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We shall critically address a widespread stance  

in contemporary (philosophy of) physics,  

namely the thesis according to which gauge symmetries  

are deprived of any ontological or physical content.



Gauge symmetries would be nothing but a mere mechanism  

by means of which we can get rid  

of the « surplus structure » (Redhead) or the mathematical/descriptive redundancy 

associated to the different re-coordinatizations  

of a unique physical (i.e. coordinate-independent) situation 

described by gauge invariant quantities  

(Dirac observables, i.e. functions on the reduced phase space).



According to this « transcendental » position  

gauge symmetries should not be attributed to « nature in itself », 
  

but rather to the symbolic means  

by means of which  

we constitute an objective description of nature. 



« Transcendental » approaches 
  

to the problem of understanding gauge symmetries 
  

might be a philosophical obstacle 
  

to the comprehension of the gauge revolution,  

even if they did play an important role in the early days of gauge theories  

in the framework of  Weyl’s « purely infinitesimal program » 

(c.f. T. Ryckman, The Reign of Relativity & his talk).



The « transcendental » interpretation of gauge symmetries  

has to face the problem of explaining  

the physical consequences of gauge symmetries:  

.Heuristic gauge argument (local gauge invariance dictates the introduction of 
gauge fields, albeit not still dynamical).  

.Topological solutions (e.g. monopoles, instantons, etc.). 

.Relation between gauge symmetries and renormalization.  

.An uncareful removal of gauge symmetries might lead to pathological or « bad » 
quotient spaces.



Conjecture: 

This resistance to accept  

that gauge symmetries might have  

a physical/ontological content is a particular instance 

of a more general « epistemological obstacle »  

in the history of philosophy 

associated to a moment in which philosophers were confronted  

to a particular form of « irrationality ».  



Leibniz’s Question  



Can two numerically different entities be 

qualitatively identical?  



Leibniz’s Principle of Identity of Indiscernibles (PII) 

states that such differences « solo numero »  

are not possible: 

Every numerical difference has to result from a qualitative difference. 

Perfect copies or clones of a given entity are forbidden.



Concomitant question: What does confer individuality upon entities? 

According to PII,  

intrinsic properties or qualities provide a sufficient criterion to individuate entities,  

i.e. there is no further individuation beyond the individuation provided by qualities. 



Now, as Leibniz noted,  

this principle is not endowed  

with any form of a priori logical necessity  

(we can conceive possible worlds  

with entities differing solo 

numero; c.f. M. Black example)



Moreover, Leibniz himself 

refused the validity of PII  

for mathematical entities (!!!):  

``[...] in nature, there cannot be two individual things that differ in number 
alone. And thus, perfect similarity is found only in incomplete and abstract 
notions, where things are considered [in rations veniunt] only in a certain 
respect, but not in every way, as, for example, when we consider shapes 

alone, and neglect the matter that has shape. And so it is justifiable to 
consider two similar triangles in geometry, even though two perfectly 

similar material triangles are nowhere found.'' 

  



However, there seems to be a strong resistance  

in philosophy of physics and mathematics  

to accept the possibility of rejecting PII.   



Now, Leibniz’s question is intimately related  

to a central problem in (the philosophy of) mathematics,   

namely the problem of understanding propositions of the form  

a = b,  

i.e. propositions that state  

— somehow paradoxically —  

that two different things are equal.  



And most of the interpretations of statements of the form a = b  

preserve the validity of PII:  

-nominalistic (Frege, Quine):  

a and b are different names of the same thing. 

-transcendental (Kant):  

a and b denote different ways of thinking about the same thing. 

-equivalence relations (Whitehead, Bradley):  

a and b are qualitatively different things  

that are equivalent only in a certain respect.    



None of these interpretations consider expressions 

  

of the form a = b at face value: 

  

stating that two (numerically) different things  

are equal.   



Moreover, the very set-theoretic « foundations » of mathematics  

does not allow for propositions of the form  

A = B  

for two numerically different sets. 



Indeed, if A and B denote sets, either  

or  

A=B  

(if they have the same elements),  

which means that there are not in reality two sets,  

but only one which may be referred to as either A or B.  

