These notes are a short sum up about two talks that I gave in August and September 2015 at the University of Cologne in my workgroup seminar by Prof. Dr. Claus Kiefer. The intention of those talks were to give a tiny introduction into fascination and often inaccessible topic of symplectic geometry, which is a generalization of the famous theory Hamilton mechanics, which has a big big success in physics. Without focusing too much on being mathematical rigorously I tried to be as precise as possible. Of course I also could not cover all introduced concepts in great details. For example, the part about vector bundles is rather short and maybe unsatisfactory. For further reading I refer the following references:

Every kind of comment or improvement proposal is highly welcome. Just contact me under my email: fasse@thp.uni-koeln.de.

Current version: September 1, 2015.
1 Motivation

Consider a particle moving in \mathbb{R}^3. Then the phase space M consists of all positions $\vec{q} \in \mathbb{R}^3$ and all momenta $\vec{p} = m\dot{\vec{q}} \in \mathbb{R}^3$.

Exemplum 1.1 (a) For a free particle: $M \simeq \mathbb{R}^6$.
(b) For n free particles: $M \simeq \mathbb{R}^{6n}$.
(c) If the particle is forced to move on a surface $S \subset \mathbb{R}^3$ with projection $\pi : M \to S$, then $\pi^{-1}(q) \subset \mathbb{R}^2$ with $q \in S$. But $M \ncong S \otimes \mathbb{R}^2$, e.g. let S be the Möbius strip embedded in \mathbb{R}^3.

Consider a non-free particle in \mathbb{R}^3 with $M = \mathbb{R}^6$ with conservative force field \vec{F} and corresponding potential V. Then

$$H(\vec{q}, \vec{p}) = E + V$$

is the Hamiltonian of the system, where E denotes the Kinetic energy. H gives the total energy of the system and should therefore be conserved along the motion of the particle, i.e. let $\gamma(t) = (\vec{q}(t), \vec{p}(t))$ be the trajectory of a. Then $H(\gamma(t)) = \text{const}$ for all t. The equations of motion are

$$\frac{\partial H}{\partial p_i} = \dot{q}_i \quad \text{and} \quad \frac{\partial H}{\partial q_i} = -\dot{p}_i.$$

(2)

How can we generalize this concept and understand more about the geometry of phase space M?

2 Mathematical preliminaries

Before we can start with symplectic geometry we have to set up some definitions and have to fix notation.

2.1 Tensor algebra

Definition 2.1
Let V be a vector space. A (covariant) k-tensor $A : V^k \to \mathbb{R}$ is a function that is linear in every argument. The space of k-tensors over V is a vector space denoted by $T^0_k(V)$.

Definition 2.2
A k-form $\mu \in T^0_k(V)$ is called alternating if for every $s \in S_k$, where S_k denotes the permutation group of k elements, we have

$$\mu(v_1, \ldots, v_k) = \text{sgn}(s)\mu(v_{s(1)}, \ldots, v_{s(k)}).$$

(3)

The set of all alternating k-forms over V will be denoted by $\Lambda^k(V)$.

2
Definizione 2.3
The direct sum $\bigoplus_{i=1}^{\infty} \Lambda^i(V)$ together with its structure as a \mathbb{R}-vector space and the multiplication by the wedge product $\wedge : \Lambda^k(V) \times \Lambda^l(V) \to \Lambda^{k+l}(V)$ is called the Grassmann algebra of V.

Notazione 2.1
Let V be a n-dimensional vector space. Then $\dim \Lambda^k = \binom{n}{k}$.

Definizione 2.4
The non-zero elements of $\Lambda^n(V)$ are called volume elements. If $\omega_1, \omega_2 \in \Lambda^n(V)$ we say that $\omega_1 \sim \omega_2$ if there exists a $c \in \mathbb{R}^+$ such that $\omega_1 = c \omega_2$. An element of V/\sim is called an orientation on V.

