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These notes are a short sum up about two talks that I gave in August and September
2015 an the University of Cologne in my workgroup seminar by Prof. Dr. Claus Kiefer.
The intension of those talks were to give a tiny introduction into fascination and often
inaccessible topic of symplectic geometry, which is a generalization of the famous theory
Hamilton mechanics, which has a big big success in physics. Without focusing too much
on being mathematical rigorously I tried to be as precise as possible. Of course I also
could not cover all introduced concepts in great details. For example, the part about
vector bundles is rather short and maybe unsatisfactory. For further reading I refer the
following references:

� Foundations of mechanics, R. Abraham and J.E. Mardsen, 1978.

� An Introduction to Symplectic Geometry, R. Berndt, 2000.

� Lecture notes: Symplectic Geometry, S. Sabatini, Sommersemester 2015, Uni-
versity of Cologne.

� Mathematical methods in classical mechanics, V.I. Arnold, 1989.

� Embedding problems in Symplectic Geometry - Felix Schlenk, 2005.

Every kind of comment or improvement proposal is highly welcome. Just contact me
under my email: fasse@thp.uni-koeln.de.

Current version: September 1, 2015.
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Part 1 - Basics

1 Motivation

Consider a particle moving in R3. Then the phase spaceM consists of all positions ~q ∈ R3

and all momenta ~p = m~̇q ∈ R3.

Exemplum 1.1(a) For a free particle: M ' R6.

(b) For n free particles: M ' R6n.

(c) If the particle is forced to move on a surface S ⊂ R3 with projection π : M → S, then
π−1(q) ⊂ R2 with q ∈ S. But M 6' S⊗R2, e.g. let S be the Möbius strip embedded
in R3.

Consider a non-free particle in R3 with M = R6 with conservative force �eld ~F and
corresponding potential V . Then

H(~q, ~p) = E + V (1)

is the Hamiltonian of the system, where E denotes the Kinetic energy. H gives the total
energy of the system and should therefore be conserved along the motion of the particle,
i.e. let γ(t) = (~q(t), ~p(t)) be the trajectory of a. Then H(γ(t)) = const for all t. The
equations of motion are

∂H

∂pi
= q̇i and

∂H

∂qi
= −ṗi. (2)

How can we generalize this concept and understand more about the geometry of phase
space M?

2 Mathematical preliminaries

Before we can start with symplectic geometry we have to set up some de�nitions and have
to �x notation.

2.1 Tensor algebra

De�nitio 2.1

Let V be a vector space. A (covariant) k-tensor A : V k → R is a function that is linear
in every argument. The space of k-tensors over V is a vector space denoted by T 0

k (V ).

De�nitio 2.2

A k-form µ ∈ T 0
k (V ) is called alternating if for every s ∈ Sk, where Sk denotes the

permutation group of k elements, we have

µ(v1, . . . , vk) = sgn(s)µ(vs(1), . . . , vs(k)). (3)

The set of all alternating k-forms over V will be denoted by Λk(V ).
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De�nitio 2.3

The direct sum
⊕∞

i=1 Λk(V ) together with its structure as a R-vector space and the mul-
tiplication by the wedge product ∧ : Λk(V )×Λl(V )→ Λk+l(V ) is called the Grassmann

algebra of V .

Notatio 2.1

Let V be a n-dimensional vector space. Then dim Λk =
(
n
k

)
.

De�nitio 2.4

The non-zero elements of Λn(V ) are called volume elements. If ω1, ω2 ∈ Λn(V ) we say
that ω1 ∼ ω2 if there exists a c ∈ R+ such that ω1 = c ω2. An element of V /∼ is called
an orientation on V .

De�nitio 2.5

A 2-form µ ∈ Λ2(V ) is called non-degenerate if

µ(v, w) = 0 ∀v ∈ V ⇒ w = 0 (4)

and
µ(v, w) = 0 ∀w ∈ V ⇒ v = 0. (5)

2.2 Vector bundles

De�nitio 2.6

A (real) vector bundle over R of rank k is a triple π : E →M with

(a) E and M are C∞-manifolds.

(b) The map π : E →M is a surjeciton.

(c) For every p ∈M the preimage π−1(p) is a R-vector space of dimension k.

(d) For every points p ∈ M theres exists a neighborhood U ⊂ M of p and a di�eomor-
phism ψ : π−1(U)→ U × RK such that

π−1(U) U × Rk

U

ψ

π π1

(A diagram with a square � in the center of a closed path means that it commutes,
i.e. is does not matter which path I chose I will always get the same element, e.g.
ψ = π ◦ π−11 and so forth).

