Problem 1 (7 points): electrostatic multipole expansion
1. In the lecture, the multipole expansion was derived in spherical coordinates. Now carry out this derivation in Cartesian coordinates. To this end, expand the electrostatic potential
\[\Phi(x) = k \int d^3x' \frac{\rho(x')}{|x-x'|} \]
into a Taylor series up to second order (corresponding to the quadrupole moment). Bring the expansion into the form
\[\Phi(x) = k \left(\frac{Q}{r} + \frac{p \cdot x}{r^3} + \frac{1}{2} \frac{x^T Q x}{r^5} \right) \]
by defining the quadrupole moment \(Q \) in such a way that it is tracefree (\(Q_{ii} = 0 \)).

2. Consider an ellipsoid
\[\left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 + \left(\frac{z}{c} \right)^2 \leq 1 \]
with homogeneously distributed total charge \(Q \) and half-axes \(a, b, \) and \(c \). Calculate the quadrupole moment and determine the potential in quadrupole approximation. (Hint: you may use exercise 5, problem 2.) In this approximation, consider the case \(\left(\frac{L}{L} \right) = 1 + \epsilon, |\epsilon| \ll 1 \) and discuss the result.

Problem 2 (8 points): magnetostatics
A homogeneously charged spherical shell of total charge \(Q \) is rotating at constant angular velocity \(\omega \) around the z-axis.

1. What is the current density \(j(x) \)?

2. Calculate the magnetic dipole moment.

3. Determine the vector potential \(A(x) \) and the magnetic induction \(B(x) \) everywhere.

(Hint: \(\int \xi \xi - \xi \xi - 1/2 d\xi = \frac{4}{3}\xi(\sqrt{\xi} + 1 - \sqrt{\xi} - 1) - \frac{2}{3}(\sqrt{\xi} + 1 + \sqrt{\xi} - 1) \).)