 
Interference 

Lattice system: xy plane
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Implementation of d-wave jump operators

• Level scheme: Earth Alkaline atoms

 momentum transfer

spin imprinting

physical spin 

spont. emission: 
cavity mode 

atom confinement 
via optical lattice 

Bloch bands

Quantum Interference:

cos q: onsite 
processes 
interfere 
destructively
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➡ Adapted adiabatic passage: Two ingredients
• gap protection from auxiliary Hamiltonian

• parent Hamiltonian has d-wave eigenstate and is 
gapped: add detuning to the effective Hamiltonian

• probabilistic ground state preparation
• dissipative and Hubbard dynamics compete
• focus on time before first jump: state prepared with  

probability

fidelity to Hubbard GS

?

preparation probability

Adapted Adiabatic Passage
Adapted 
adiabatic 
passage

ramp parameters

• Assume we have prepared zero entropy d-wave
• Want to connect to Hubbard ground state
• Adiabatic passage (purely Hamiltonian dynamics):

ramping slowly: remain in 
ground state
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• Pure states with long range correlations from quasilocal dissipation

• Many-body dark state, independent of initial density matrix

• Laser coherence mapped on matter system

• System steady state has zero entropy

• Nonequilibrium phase transition driven via competition of unitary and dissipative dynamics

• driven by interactions (like quantum phase transition)

• terminates into thermal state (like classical phase transition)

•  Strong potential applications for fermionic quantum simulation

• cool into zero entropy d-wave state as intial state for Fermi-Hubbard model

• single particle operations due to Pauli blocking

• realistic setting using earth alkaline atoms in a cavity

Summary Part I

Cold Atoms
Engineering

Condensed Matter
Many-Body States

Quantum Optics
Dissipation/Driving

By merging techniques from quantum optics and many-body systems: 
Driven dissipation can be used as controllable tool in cold atom systems.
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Optical Lattices

∆ < 0, δEg < 0 ∆ > 0, δEg > 0detuning from 
resonance

∆ = ω − ωeg

Rabi frequency

Ω! ∆

Cold Atoms in Optical Lattices

Optical Lattices

• AC-Stark shift
- Consider an atom in its electronic ground state exposed to laser light at fixed position !x.
- The light be far detuned from excited state resonances: ground state experiences a second-

oder AC-Stark shift
δEg = α(ω)I

with α(ω) - dynamic polarizability of the atom for laser frequency ω, I ∝ !E2 - light intensity.
- Example: two-level atom {|g〉 , |e〉}.

• For standing wave laser configuration !E(!x, t) = !eE sinkx e−iωt + h.c., AC-
Stark shift is a function of position: It generates an optical potential

Vopt(!x) ≡ δEg(!x) = !
Ω2(!x)

4∆

Example: for a two-level atom {|g〉 , |e〉} in the RWA the AC-Starkshift is given
by δEg(!x) = !

Ω2("x)
4∆ with Rabi frequeny Ω and detuning ∆ = ω − ωeg (Ω $ ∆).

Note that for red detuning (∆ < 0) the ground state shifts down δEg < 0, while
for blue detuning (∆ > 0) we have δEg > 0.

Optical Lattice (here 1D):

• standing wave laser configuration: !E(!x, t) = !eE sin kx e−iωt + h.c.

• AC Starkshift as a function of position
• The AC Starkshift appears as a conservative potential for the center-of-mass

motion of the atom

i!
∂ψ(!x, t)

∂t
=

(

−
!2

2m
∇2 + Vopt(!x)

)

ψ(!x, t) (Vopt(!x) ≡ δEg(!x) = !
Ω2(!x)

4∆
)

where the position dependent AC-Stark shift appears as a (conservative)
“optical potential”

Vopt(x) = V0 sin2 kx (k = 2π/λ)

for the center-of-mass motion of the atom.
• The potential is periodic with lattice period λ/2, and thus supports a band

structure (Bloch bands). The depth of the potential is proportional to the
laser intensity

2

δEg = ! Ω2

4∆

Cold Atoms in Optical Lattices

Optical Lattices

• AC-Stark shift
- Consider an atom in its electronic ground state exposed to laser light at fixed position !x.
- The light be far detuned from excited state resonances: ground state experiences a second-

oder AC-Stark shift
δEg = α(ω)I

with α(ω) - dynamic polarizability of the atom for laser frequency ω, I ∝ !E2 - light intensity.
- Example: two-level atom {|g〉 , |e〉}.

• For standing wave laser configuration !E(!x, t) = !eE sinkx e−iωt + h.c., AC-
Stark shift is a function of position: It generates an optical potential

Vopt(!x) ≡ δEg(!x) = !
Ω2(!x)

4∆
≡ V0 sin2 kx (k = 2π/λ)

Example: for a two-level atom {|g〉 , |e〉} in the RWA the AC-Starkshift is given
by δEg(!x) = !

Ω2("x)
4∆ with Rabi frequeny Ω and detuning ∆ = ω − ωeg (Ω $ ∆).

Note that for red detuning (∆ < 0) the ground state shifts down δEg < 0, while
for blue detuning (∆ > 0) we have δEg > 0.

Optical Lattice (here 1D):

• standing wave laser configuration: !E(!x, t) = !eE sin kx e−iωt + h.c.

• AC Starkshift as a function of position
• The AC Starkshift appears as a conservative potential for the center-of-mass

motion of the atom

i!
∂ψ(!x, t)

∂t
=

(

−
!2

2m
∇2 + Vopt(!x)

)

ψ(!x, t) (Vopt(!x) ≡ δEg(!x) = !
Ω2(!x)

4∆
)

where the position dependent AC-Stark shift appears as a (conservative)
“optical potential”

Vopt(x) = V0 sin2 kx (k = 2π/λ)

for the center-of-mass motion of the atom.
• The potential is periodic with lattice period λ/2, and thus supports a band

structure (Bloch bands). The depth of the potential is proportional to the
laser intensity

2

V0
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Effective Lattice Hamiltonian

• Start from our model Hamiltonian, add optical potential:

H =
∫

x

[
a†x

(
− "

2m
− µ + V (x) + Vopt(x)

)
ax + gn̂2

x

]

• Periodicity of the optical potential suggests expansion of field operators into 
localized lattice periodic Wannier functions (complete set of orthogonal functions) 

ax =
∑

i,n

wn(x− xi)bi,n

• For low enough energies (temperature), we can restrict to lowest band:
band index minimum position

• Then we obtain the single band Bose-Hubbard model

H = −J
∑

〈i,j〉

b†i bj − µ
∑

i

n̂i +
∑

i

εin̂i + 1
2U

∑

i

n̂i(n̂i − 1)

n̂i = b†i bi

U

J

T, U, J !
√

4V0ER, ER = k2/(2m)→ n = 0

U = g

∫
dx|w0(x)|4

J = −
∫

dxw∗
0(x)(−!2/2m"− Vopt(x))w0(x− λ/2)
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