3



Exemplum 2.1

Consider M = S2 and TS2 =
⊔
p∈S2 TpS

2, where TpS
2 is the tangent space at p ∈ S2.

Then π : TS2 → S2 is a vector bundle over R of rank 2.

p

TpS
n

Sn

De�nitio 2.7

Two vector bundles π1 : E1 →M and π2 : E2 →M are called isomorphic to each other
if there exists a di�eomorphism ϕ : E1 → E2 such that

E1 E2

M

ϕ

π1 π2

De�nitio 2.8

A vector bundle π : E → M of rank k is called trivial if it is isomorphic to the trivial
bundle M × Rk.

De�nitio 2.9

Given a vector bundle π : E → M , a section s : M → E is a smooth map such that
π ◦ s = IdM .

Notatio 2.2

This de�nition re�ects our intuition that a tangent vector at p should be an element of
TpM . So the condition of π ◦ s = IdM says that what every I associated to p ∈M should
be an element of the �ber π−1(p) of p.

Exemplum 2.2

Let M be a manifold and consider the vector bundle π : TM → M . The sections of this
vector bundle are the ordinary vector �elds Γ(M) of M .

Exemplum 2.3

Let M be a manifold. De�ne the cotangent bundle T ∗M as

T ∗M =
⊔
p∈M

T ∗pM =
⊔
p∈M

(TpM)∗. (6)
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Given a function f ∈ C∞(M). Then df is a section of T ∗M for all p ∈M , i.e.

df
∣∣
p

: TpM −→ R. (7)

Notatio 2.3

In Hamiltonian mechanics a manifold M ⊂ Rn for some n will be the con�guration
space and T ∗M will be the corresponding phase space.

3 Symplectic manifolds

3.1 Symplectic vector spaces

Before we can go to symplectic manifolds we will consider the case of a symplectic vector
space. After this is done we can raise our considerations fo the case of a manifoldM since
TpM has the structure of an R-vector space for every p ∈M .

De�nitio 3.1

Let V be a R-vector space. A non-degenrate and alternating two-form ω ∈ Λ2(V ) is called
a symplectic structure on V and the pair (V, ω) is called a symplectic vector space.

Exemplum 3.1

Consider R2n with coordinates (x1, . . . , xn, y1, . . . , yn) and ω0 :=
∑n

i=1 dxi ∧ dyi. Then ω0

is due to the properties of ∧ alternating and linear since every dxi and dyi are linear.

Propositio 3.1

Every symplectic vector space is even dimensional.

Propositio 3.2

For every symplectic vector space (V, ω) of dimension 2n there exists a basis {ei, fi} with
i ∈ {1, . . . , n} such that

ω0 =
n∑
i=1

f ∗i ∧ e∗i . (8)

This form ω0 is called the canonical form or standard form on V .

De�nitio 3.2

Let (V, ω) and (V ′, ω′) be two symplectic vector spaces. Then (V, ω) and (V ′, ω′) are called
symplectomorphic to each other if there exists a linear isomorphism ϕ : V → V ′ such
that ϕ∗ω′ = ω. Then ϕ is called a symplectic map.

Exemplum 3.2

Consider (R2n, ω0) and write v, w ∈ V with respect to the standard basis as v = (v1, . . . , v2n)
and w = (w1, . . . , w2n). Then

ω0(v, w) = vTJ0w, (9)

where

J0 =

(
0 −1n
1n 0

)
∈ SL(2n,R). (10)

Let A : R2n → R2n be a linear isomorphism, written as a matrix A ∈ GL(2n,R). We
want to know which A maps ω0 to ω0. Then we can insert:

A∗ω0(v, w) = ω0(Av,Aw)
!

= ω0(v, w) ∀v, w ∈ R2n. (11)
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Writing this as in (9) we get

vTATJ0Aw
!

= vTJ0w ∀v, w ∈ R2n. (12)

Therefore the following de�nition makes sense:

De�nitio 3.3

A matrix A ∈ Mat(R, 2n× 2n) is called symplectic if

ATJ0A = J0. (13)

Lemma 3.3

The set of matrices A ∈ M(R, 2n × 2n) satisfying (13) forms with respect to ordinary
matrix multiplication a group, called the symplectic group and is denoted by Sp(2n).
Moreover A ∈ Sp(2n) implies that AT ∈ Sp(2n).

Propositio 3.4

For A ∈ Sp(2n) we have detA = 1 for all n ∈ N.