A 6= B



All in all, endorsing PII 

entails an epistemic-transcendental trivialization 

  

of propositions of the form 

a = b   



But, why does it seem to be so important  

to cling to this principle?  

Why some philosophers are so resistant  

to accept the possibility  

of differences «  solo numero »?



If PII were not valid,  

then we would be confronted  

to indexical differences  

that are not grounded  

on qualitative or property-based differences.



In Wittgenstein’s terms,  

we would be confronted to differences  

that can be shown or exhibited 

but that cannot be said.  

We would be confronted  

to the very limits of language !



In Adam’s and Weyl’s terms,  

we would be confronted to an irreducible thisness  

(exposed by means of an « intuitive exhibition ») 

that cannot be translated into a suchness  

(defined by a « conceptual determination »). 



Rather than taking this irreducible thisness at face value 

and fully accepting this ontological breakdown of PII,  

Weyl understands this irreducible « thisness »  

as a « residue »  of the phenomenological ego,  

i.e. of the subject of absolute immediate experience out of which  

objective knowledge is constituted  

by means of « symbolic construction ».



« A conceptual fixation of points by labels […] that would 
enable one to reconstruct any point when it has been lost, is 

here possible only in relation to a coordinate system, or frame 
of reference, that has to be exhibited by an individual 

demonstrative act. The objectification, by elimination of the 
ego and its immediate life of intuition, does not fully succeed, 
and the coordinate system remains as the necessary residue of 

the ego extinction. »  

H. Weyl, Philosophy of Mathematics and Natural Science, p.75.    



Weyl’s analysis resumes Kant’s take on Leibniz’s principle:  

the possibility of having numerically different  

and qualitatively identical entities 

(the effective breakdown of PII)  

results from the transcendental conditions of possibility  

of human sensibility (space and time), 

which are heterogenous with respect  

to the purely conceptual determinations  

of the human understanding.    



« […] if the object is appearance, then comparison of concepts does not 
matter at all; rather, however much everything regarding these concepts 

may be the same, yet the difference of the locations of these appearances 
at the same time is a sufficient basis for the numerical difference of the 

object (of the senses) itself. […] Leibniz took appearances to be things in 
themselves, and hence to be intelligibilia, i.e., objects of pure 

understanding […]; and thus his principle of the indistinguishable 
(principium identitatis indiscernibilium) could indeed not be disputed. 
But since appearances are objects of sensibility […] space itself-as the 

condition of outer appearances-already indicates plurality and numerical 
difference. » 

I. Kant, Critique of Pure Reason, A264-B320.   



Both in Kant and Weyl, the possibility of having

numerical multiplicities
 

of qualitatively identical objects
 

is pulled back to the subjective conditions of human experience,
 

thereby depriving such a possibility of any intrinsic scope.    



Rejecting PII seems to entail a commitment  

to some form of « irrational »  

meta-physical and pre-linguistic  

principle of individuation 

(haecceitas or primitive thisness). 



« By no means I would approve the ways of thinking of a 
man who did not hesitate long to admit my hecceities. »  

C.S. Peirce  



Now, with the introduction of the notions  

of group and groupoid 

mathematics moved forward  

in the direction of rejecting PII 

and making propositions of the form  

a = a          &          a = b  

non-trivial. 



Identity qua identification  



So, let’s adopt a constructive stance by understanding a proposition 
  

not as a mere truth value (« ideal » mathematics) 

but rather as the type of its tokens-proofs,  

i.e. as an abstract statement  

whose concrete realizations are given by its different proofs.



For instance, what does it mean to say  

that two figures in the Euclidean space  

are equal?  



« If indeed one tries to clarify the notion of equality, which is 
introduced right at the beginning of Geometry, one is led to say 

that two figures are equal when one can go from one to the other 
by a specific geometric operation, called a motion. »  

E. Cartan.



Every « motion » that transports  

one figure a on the top of the other figure b 

is a concrete proof of the fact that the proposition  

a = b  

is true. 