Definizione 2.5
A 2-form $\mu \in \Lambda^2(V)$ is called non-degenerate if
\[\mu(v, w) = 0 \quad \forall v \in V \quad \Rightarrow \quad w = 0 \] \quad (4)
and
\[\mu(v, w) = 0 \quad \forall w \in V \quad \Rightarrow \quad v = 0. \] \quad (5)

2.2 Vector bundles

Definizione 2.6
A (real) vector bundle over \mathbb{R} of rank k is a triple $\pi : E \to M$ with
(a) E and M are C^∞-manifolds.
(b) The map $\pi : E \to M$ is a surjection.
(c) For every $p \in M$ the preimage $\pi^{-1}(p)$ is a \mathbb{R}-vector space of dimension k.
(d) For every points $p \in M$ there exists a neighborhood $U \subset M$ of p and a diffeomorphism $\psi : \pi^{-1}(U) \to U \times \mathbb{R}^k$ such that

\[
\begin{array}{ccc}
\pi^{-1}(U) & \xrightarrow{\psi} & U \times \mathbb{R}^k \\
\downarrow \pi & & \downarrow \pi_1 \\
U & & \\
\end{array}
\]

(A diagram with a square \square in the center of a closed path means that it commutes, i.e. it does not matter which path I chose I will always get the same element, e.g. $\psi = \pi \circ \pi_1^{-1}$ and so forth).
Exemplum 2.1
Consider \(M = S^2 \) and \(TS^2 = \bigsqcup_{p \in S^2} T_pS^2 \), where \(T_pS^2 \) is the tangent space at \(p \in S^2 \). Then \(\pi : TS^2 \to S^2 \) is a vector bundle over \(\mathbb{R} \) of rank 2.

\[\begin{array}{c}
S^n \\
\hline
\hline
T_pS^n
\end{array} \]

Definitio 2.7
Two vector bundles \(\pi_1 : E_1 \to M \) and \(\pi_2 : E_2 \to M \) are called isomorphic to each other if there exists a diffeomorphism \(\varphi : E_1 \to E_2 \) such that

\[E_1 \xrightarrow{\varphi} E_2 \]

\[\pi_1 \quad \varnothing \quad \pi_2 \]

\[M \]

Definitio 2.8
A vector bundle \(\pi : E \to M \) of rank \(k \) is called trivial if it is isomorphic to the trivial bundle \(M \times \mathbb{R}^k \).

Definitio 2.9
Given a vector bundle \(\pi : E \to M \), a section \(s : M \to E \) is a smooth map such that \(\pi \circ s = \text{Id}_M \).

Notaio 2.2
This definition reflects our intuition that a tangent vector at \(p \) should be an element of \(T_pM \). So the condition of \(\pi \circ s = \text{Id}_M \) says that what every I associated to \(p \in M \) should be an element of the fiber \(\pi^{-1}(p) \) of \(p \).

Exemplum 2.2
Let \(M \) be a manifold and consider the vector bundle \(\pi : TM \to M \). The sections of this vector bundle are the ordinary vector fields \(\Gamma(M) \) of \(M \).

Exemplum 2.3
Let \(M \) be a manifold. Define the cotangent bundle \(T^*M \) as

\[T^*M = \bigsqcup_{p \in M} T^*_pM = \bigsqcup_{p \in M} (T_pM)^*. \] (6)
Given a function \(f \in C^\infty(M) \). Then \(df \) is a section of \(T^*M \) for all \(p \in M \), i.e.
\[
df_p : T_pM \to \mathbb{R}.
\] (7)

Notatio 2.3
In Hamiltonian mechanics a manifold \(M \subset \mathbb{R}^n \) for some \(n \) will be the **configuration space** and \(T^*M \) will be the corresponding **phase space**.

3 Symplectic manifolds

3.1 Symplectic vector spaces

Before we can go to symplectic manifolds we will consider the case of a symplectic vector space. After this is done we can raise our considerations for the case of a manifold \(M \) since \(T_pM \) has the structure of an \(\mathbb{R} \)-vector space for every \(p \in M \).

Definition 3.1
Let \(V \) be a \(\mathbb{R} \)-vector space. A non-degenerate and alternating two-form \(\omega \in \Lambda^2(V) \) is called a **symplectic structure** on \(V \) and the pair \((V, \omega) \) is called a **symplectic vector space**.