3.2 Symplectic manifolds

De�nitio 3.4

Let Ωk(M) denote the space of k-forms over a manifold M , i.e. ω ∈ Ωk(M) means that
ω
∣∣
p

=: ωp ∈ Λ2(TpM) varies smoothly with p ∈M .

De�nitio 3.5

LetM be a manifold. Then ω ∈ Ω2(M) is called non-degenerate if ωp is non-degenerate
for all p ∈M . In other words: (TpM,ωp) is a symplectic vector space for all p ∈M .

De�nitio 3.6

Let M be a manifold and ω ∈ Ω2(M) be a non-degenerate and closed, i.e. dω = 0,
2-form on M . Then ω is called a symplectic form on M and the pair (M,ω) is called
a symplectic manifold.

Notatio 3.1 (i) M has to be even dimensional since dimTpM = dimM and TpM is by
Propositio 3.1 even dimensional. Physically one could translate this to the property
that to every coordinate q there has to exists an associated momenta p.

(ii) M has to be orientable since ωn 6= 0 de�nes a volume form on M .

Theorema 3.5

(Darboux). Let (M,ω) be a symplectic manifold of dimension 2n. Then for every p ∈M
there exists a neighborhood U ⊂ M of p and a symplectomorphism ϕ : U → V , where
V ⊂ R2n is a neighborhood of ϕ(p), such that ϕ∗ω = ω0.

3.3 Back to classical mechanics

In classical mechanics we normally consider the positions of a particle (q1, . . . , qn) to
together with their momenta (p1, . . . , pn). This done by letting q ∈ M , where M is a
manifold and denotes the con�guration space and p ∈ T ∗M since p depends in general
on q and computes n di�erent real numbers. Therefore T ∗M is our phase space of the
system.
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Of central importance in physics is the law of conservation of energy, i.e. there exists a
function H ∈ C∞(T ∗M) such that H is conserved along the motion of a particle in phase
space. Let γ : R ∈ T ∗M with γ(t) = (q(t), p(t)) be such a solution, then H(γ(t)) = const
for all t ∈ R. Let us generalize this concept to symplectic manifolds:

De�nitio 3.7

Let (M,ω) be a symplectic manifold and ιX : Γ(TM)×Ωk(M)→ Ωk−1(M be the insertion
map that plugs in a vector �eld X into the �rst component of a k-form. A vector �eld
X ∈ Γ(M) is called

(a) symplectic if ιXω is closed. The set (M,ω,XH) is called a symplectic system.

(b) Hamiltonian if ιXω is exact, i.e. there exists a function H ∈ C∞(M) such that

dH = ιXH
ω. (14)

Then H is called the energy function of X. The set (M,ω,XH) is called a Hamil-

tonian system.

Propositio 3.6

Let (q1, . . . , qn, p1, . . . , pn) be canonical coordinates for ω, i.e. ω = ω0 =
∑

i dq
i ∧ dpi. Let

XH be a Hamiltonian vector �eld with energy function H. Then in these coordinates

XH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
. (15)

Thus (q(t), p(t)) is an integral curve of XH if and only if Hamilton's equations of motion
hold:

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
∀i ∈ {1, . . . , n} . (16)

Proof. Let XH be de�ned by the formula (15). We then have to verify (14). By construc-
tion we have

ιXH
dqi =

∂H

∂pi
and ιXH

dpi = −∂H
∂qi

(17)

and therefore

ιXH
ω =

∑
i

(
ιXH

dqi
)
∧ dpi − dqi ∧ ιXH

dpi =
∑
i

∂H

∂pi
dpi +

∂H

∂qi
dqi = dH. (18)

Propositio 3.7

Let (M,ω,XH) be a Hamiltonian system and let γ(t) be an integral curve for XH . Then
H(γ(t)) = const for all t ∈ R.

Proof. By the chain rule and (14) we get

d

dt
H(γ(t)) =dH(γ(t)) · γ′(t) = dH(γ(t)) ·XH(γ(t)) (19)

=ω (XH(γ(t)), XH(γ(t))) = 0 (20)

since ω is alternating.

7



Notatio 3.2

Not every symplectic system is globally Hamiltonian. Think for example of a particle
with friction. But every symplectic system is locally Hamiltonian by the Poincaré lemma.