The fundamental step is to state  

that two things are equal  

if they can be concretely identified  

by means of an isomorphism 

(or reversible transformation)



Consequences:  

1. Against PII, numerically different things might be 
qualitatively « identical ». 

2. Two things might be identical in many different ways, i.e. 
propositions of the form a = b might admit many proofs. 

3. This set of proofs might carry a non-trivial structure (e.g. 
homotopy theory).   

4. Far from entailing a slip into irrationality, the very 
structure of these indiscernibilities can be mathematically 

formalized.



If we make abstraction of the concrete proofs 
  

of a proposition of the form a = b 

(i.e. the identifications between a and b) 

by just retaining its truth value 

we might lose the non-trivial higher structure 

 of identifications, identifications between identifications, etc. 



Homotopical Maxim:  

Never forget that abstract equalities  

a = b 

are underpinned by concrete identifications 

a
'�! b



Galoisian Principle  



The first step in this direction was given by Galois  

in the beginning of the XIX century,  

when he tackled a similar problem   

namely the existence of solutions  

to polynomial equations formulated in a field K  

such that no K-relation can discern them. 



 Rather than trying to « save » rationality  

by forbidding indiscernibilities, Galois 

. (1) fully accepted that we can have numerical differences 

not grounded on qualitative differences, 
 

(2)  and introduced a mathematical notion (groups) 

that formalizes the structure of that which cannot be said, 

namely the numerical difference between indiscernible solutions. 



Remark  

In the framework of Galois theory  

these indiscernibilities are purely epistemic rather than intrinsic  

since they can be broken by passing to a larger field 

 endowed with a higher « resolving power »: 

What cannot be said in a given language  

becomes sayable in an extension of that language. 



But more generally,  

any mathematical structure 

endowed with non-trivial automorphisms 

is intrinsically composed  

of numerically different  

and indiscernible elements 



For instance, the numerically different points 
  

of the Euclidean plane  

carry no intrinsic qualities 
  

by means of which we could discern or individuate them.  



The Plasticity of the Identity  



Now, by following the prescription according to which  

we have to substitute the notion of equality  

by the notion of identification qua isomorphism,  

each automorphism of an entity a 

can be understood as a non-trivial proof of the fact that  

the identity principle a = a is true.



.a is identical with a if there exists transformations that reversibly transform a 
into a. 

.Since there is always the trivial transformation, the proposition a = a is always 
true. 

.But if the structure has automorphisms, then there are non-trivial 
transformations « moving » a into itself. 

.The identity principle a = a understood as the type of its tokens-proofs 
carries information about the symmetries of a,  

thereby becoming an entity-dependent proposition.



And the notion of group formalizes  

this « factorization » of the trivial identity of a non-rigid entity a  

in many non-trivial self-identifications  

given by endomorphisms 

satisfying    

ida = f � f�1

f : a ! a



The « Relativity Problem » According to Weyl  



The fact that automorphisms 

have to be understood as intrinsic features of the entity at stake 
  

was stressed in different forms by Weyl. 



According to Weyl (PMNS),  

we have to distinguish two phases of (what he calls)  

the « relativity problem ». 



First, there is an ontological dimension  

given by the fact that a structure  

might be intrinsically endowed  

with non-trivial automorphisms,  

which means (in our terms) that its identity might be non-trivial.



Second, there is an epistemic dimension  

of the « relativity problem » 

given by the fact that these automorphisms  

« objectively distinguish » a class of coordinate systems.



It follows from Weyl’s analysis  

that the requirement of invariance under frame changes  

is a derived “epistemic” consequence  

of the intrinsic symmetries of the structure. 



For instance, the problem of (special) relativity,  

rather than being a « transcendental » problem  

concerning the subjective conditions of physical objectivity,  

« [...] is nothing else than the problem of dealing with the inherent symmetry [encoded 
by the Poincaré group] of the four-dimensional continuum of [flat] space and time. » 

H. Weyl, Symmetry 



« The physicist will question Nature  

to reveal him her true group of automorphisms » 

H. Weyl (quoted by E. Scholz)



« Whenever you have to do with a structure-endowed entity S try to 
determine its group of automorphisms, the group of those 

elementwise transformations which leave all structural relations 
undisturbed. You can expect to gain a deep insight into the 

constitution of S in this way.” 

H. Weyl, Symmetry. 



Riemann-Cartan Principle  



Now, symmetric structures are very particular kinds of structures 

(e.g. symmetric solutions to the Einstein’s equations).  