Example 3.1
Consider \(\mathbb{R}^{2n} \) with coordinates \((x_1, \ldots, x_n, y_1, \ldots, y_n)\) and \(\omega_0 := \sum_{i=1}^n dx_i \wedge dy_i \). Then \(\omega_0 \) is due to the properties of \(\wedge \) alternating and linear since every \(dx_i \) and \(dy_i \) are linear.

Proposition 3.1
Every symplectic vector space is even dimensional.

Proposition 3.2
For every symplectic vector space \((V, \omega) \) of dimension \(2n \) there exists a basis \(\{e_i, f_i\} \) with \(i \in \{1, \ldots, n\} \) such that
\[
\omega_0 = \sum_{i=1}^n f_i^* \wedge e_i^*.
\] (8)

This form \(\omega_0 \) is called the **canonical form** or **standard form** on \(V \).

Definition 3.2
Let \((V, \omega) \) and \((V', \omega') \) be two symplectic vector spaces. Then \((V, \omega) \) and \((V', \omega') \) are called **symplectomorphic** to each other if there exists a linear isomorphism \(\varphi : V \to V' \) such that \(\varphi^* \omega' = \omega \). Then \(\varphi \) is called a **symplectic map**.

Example 3.2
Consider \(\mathbb{R}^{2n}, \omega_0 \) and write \(v, w \in V \) with respect to the standard basis as \(v = (v_1, \ldots, v_{2n}) \) and \(w = (w_1, \ldots, w_{2n}) \). Then
\[
\omega_0(v, w) = v^T J_0 w,
\] (9)

where
\[
J_0 = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix} \in \text{SL}(2n, \mathbb{R}).
\] (10)

Let \(A : \mathbb{R}^{2n} \to \mathbb{R}^{2n} \) be a linear isomorphism, written as a matrix \(A \in \text{GL}(2n, \mathbb{R}) \). We want to know which \(A \) maps \(\omega_0 \) to \(\omega_0 \). Then we can insert:
\[
A^* \omega_0(v, w) = \omega_0(Av, Aw) \equiv \omega_0(v, w) \quad \forall v, w \in \mathbb{R}^{2n}.
\] (11)
Writing this as in (9) we get
\[v^T A^T J_0 A w = \frac{1}{\lambda} v^T J_0 w \quad \forall v, w \in \mathbb{R}^{2n}. \] (12)

Therefore the following definition makes sense:

Definition 3.3
A matrix \(A \in \text{Mat}(\mathbb{R}, 2n \times 2n) \) is called symplectic if
\[A^T J_0 A = J_0. \] (13)

Lemma 3.3
The set of matrices \(A \in \text{M}(\mathbb{R}, 2n \times 2n) \) satisfying (13) forms with respect to ordinary matrix multiplication a group, called the symplectic group and is denoted by \(\text{Sp}(2n) \). Moreover \(A \in \text{Sp}(2n) \) implies that \(A^T \in \text{Sp}(2n) \).

Proposition 3.4
For \(A \in \text{Sp}(2n) \) we have \(\det A = 1 \) for all \(n \in \mathbb{N} \).

3.2 Symplectic manifolds

Definition 3.4
Let \(\Omega^k(M) \) denote the space of \(k \)-forms over a manifold \(M \), i.e. \(\omega \in \Omega^k(M) \) means that \(\omega|_p = \omega_p \in \Lambda^k(T_p M) \) varies smoothly with \(p \in M \).

Definition 3.5
Let \(M \) be a manifold. Then \(\omega \in \Omega^2(M) \) is called non-degenerate if \(\omega_p \) is non-degenerate for all \(p \in M \). In other words: \((T_p M, \omega_p) \) is a symplectic vector space for all \(p \in M \).

Definition 3.6
Let \(M \) be a manifold and \(\omega \in \Omega^2(M) \) be a non-degenerate and closed, i.e. \(d \omega = 0 \), 2-form on \(M \). Then \(\omega \) is called a symplectic form on \(M \) and the pair \((M, \omega) \) is called a symplectic manifold.

Notation 3.1
(i) \(M \) has to be even dimensional since \(\dim T_p M = \dim M \) and \(T_p M \) is by Proposition 3.1 even dimensional. Physically one could translate this to the property that to every coordinate \(q \) there has to exist an associated momenta \(p \).

(ii) \(M \) has to be orientable since \(\omega^n \neq 0 \) defines a volume form on \(M \).