Since ω is non-degenerate we can use to map vector �elds to forms and vice versa. Let
f ∈ C∞. Then Xf is de�ned via the equation

df(Y ) = ιXf
ω(Y ) = ω(Xf , Y ) ∀Y ∈ Γ(M). (21)

De�nitio 3.8

Let (M,ω) be a symplectic manifold and f, g ∈ C∞(M). The Poisson bracket of f and
g is the function

{f, g} := −ιXf
ιXgω = ω(Xf , Xg). (22)

Propositio 3.8

In canonical coordinates (q1, . . . , qn, p1, . . . , pn) we have

{f, g} =
n∑
i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (23)

Proof. We can compute

{f, g} = df(Xg) =

(
n∑
i=1

∂f

∂qi
dqi +

∂f

∂pi
dpi

)(
n∑
j=1

∂g

∂pj

∂

∂qj
− ∂g

∂qj
∂

∂pj

)
(24)

=
n∑
i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (25)
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Part 2 - Applications to physics

4 Gromov's theorem

In this part we want to explore to so-called Gromov's theorem from 1985 and its connec-
tions to the uncertainty principle. To do so we need some de�nitions:

De�nitio 4.1

Let (U, ω) and (R2n, ω′) be two symplectic manifolds. A symplectic map ϕ : U → R2n is
called a symplectic embedding if it is injective.

De�nitio 4.2

Let (R2n, ω) be a symplectic manifold. Then B2n(r) ⊂ R2n de�ned as

B2n(r) =

{
(x, y) ∈ R2n |

n∑
i=1

x2i + y2i < r2

}
(26)

is called a symplectic ball of dimension 2n with radius r ∈ R+ and

Z2n(r) = B2(r)× R2n−2 ⊂ R2n (27)

is called sympletic cylinder of dimension 2n with radius r ∈ R+.

Theorema 4.1

(Gromov's non-sequeezing theorem). If there exists a symplectic embedding

B2n(r) ↪→ Z2n(R), (28)

then
r ≤ R. (29)

Notatio 4.1

Lalond and McDuff improved this theorem to arbitrary sympletic manifolds (M,ω)
of dimension 2n. If there exists a symplectic embedding

B2n+2(r) ↪→ B2(R)×M (30)

then r ≤ R.

Proof. Even if the statements sound rather simple the proof of this is quite complicated
and uses the techniques of so-called J-holomorphic curves.

Notatio 4.2

This is an analog of the uncertainty principle. Let a = (q1, . . . , qn, p1, . . . , pn) ∈ M be a
point in phase space with radial uncertainty ε ∈ R+, denoted by U , i.e. U is a symplectic
ball around a with radius ε. Then there is no dynamical evolution or choice of coordinates,
i.e. a symplectomorphism, such that the uncertainty of two conjugate variables (qi, pi)
can be reduced lower then ε. Note that this is so far only a classical statement.

Gromov's theorem gave rise to the following de�nition:
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De�nitio 4.3

A symplectic capacity is a map that assigns to every symplectic manifold (M,ω) a
non-negative but possibly in�nite number c(M,ω) such that

(a) If there exists a symplectic embedding (M1, ω1) ↪→ (M2, ω2) and dimM1 = dimM2

then c(M1, ω1) ≤ c(M2, ω2).

(b) For every λ ∈ R one has c(M,λω) = |λ|c(M,ω).

(c) c(B2n(1), ω0) > 0 and c(Z2n(1), ω0) <∞.

Notatio 4.3

Condition (c) of the de�nition excludes volume to be a capacity. Moreover the requirement
that c(Z2n(1), ω0) to be �nite means that capacities are 2-dimensional invariants.

Notatio 4.4

The existence of a capacity c with

c(B2n, ω0) = c(Z2n(1), ω0) = π (31)

is equivalent to Gromov's theorem (4.1).

5 Quantization

Roughly speaking quantization is a map that takes classical observables to symmetric
operators over a certain Hilbert space. Of course this has to be made more precise. The
notion of the corresponding Hilbert space can be obtained by equivalence classes over
square integrable functions of a con�guration space manifold Q:

De�nitio 5.1

Let Q be a manifold and consider the set of all pair (f, µ), where µ is natural measure
on Q and f ∈ C∞(Q,C) is a complex measurable function such that

∫
Q
|f |2dµ < ∞,

i.e. f ∈ L2(Q, µ). Two pairs (f, µ) and (g, η) will be called equivalent provided that
f
√
dµ/dη = g. We denote the equivalence class of (f, µ) by f

√
dµ. Let H(Q) be the set

of all such equivalence classes. Pick a natural measure µ. Then the map

Uµ : L2(Q, µ) −→ H(Q)
f 7−→ f

√
dµ

is a bijection.