So, why do they play such a central role  

in the gauge theories of fundamental interactions? 



The answer was announced by Plato  

(the « elements » are given by regular structures; c.f. Timaeus), 

prepared by Riemann,  

and acquired a full-fledged development thanks to E. Cartan. 



Symmetric structures acquire a universal scope 

given by the fact that they can be understood as  

local building blocks  

that can be « connected » in a « curved » manner  

in order to produce more general structures,    

i.e. structures that are not necessarily symmetric.  



Euclidean Geometry                   Klein Geometries     

Riemannian Geometry                    Cartan Geometries 
              (flat local building blocks)          (symmetric local building blocks) 

C.f. Sharpe, R.W. (1997). Differential geometry. Cartan's generalization of 
Klein's Erlangen program. NY: Springer-Verlag.  

!

#
!

#



Cartan’s twofold generalization  
of both Riemannian geometry and Klein’s Erlangen program 

goes against Weyl’s (and Cassirer’s) attempt  
to save Kant’s transcendental aesthetics  

from the menace posited by GR. 

Briefly, Weyl claimed that only  
the infinitesimal spatiotemporal neighborhood  

of the experiencing subject  
has to carry an a priori geometric structure (Euclidean, Minkoswki).



However, Cartan’s approach 

— by stressing the Kleinian notion of symmetry  

to the detriment of the Riemannian notion of flatness — 

allows for the possibility of having  

different infinitesimal symmetric models. 



According to the Riemann-Cartan principle,  

the construction of general structures  

requires to have copies of a symmetric structure.  



Since by definition of the notion of « copy »,  

copies are  

numerically different and qualitatively identical,  

the Riemann-Cartan principle  

requires to suspend the validity of PII.



In order to formally deal  

with families of identical elements, 
  

the notion of group  

(encoding the multiple self-identifications of a single entity)  

is not enough. 



A classical mathematical notion  

that does part of the job  

is the notion of equivalence relation  

(a reflexive, symmetric, and transitive relation) 

in a set of entities.  



However, the limit of equivalence relations results from the fact  

that two entities x and y are either equivalent  

or not,  

but they cannot be equivalent in many different ways.   

In particular 

in just one way. 

x ⇠ y

x ⇠ x



However, if x and y are two copies of a non-rigid entity, then  

.both x and y are identical to themselves in different ways, 

.there are many identifications between x and y. 



In a sense, groups and equivalence relations are « orthogonal » notions: 

Whereas groups formalize  

single objects with many self-identifications,  

equivalence relations formalize 
  

sets of many objects endowed with unique identifications.  



So, we need a mathematical notion capable of encoding 

.multiple identifications  

.between multiple objects. 



Briefly, a groupoid  

is a family of objects  

endowed with a family of identifications  

(reversible transformations)  

between some of them such that 

1) each object a is endowed with a trivial identity 

2) the compositions of composable transformations exist and is associative.  

ida

s, t : G
i

◆ G
o

G
o

Gi



Given a groupoid,  we can define  the underlying equivalence relation, where 
  

if there exists at least one arrow  

This equivalence relation  makes abstraction from the fact that  

a and b might be identified  in many different concrete ways 

in order to only keep the abstract fact that a and b are identical. 

a ⇠ b

a ! b



In type-theoretic terms, the expression 
  

can be understood as an abstract proposition (a type) 

whose tokens-proofs are given  

by all the concrete identifications 

 

a ⇠ b

a
'�! b



Yang-Mills Theories  



The geometric setting of Yang-Mills theories
 

is given by bundles
 

— parameterized by spacetime M —
 

of identical copies of a non-rigid G-structure S.  



A G-bundle is a triple  

such that the standard fiber S  

is endowed with a G-action  

and the transition functions 
  

on the intersections of an open covering           of M  

have values in G.

(E
⇡�! M,S,G)

{Ui}



Since the fibers are identical copies  

of the non-rigid structure S 

we can paste the fibers in non-trivial manners 
  

in the intersections  

thereby introducing twists in the fibration 
  

(which are the geometric source of the topological solutions)  

Ui \ Uj



We can now pass to the second phase 
  

of the « relativity problem » 

 and introduce the corresponding 
  

G-principal bundles of frames 



Each fiber      can be identified with the standard fiber S  

by means of different non-canonical isomorphisms.  