Theorem 3.5
(Darboux). Let \((M, \omega) \) be a symplectic manifold of dimension \(2n \). Then for every \(p \in M \) there exists a neighborhood \(U \subset M \) of \(p \) and a symplectomorphism \(\varphi : U \to V \), where \(V \subset \mathbb{R}^{2n} \) is a neighborhood of \(\varphi(p) \), such that \(\varphi^* \omega = \omega_0 \).

3.3 Back to classical mechanics

In classical mechanics we normally consider the positions of a particle \((q_1, \ldots, q_n)\) together with their momenta \((p^1, \ldots, p_n)\). This done by letting \(q \in M \), where \(M \) is a manifold and denotes the configuration space and \(p \in T^* M \) since \(p \) depends in general on \(q \) and computes \(n \) different real numbers. Therefore \(T^* M \) is our phase space of the system.
Of central importance in physics is the law of conservation of energy, i.e., there exists a function \(H \in C^\infty(T^*M) \) such that \(H \) is conserved along the motion of a particle in phase space. Let \(\gamma : \mathbb{R} \to T^*M \) with \(\gamma(t) = (q(t), p(t)) \) be such a solution, then \(H(\gamma(t)) = \text{const} \) for all \(t \in \mathbb{R} \). Let us generalize this concept to symplectic manifolds:

Definition 3.7

Let \((M, \omega)\) be a symplectic manifold and \(\iota_X : \Gamma(TM) \times \Omega^k(M) \to \Omega^{k-1}(M) \) be the insertion map that plugs in a vector field \(X \) into the first component of a \(k \)-form. A vector field \(X \in \Gamma(M) \) is called

(a) **symplectic** if \(\iota_X \omega \) is closed. The set \((M, \omega, X_H)\) is called a symplectic system.

(b) **Hamiltonian** if \(\iota_X \omega \) is exact, i.e., there exists a function \(H \in C^\infty(M) \) such that

\[
\frac{d}{dt} H = \iota_{X_H} \omega.
\]

Then \(H \) is called the energy function of \(X \). The set \((M, \omega, X_H)\) is called a Hamiltonian system.

Proposition 3.6

Let \((q^1, \ldots, q^n, p_1, \ldots, p_n)\) be canonical coordinates for \(\omega \), i.e., \(\omega = \omega_0 = \sum_i dq^i \wedge dp_i \). Let \(X_H \) be a Hamiltonian vector field with energy function \(H \). Then in these coordinates

\[
X_H = \frac{\partial H}{\partial p_i} \partial_{q^i} - \frac{\partial H}{\partial q_i} \partial_{p_i}.
\]

Thus \((q(t), p(t))\) is an integral curve of \(X_H \) if and only if Hamilton’s equations of motion hold:

\[
\dot{q}^i = \frac{\partial H}{\partial p_i} \quad \text{and} \quad \dot{p}_i = -\frac{\partial H}{\partial q^i} \quad \forall i \in \{1, \ldots, n\}.
\]

Proof. Let \(X_H \) be defined by the formula (15). We then have to verify (14). By construction we have

\[
\iota_{X_H} dq^i = \frac{\partial H}{\partial p_i} \quad \text{and} \quad \iota_{X_H} dp_i = -\frac{\partial H}{\partial q^i}
\]

and therefore

\[
\iota_{X_H} \omega = \sum_i \left(\iota_{X_H} dq^i \right) \wedge dp_i - dq^i \wedge \iota_{X_H} dp_i = \sum_i \frac{\partial H}{\partial p_i} dp_i + \frac{\partial H}{\partial q^i} dq^i = dH.
\]

Proposition 3.7

Let \((M, \omega, X_H)\) be a Hamiltonian system and let \(\gamma(t) \) be an integral curve for \(X_H \). Then \(H(\gamma(t)) = \text{const} \) for all \(t \in \mathbb{R} \).

Proof. By the chain rule and (14) we get

\[
\frac{d}{dt} H(\gamma(t)) = dH(\gamma(t)) \cdot \gamma'(t) = dH(\gamma(t)) \cdot X_H(\gamma(t))
\]

\[
= \omega(X_H(\gamma(t)), X_H(\gamma(t))) = 0
\]

since \(\omega \) is alternating.
Notatio 3.2
Not every symplectic system is globally Hamiltonian. Think for example of a particle with friction. But every symplectic system is locally Hamiltonian by the Poincaré lemma.