De�nitio 5.2

Let Q be a manifold. A function f ∈ C∞(Q) is called a classical con�guration ob-

servable and the corresponding quantum position observable is a operator Of on
H(Q) such that

Of (g
√
dµ) = f · g

√
dµ, (32)

i.e. Of is the multiplication by f . De�ne the classical momentum observable P (X)
on T ∗Q associated to vector �eld X on Q as

P (X) : T ∗Q −→ R
α 7−→ α(X)
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We shall call the operator X̃ the corresponding quantum momentum observable.

Propositio 5.1

Let Q be a �nite-dimensional manifold with Hilbert space H(Q). Let X, Y ∈ Γ(Q) be
vector �elds on Q and let f, g ∈ C∞(Q). Then we have

(i) [X̃, Ỹ ] = −i[̃X, Y ].

(ii) [Of , Og] = 0.

(iii) [Of , X̃] = iOX(f).

De�nitio 5.3

A full quantization of a manifold Q is a map, denoted by a hat ̂ , taking classical
observables f to self-adjoint operators f̂ on Hilbert space H(Q) such that:

(i) ̂(f + g) = f̂ + ĝ.

(ii) λ̂f = λf̂ for all λ ∈ R.

(iii) {̂f, g} = −i[f̂ , ĝ].

(iv) 1̂ = Id, where 1 is the function that is constantly 1 on Q and Id is the identity on
H(Q).

(v) q̂ i and p̂j act irreducibly on H(Q).

Notatio 5.1

By a theorem from Stone-von Neumann the condition (v) really means that we can take
H = L2(Rn), where n is the dimension of Q, and that q̂ i and p̂j are given by q̂ i = Oqi

and p̂j = −i ∂
∂qj

; that is, the Schrödinger representation.

In order to allow spin one has to relax the last condition to:

(v') The position and momentum operators are represented by a direct sum of �nitely
many copies of the Schrödinger representation. More precisely, we are asking that
H(Q) can be realized as the space of L2 functions from Rn to a d-dimensional
Hilbert space Hd with d <∞, so that

q̂iφ(x) = qiφ(x) and p̂jφ(x) = −i ∂φ
∂xj

(x) (33)

Does such a full quantization exists? The answer is no! To see this we follow A. Joseph
from 1970:

Theorema 5.2

Let U be the Lie algebra of real-valued polynomials of R2n, where the bracket is given by
the Poisson bracket. Let H = L2(Rn,Hd). Then there is no map f 7→ f̂ from U to the
self-adjoint operators on H that has the following properties:

(i) For each �nite subset S ⊂ U there is dense subspace DS ⊂ H such that for all f ∈ S:
DS ⊂ Df̂ and f̂DS ⊂ DS.
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(ii) ̂(f + g) = f̂ + ĝ pointwise on DS if f, g ∈ S.

(iii) (̂λf) = λf̂ for λ ∈ R.

(iv) {̂f, g} = −i[f̂ , ĝ] on DS.

(v) 1̂ = Id.

(vi) q̂ i is multiplication by qi and p̂j = −i ∂
∂qj

.

Notatio 5.2

Since we have seen that quantization with �nite representations are not working there
is another procedure, the so-called pre-quantization, that is a quantization satisfying
(i)-(iv) but not (v) or (v') of de�nition 5.3.

De�nitio 5.4

Let M be a manifold. A vector bundle π : Q → M is called a principal circle bundle

if every �ber π−1(p) for p ∈M is a circle S1 and there is a consistent action S1×Q→ Q,
which is just multiplication on each �ber, i.e. M = Q /S1 .

De�nitio 5.5

Let (P, ω) be a symplectic manifold. We say that (P, ω) is quantizable if and only if
there is a principle circle bundle π : Q→ P over P and a 1-form α on Q such that

(a) α is invariant under the action of S1.

(b) π∗ω = dα.

Q is then called the quantizing manifold of P .

Exemplum 5.1(a) If ω is exact, then P is quantizable, e.g. P = T ∗M . If P is simply
connected, then Q is unique, i.e. if ω = dθ we can let Q = P ×S1 and α = θ+~ ds for
some suitable s ∈ C∞(Q) and ~ is a constant, ultimately to be de�ned with Plank's
constant.

(b) For more details view Souriau 1970: Consider the two sphere S2 in R3 with radius
mK with the symplectic form

ω =
−i√
8me

· dx1 ∧ dx2
x3

, (34)

where m is the mass, K is the attractive constant and e is the energy. Then S2 is
quantizable if and only if e = −2π2mK2/N2 for an integer n ∈ N.
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