Each isomorphism 

defines a particular framing of      

To « frame » a fiber

means to choose a concrete identification 

between         and the standard fiber S.  

S
x

p : S ! S
x

S
x

S
x

S
x



The action of G on the standard fiber S  

induces a right (free and transitive) action 
  

on the set of frames                  on each x in M  

given by composition 

which means that each                 is a G-torsor.  

 

Iso(S, S
x

)

(p : S ! S
x

) 7! (pg : S
g�! S

p�! S
x

)

Iso(S, S
x

)



Changes of frames are just 

the « epistemic » effect on the frames
   

of the intrinsic automorphisms 

of the standard fiber S.   

p : S ! S
x



The collection of all this G-torsors 
  

for each x in M defines the  

G-principal bundle of local frames 

Iso(S, S
x

)

P ! M



The “epistemic” invariance of a gauge theory 
  

under local gauge transformations  

is just a consequence of the intrinsic fact 
  

that we are dealing with families of identical copies 
  

of a non-rigid structure S.  

S
x



Connections  



From a physical standpoint, if we understand the fibers 

as « internal spaces » of states for material fields,  

then the fact that      are copies of a symmetric entity S  

implies that we cannot naturally compare internal states  

in different spatiotemporal locations 

(since there are no canonical isomorphisms between any two copies of S).

S
x

S
x



One possible solution to this problem  

would be to introduce a gauge fixing section 

(an election of an « origin » in each G-torsor                ) 

modulo global gauge transformations. 
  

We could even try to understand such a section as a dynamical field,  

thereby avoiding arbitrary elements in the theory. 

s : M ! P

Iso(S, S
x

)



This solution amounts to « break »  

the symmetries of the different copies  

in such a way that they become canonically isomorphic. 

S
x



By doing so, we are no longer under the aegis  

of the Riemann-Cartan principle,  

which requires the elementary building blocks  

to be symmetric structures.  



Now, is it possible to endow the bundle 

with a « transversal coherence »  

by means of which we could compare internal states  

in different spatiotemporal locations 

without « breaking » the intrinsic symmetries  

of the identical objects       

that is by preserving local gauge invariance? 

E ! M

S
x



The answer is yes.  

And to do so requires (in our own terms) 

to endow the bundle 
  

with a concrete system of identifications  

between the different fibers 

E ! M

S
x



Now, we have two different regimes of identifications in the bundle  

1. The identifications between the different points of M  
encoded in the path groupoid of M,  

i.e. the groupoid of (thin homotopy classes of) paths in M 
(which does not take into account the fibers over each point)  

2. The identifications between the different identical fibers  
(which does not take into account the  

path-dependent identifications between points in M)

E ! M

S
x



In order to unify these two systems of identifications,  

it is useful to think about the points x of M  

as « fat » or structured points endowed with an internal structure 
  

given by the fibers     .S
x



An Ehresmann connection is an enrichment  

of the external (spatiotemporal)  

concrete path-dependent identifications 

 between the « thin » or structureless points of M 

(encoded in the path groupoid of M) 

into identifications  

between the « fat » or structured points.   



Ehresmann’s Groupoid-Theoretical Description  



Ehresmann connections can be entirely defined  

in groupoid-theoretical terms 

that stress the underlying « homotopical »  

detrivialization of equalities 

made possible by the rejection of PII.    



Given a G-principal bundle 

we can introduce Ehresmann’s structural groupoid 

Roughly speaking,  

.the objects are the fibers  

.the arrows are identifications between any two fibers.  