Since ω is non-degenerate we can use to map vector fields to forms and vice versa. Let $f \in C^\infty$. Then X_f is defined via the equation

$$df(Y) = \iota_{X_f} \omega(Y) = \omega(X_f, Y) \quad \forall Y \in \Gamma(M).$$

(21)

Definitio 3.8
Let (M, ω) be a symplectic manifold and $f, g \in C^\infty(M)$. The Poisson bracket of f and g is the function

$$\{f, g\} := -\iota_{X_f} \iota_{X_g} \omega = \omega(X_f, X_g).$$

(22)

Propositio 3.8
In canonical coordinates $(q^1, \ldots, q^n, p_1, \ldots, p_n)$ we have

$$\{f, g\} = \sum_{i=1}^n \left(\frac{\partial f}{\partial q^i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q^i} \right).$$

(23)

Proof. We can compute

$$\{f, g\} = df(X_g) = \left(\sum_{i=1}^n \frac{\partial f}{\partial q^i} dq^i + \frac{\partial f}{\partial p_i} dp_i \right) \left(\sum_{j=1}^n \frac{\partial g}{\partial p_j} \frac{\partial}{\partial q^j} - \frac{\partial g}{\partial q^j} \frac{\partial}{\partial p_j} \right)$$

(24)

$$= \sum_{i=1}^n \left(\frac{\partial f}{\partial q^i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q^i} \right).$$

(25)
4 GROMOV’S THEOREM

In this part we want to explore so-called Gromov’s theorem from 1985 and its connections to the uncertainty principle. To do so we need some definitions:

Definition 4.1
Let (U, ω) and $(\mathbb{R}^{2n}, \omega')$ be two symplectic manifolds. A symplectic map $\varphi : U \to \mathbb{R}^{2n}$ is called a symplectic embedding if it is injective.

Definition 4.2
Let $(\mathbb{R}^{2n}, \omega)$ be a symplectic manifold. Then $B^{2n}(r) \subset \mathbb{R}^{2n}$ defined as

\[
B^{2n}(r) = \left\{ (x, y) \in \mathbb{R}^{2n} \mid \sum_{i=1}^{n} x_i^2 + y_i^2 < r^2 \right\}
\]

is called a symplectic ball of dimension $2n$ with radius $r \in \mathbb{R}^+$ and $Z^{2n}(r) = B^2(r) \times \mathbb{R}^{2n-2} \subset \mathbb{R}^{2n}$ is called symplectic cylinder of dimension $2n$ with radius $r \in \mathbb{R}^+$.

Theorem 4.1
(GROMOV’s non-sequeezing theorem). If there exists a symplectic embedding

\[
B^{2n}(r) \hookrightarrow Z^{2n}(R),
\]

then

\[
r \leq R.
\]

Notation 4.1
LALOND and McDUFF improved this theorem to arbitrary symplectic manifolds (M, ω) of dimension $2n$. If there exists a symplectic embedding

\[
B^{2n+2}(r) \hookrightarrow B^2(R) \times M
\]

then $r \leq R$.

Proof. Even if the statements sound rather simple the proof of this is quite complicated and uses the techniques of so-called J-holomorphic curves. \qed

Notation 4.2
This is an analog of the uncertainty principle. Let $a = (q^1, \ldots, q^n, p_1, \ldots, p_n) \in M$ be a point in phase space with radial uncertainty $\varepsilon \in \mathbb{R}^+$, denoted by U, i.e. U is a symplectic ball around a with radius ε. Then there is no dynamical evolution or choice of coordinates, i.e. a symplectomorphism, such that the uncertainty of two conjugate variables (q^i, p_i) can be reduced lower than ε. Note that this is so far only a classical statement.

GROMOV’s theorem gave rise to the following definition:
Definitio 4.3
A symplectic capacity is a map that assigns to every symplectic manifold \((M, \omega)\) a non-negative but possibly infinite number \(c(M, \omega)\) such that

(a) If there exists a symplectic embedding \((M_1, \omega_1) \hookrightarrow (M_2, \omega_2)\) and \(\dim M_1 = \dim M_2\) then \(c(M_1, \omega_1) \leq c(M_2, \omega_2)\).

