Problem 1 (3 points): some more Fourier analysis
1. Prove the following properties of the Fourier transformation: \(\hat{f} = \mathcal{F}(f) \)

 (i) \(\hat{f}(t) = f(-t) \)

 (ii) \(\hat{f}(t) = \hat{g}(\hat{t}) \)

 (iii) \(\mathcal{F}(f \ast g) = \hat{f} \hat{g} \)

 (3 points)

Problem 2 (6 points): distributions
1. Show the following properties of the \(\delta \)-distribution (by means of test functions \(\varphi \in \mathcal{S} \)):

 (i) \(\delta(at) = \frac{1}{|a|}\delta(t) \)

 (ii) \(\delta(g(t)) = \sum_{i} \frac{1}{|g'(t_i)|} \delta(t - t_i) \), \(t_i \) zero of \(g(t) \)

 (2 points)

2. Consider the functions

 \(f_n(t) = \frac{1}{\pi} \frac{n}{t + n^2 \sigma^2} \).

 Show that in the limit of \(n \to \infty \), \(f_n(t) \) converges to \(\delta(t) \).

 (2 points)

3. Prove by letting the expressions act on test functions \(\varphi \in \mathcal{S} \):

 (i) \(f(t) \delta(t) = f(0) \delta(t) \)

 (ii) \(f(t) \delta'(t) = f(0) \delta'(t) - f'(t) \delta(t) \),

 where \(f \in \mathcal{S} \).

 (2 points)

Problem 3 (10 points): Green's functions
The goal of this problem is to derive the retarded Green's function \(G_n \) of the wave equation in \(n \) spatial dimensions (throughout this problem, we set \(c=1 \))

\[
\left(\frac{\partial^2}{\partial t^2} - \Delta_n \right) G_n(t, x) = \delta(t) \delta(x) \tag{1}
\]

where \(G_n(t < 0, x) = 0 \) and the spatial derivatives vanish in spatial infinity. Let \(x = (x_1, ..., x_n) \) and

\[
\Delta_n = \frac{\partial^2}{\partial x_1^2} + ... + \frac{\partial^2}{\partial x_n^2}.
\]

Make the ansatz \(G_n(t, x) = g_n(t, r) \) where \(r = \sqrt{x_1^2 + ... + x_n^2} \).

1. Show that

 \[
 G_n(t, x) = \int_{-\infty}^{\infty} dx_{n+1} G_{n+1}(t, x, x_{n+1})
 \]

 is a Green's function according to (1) in \(n \) spatial dimensions, if \(G_{n+1} \) is also one in \(n + 1 \) spatial dimensions. (reduction method of Hadamard) (1 point)

2. Show by direct calculation that

 \[
 g_1(t, r) = \frac{1}{2} \Theta(t - r), \quad g_2(t, r) = \frac{1}{4\pi r} \delta(t - r)
 \]

 and, from this, calculate \(g_2(t, r) \).

 (4 points)

3. By applying the reduction method twice in a row, write \(g_n(t, r) \) as an area integral over an expression which includes \(g_{n+2} \). Use polar coordinates for the area integral to derive the recursion formula

 \[
 g_{n+2}(t, r) = -\frac{1}{2\pi} \frac{1}{r} \frac{\partial}{\partial r} g_n(t, r)
 \]

 (2 points)

4. Give the exact formulas for \(g_2 \) and \(g_{2k+1} \). The expressions can still contain derivative operators. From this, calculate \(g_4 \) and \(g_6 \).

 (3 points)

5. Physically, the Green's function here is the temporal and spatial evolution of a \(\delta \)-light pulse which is emitted at time \(t = 0 \) at the place \(x = 0 \). Which signal (qualitatively) does an observer see for \(t \geq r \) for even and odd spatial dimensions? (It can be shown that generally for even spatial dimensions, the observer would register a "reverberation"; this effect is not present for odd spatial dimensions.) (1 point)