P ! M

P ⇥G P ◆ M

S
x



An arrow of the structural groupoid 

is given by an equivalence class  

under the action  

Each arrow defines the following identification 

 between the copies       and      of S:  

[(p2, p1)]

S1 S2

p2 � p�1
1 : S1

p�1
1��! S

p2�! S2,

(p2, p1) = (p2g, p1g)



The structural groupoid can be projected  

to the underlying maximal equivalence relation  

between the points of M 

given by the pair groupoid of M    

This groupoid encodes the abstract identities  

between any two « thin » points of M 

M ⇥M ◆ M

x1 = x2



The kernel of the projection  

is given by the so-called gauge groupoid 

where the right action of G on              is given by 

P ⇥G G ◆ M

P ⇥G

(p, g) · h = (ph, h�1gh)

P ⇥G P ! M ⇥M



We then have the following exact sequence of Lie groupoids  

where the inclusion on the left is given by. 

which means that an arrow  

can be interpreted as a map  

i.e. as an automorphism of the G-torsor

P ⇥G G ,! P ⇥G P ⇣ M ⇥M

[(p, g)] 7! [(p, pg)]

[(p, g)] 2 P ⇥G G

p � (pg)�1 : S
x

p

�1

��! S
g

�1

��! S
p�! S

x

S
x



The gauge group of vertical automorphisms of   

can be obtained as the group of bisections 

of the gauge groupoid, 

where a bisection is (roughly speaking) 

a smooth election of a single outgoing arrow for each object x in M,  

i.e. of an automorphism of         for each x.

P ! M

P ⇥G G ◆ M

S
x



Now, the projection   

relates the concrete identifications between the fibers  

to the abstract identities between points of M,  

and not (as we wanted) with the concrete identifications  

between points of M  

given by (classes of) paths in M.    

P ⇥G P ! M ⇥M

S
x



This problem can be solved 

by passing to an infinitesimal description  

and integrating along paths in M.     



The sequence of Lie groupoids 

gives rise 

— by passing to an infinitesimal description — 

 to the following exact sequence of Lie algebroids  

P ⇥G g ! TP/G
⇡�! TM

P ⇥G G ,! P ⇥G P ⇣ M ⇥M



An Ehresmann connection is a section  

of the map 

� : TM ! TP/G

TP/G
⇡�! TM



The connection      « connects »  

the different fibers by selecting,  

for each infinitesimal abstract identification v in       

 an infinitesimal concrete identification 

between the fibers        and           

�

T
x

M

�(v)

E
x

E
x+v



Conclusions  



The notions of group and groupoid convey  

a rejection of PII  

and, consequently, 

a « de-trivialization » of statements of the form  

a = a          and          a = b  

respectively. 



The concrete self- and hetero-identifications in a family of entities 

might carry a complex (homotopical) structure.  

  

By flattening these concrete identifications  

into abstract (or mere) propositions of the form 

 a = a          and          a = b 

we loose track of all this information. 



Gauge theories provide a particular realization of these ideas  

in the form of the Riemann-Cartan principle, 

which states that global general structures can be constructed  

by « connecting » numerically different and qualitatively identical  

local symmetric building blocks.   



Local gauge symmetries  

— far from resulting from a « transcendental »  constraint on 
scientific knowledge  

(objectivity qua coordinate invariance) —   

are a natural consequence of the fact  

that the local building blocks  

are numerically different and identical copies  

of a non-rigid structure. 



If we consider gauge symmetries as  

mere mathematical redundancies 

that can be simply removed  

by taking the quotient by the action of the gauge group, 

then we are led to pathological or « bad » quotient spaces.  



The most powerful method to deal with gauge symmetries  

(the BRST-cohomological reformulation  

of the restriction + quotient operation 

by means of which one defines the reduced phase space of a constrained Hamiltonian theory) 

is an equivariant method  

that does not only takes into account the identifications between  

different « representatives » of the gauge fields,  

but also the identifications between identifications (« ghosts of ghosts »)  

and so on and so forth all the way up.



Contemporary (homotopical) mathematics, like 

  

.higher category theory, 

.homotopy type theory, 

.derived geometry. 

 is moving forward  

(by defining in particular « good » quotient spaces) 

by unpacking and exploring  

the structure of (higher) identifications 

enveloped by statements of the form a = b.    



By paraphrasing B. Timmermans 

(Histoire philosophique de l’algèbre moderne) 

we could say that it might be utterly misleading to  

“conceal the pluralism of [gauge] transformations  

[by considering them as mere mathematical redundancies  

associated to the symbolic constitution of objective knowledge] 

for the sole benefit of the realism of invariants”



Many thanks ! 
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