(b) For every \(\lambda \in \mathbb{R}\) one has \(c(M, \lambda \omega) = |\lambda| c(M, \omega)\).

(c) \(c(B^{2n}(1), \omega_0) > 0\) and \(c(Z^{2n}(1), \omega_0) < \infty\).

Notatio 4.3
Condition (c) of the definition excludes volume to be a capacity. Moreover the requirement that \(c(Z^{2n}(1), \omega_0)\) to be finite means that capacities are 2-dimensional invariants.

Notatio 4.4
The existence of a capacity \(c\) with
\[
c(B^{2n}, \omega_0) = c(Z^{2n}(1), \omega_0) = \pi
\] (31)
is equivalent to Gromov’s theorem \([4.1]\).

5 Quantization

Roughly speaking quantization is a map that takes classical observables to symmetric operators over a certain Hilbert space. Of course this has to be made more precise. The notion of the corresponding Hilbert space can be obtained by equivalence classes over square integrable functions of a configuration space manifold \(Q\):

Definitio 5.1
Let \(Q\) be a manifold and consider the set of all pair \((f, \mu)\), where \(\mu\) is natural measure on \(Q\) and \(f \in C^\infty(Q, \mathbb{C})\) is a complex measurable function such that \(\int_Q |f|^2 d\mu < \infty\), i.e. \(f \in L^2(Q, \mu)\). Two pairs \((f, \mu)\) and \((g, \eta)\) will be called equivalent provided that \(f \sqrt{d\mu/d\eta} = g\). We denote the equivalence class of \((f, \mu)\) by \(f \sqrt{d\mu}\). Let \(\mathcal{H}(Q)\) be the set of all such equivalence classes. Pick a natural measure \(\mu\). Then the map
\[
U_\mu : L^2(Q, \mu) \longrightarrow \mathcal{H}(Q)
\]
\[
f \longmapsto f \sqrt{d\mu}
\]
is a bijection.

Definitio 5.2
Let \(Q\) be a manifold. A function \(f \in C^\infty(Q)\) is called a classical configuration observable and the corresponding quantum position observable is an operator \(O_f\) on \(\mathcal{H}(Q)\) such that
\[
O_f(g \sqrt{d\mu}) = f \cdot g \sqrt{d\mu},
\] (32)
i.e. \(O_f\) is the multiplication by \(f\). Define the classical momentum observable \(P(X)\) on \(T^*Q\) associated to vector field \(X\) on \(Q\) as
\[
P(X) : T^*Q \longrightarrow \mathbb{R}
\]
\[
\alpha \longmapsto \alpha(X)
\]
We shall call the operator \hat{X} the corresponding quantum momentum observable.

Proposition 5.1
Let Q be a finite-dimensional manifold with Hilbert space $\mathcal{H}(Q)$. Let $X, Y \in \Gamma(Q)$ be vector fields on Q and let $f, g \in C^\infty(Q)$. Then we have

(i) $[\hat{X}, \hat{Y}] = -i[\hat{X}, \hat{Y}]$.

(ii) $[O_f, O_g] = 0$.

(iii) $[O_f, \hat{X}] = iO_X(f)$.

Definition 5.3
A full quantization of a manifold Q is a map, denoted by a hat $\hat{\cdot}$, taking classical observables f to self-adjoint operators \hat{f} on Hilbert space $\mathcal{H}(Q)$ such that:

(i) $\hat{(f + g)} = \hat{f} + \hat{g}$.

(ii) $\hat{\lambda f} = \lambda \hat{f}$ for all $\lambda \in \mathbb{R}$.

(iii) $\{\hat{f}, \hat{g}\} = -i[\hat{f}, \hat{g}]$.

(iv) $\hat{1} = \text{Id}$, where 1 is the function that is constantly 1 on Q and Id is the identity on $\mathcal{H}(Q)$.

(v) \hat{q}^i and \hat{p}_j act irreducibly on $\mathcal{H}(Q)$.

Notation 5.1
By a theorem from Stone-von Neumann the condition (v) really means that we can take $\mathcal{H} = L^2(\mathbb{R}^n)$, where n is the dimension of Q, and that \hat{q}^i and \hat{p}_j are given by $\hat{q}^i = O_q^i$ and $\hat{p}_j = -i\frac{\partial}{\partial q^j}$; that is, the Schrödinger representation.

In order to allow spin one has to relax the last condition to:

(v') The position and momentum operators are represented by a direct sum of finitely many copies of the Schrödinger representation. More precisely, we are asking that $\mathcal{H}(Q)$ can be realized as the space of L^2 functions from \mathbb{R}^n to a d-dimensional Hilbert space \mathcal{H}_d with $d < \infty$, so that

$$\hat{q}^i \phi(x) = q^i \phi(x) \quad \text{and} \quad \hat{p}_j \phi(x) = -i\frac{\partial \phi}{\partial x^j}(x) \quad (33)$$

Does such a full quantization exist? The answer is no! To see this we follow A. Joseph from 1970:

Theorem 5.2
Let U be the Lie algebra of real-valued polynomials of \mathbb{R}^{2n}, where the bracket is given by the Poisson bracket. Let $H = L^2(\mathbb{R}^n, \mathcal{H}_d)$. Then there is no map $f \mapsto \hat{f}$ from U to the self-adjoint operators on H that has the following properties:

(i) For each finite subset $S \subset U$ there is a dense subspace $D_S \subset H$ such that for all $f \in S$: $D_S \subset D_{\hat{f}}$ and $\hat{f} D_S \subset D_S$.

11
\((\hat{f} + \hat{g}) = \hat{f} + \hat{g} \) pointwise on \(D_S \) if \(f, g \in S \).

\(\hat{\lambda f} = \lambda \hat{f} \) for \(\lambda \in \mathbb{R} \).

\(\{ \hat{f}, \hat{g} \} = -i[\hat{f}, \hat{g}] \) on \(D_S \).

\(\hat{1} = \text{Id} \).

\(\hat{q}^i \) is multiplication by \(q^i \) and \(\hat{p}_j = -i \frac{\partial}{\partial q^j} \).

Notation 5.2
Since we have seen that quantization with finite representations are not working there is another procedure, the so-called **pre-quantization**, that is a quantization satisfying (i)-(iv) but not (v) or (v') of definition 5.3.

Definition 5.4
Let \(M \) be a manifold. A vector bundle \(\pi : Q \to M \) is called a **principal circle bundle** if every fiber \(\pi^{-1}(p) \) for \(p \in M \) is a circle \(S^1 \) and there is a consistent action \(S^1 \times Q \to Q \), which is just multiplication on each fiber, i.e. \(M = Q / S^1 \).

Definition 5.5
Let \((P, \omega) \) be a symplectic manifold. We say that \((P, \omega) \) is **quantizable** if and only if there is a principle circle bundle \(\pi : Q \to P \) over \(P \) and a 1-form \(\alpha \) on \(Q \) such that

(a) \(\alpha \) is invariant under the action of \(S^1 \).
(b) \(\pi^* \omega = d\alpha \).

\(Q \) is then called the **quantizing manifold** of \(P \).

Exemplum 5.1
(a) If \(\omega \) is exact, then \(P \) is quantizable, e.g. \(P = T^*M \). If \(P \) is simply connected, then \(Q \) is unique, i.e. if \(\omega = d\theta \) we can let \(Q = P \times S^1 \) and \(\alpha = \theta + \hbar ds \) for some suitable \(s \in C^\infty(Q) \) and \(\hbar \) is a constant, ultimately to be defined with **Plank’s constant**.

(b) For more details view Souriau 1970: Consider the two sphere \(S^2 \) in \(\mathbb{R}^3 \) with radius \(mK \) with the symplectic form

\[
\omega = \frac{-i}{\sqrt{8me}} \left(\frac{dx_1 \wedge dx_2}{x_3} \right),
\]

where \(m \) is the mass, \(K \) is the attractive constant and \(e \) is the energy. Then \(S^2 \) is quantizable if and only if \(e = -2\pi^2 mK^2 / N^2 \) for an integer \(n \in \mathbb{N} \).