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Exercise 4: Relativistic charged particle as a regular system

Consider a charged massive point particle in special relativity of (d + 1)-dimensions, described by [1, sec. 16]

S
[

xi
]
=

ż tB

tA

dt L
(

xi, ẋj
)

:=
ż tB

tA

dt
!

´m
b

1´ δij ẋi ẋj ´ qΦ
(

xj
)
+ qẋj Ai

(
xk
))

, i, j, k = 1, . . . , d , (1)

where ẋi := dxi/dt, m and q are the mass and electric charge, Φ and Ai the electric and vector potentials.

1. Show that the canonical d-momentum reads

Pi = Pi

(
xj, ẋk

)
:=
BL
Bẋi = δij

mẋj
a

1´ δkl ẋk ẋl
+ qAi . (2)

2. Show that the following partial inverse reads

ẋi = vi
(

xj, Pk

)
= δij Pj ´ qAj

b

m2 + δkl(Pk ´ qAk)(Pl ´ qAl)
. (3)

Remark. Such a partial inverse exists because the Hessian Mij := BPi
Bẋj ”

B2L
Bẋj Bẋi is a regular matrix, which

is a condition for the implicit function theorem [2]; the system is regular because Mij is regular.

3. Show that the canonical Hamiltonian of the particle reads

Hc = Hc
(

xi, Pj

)
=

!

ẋiPi ´ L
(

xi, ẋj
))

ẋi=vi(xj ,Pk)
=

b

m2 + δkl(Pk ´ qAk)(Pl ´ qAl) + qΦ . (4)

4. Derive the Hamilton’s equations of motion in terms of Poisson brackets [3, sec. 42]

dω

dt
= [ω, H]P , where ω = xi, Pj, [ f , g]P :=

B f
Bxi

Bg
BPi

´
Bg
Bxi

B f
BPi

. (5)

Why are the equations for ẋi less interesting than those for Ṗi?

Exercise 5: Relativistic particle as a singular system: Lagrangian formalism

It is an experimental fact that a physical system obeys the Newton’s principle of determinacy [4, sec. 1.1]:

The initial state of a mechanical system (the totality of positions and velocities of its points at some
moment of time) uniquely determines all of its motion.

In other words, for a mechanical system with s generalised coordinates
 

qi(, an initial data
(
qi

0; q̇i
0; t0

)
of

(2s + 1) quantities uniquely determines the evolution of the system. We will show that the action for a point
particle in eq. (6), as a singular system, violates this principle.
Consider a massive point particle in special relativity in (1 + 1)-dimensions, described by the action

S[t, x] =
ż λB

λA

dλ L(xµ, ẋν) :=
ż λB

λA

dλ
!

´m
a

ṫ2 ´ ẋ2
)

, (6)

where ẋµ := dxµ/dλ. The system is singular because Mµν := B2L
Bẋν ẋµ is singular.
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1. Since txµu are cyclic [3, sec. 14], the corresponding generalised momenta are integrals of motion and
can serve as the velocity initial data. Show that these constants of motion can be chosen to be

E :=
mṫ

?
ṫ2 ´ ẋ2

, p :=
mẋ

?
ṫ2 ´ ẋ2

. (7)

For simplicity, we assume in the following E ą 0 .

2. It is easy to check that (E, p) satisfies the relation

E =
b

p2 + m2 ą 0 . (8)

We could use β and σ(λ) to recognise this, which are defined as

sinh β :=
p
m

, σ(λ) :=
a

ṫ2 ´ ẋ2 ą 0 . (9)

Show that eq. (7) can be integrated as

t(λ)´ t0 = cosh(β)

ż λ

λa

dκ σ(κ) , x(λ)´ x0 = sinh(β)

ż λ

λa

dκ σ(κ) . (10)

Remark 1. The initial data (t0, x0; β; λ0) of 4 quantities, which is less than the expected number of 5, is
sufficient for the evolution of the system, and the initial data (E, p) cannot be arbitrarily chosen. This is a
basic feature of all constrained systems in the Lagrangian formalism.

Remark 2. The evolution of the system is not uniquely determined: eq. (10) contains a functional inde-
terminacy σ(λ). This is another feature for gauge systems.

Remark 3. The word gauge here is in a more general sense than it is in Yang(楊)–Mills theories!

3. In physics, one chooses σ(λ) = σ ” const. for definiteness; in particular, σ = 1 makes λ the proper
time. This is an example of ‘gauge fixing’, which can already be imposed in eq. (7).

What happens if one fixes the gauge earlier, i.e. in eq. (6)?

Exercise 6: Relativistic charged particle as a singular system: vanishing Hamiltonian

Consider a charged massive point particle in special relativity of (d + 1)-dimensions, described by the action

S[xµ] =

ż λB

λA

dλ L(xµ, ẋν) :=
ż λB

λA

dλ
!

´m
b

´ηµν ẋµ ẋν + qẋµ Aµ

)

, (11)

where ẋµ := dxµ/dλ, Aµ is the four-potential.

1. Show that the action is invariant under a non-degenerate reparametrisation of the integral variable

λ ÞÑ λ f = f (λ) , f 1(λ) ą 0 . (12)

As a weaker consequence, L(xµ, ẋν) is a homogeneous function of degree 1 with respect to ẋν [5],

L(xµ, kẋν) = kL(xµ, ẋν) , k ą 0 . (13)

2. Show that the canonical (d + 1)-momentum reads

Pµ = Pµ(xν, ẋρ) :=
BL
Bẋµ = ηµν

mẋν

b

´ηξπ ẋξ ẋπ
+ qAµ . (14)

3. Show that

Mµν :=
BPµ

Bẋν
”

B2L
Bẋν ẋµ =

´ηµνηξπ + ηµξ ηνπ
a

´ηρσ ẋρ ẋσ
ẋξ ẋπ ; (15a)

Mµν ẋν = 0 . (15b)

Furthermore, use the implicit function theorem to argue that the partial inverse ẋµ = vµ
(
xν, Pξ

)
does

not exist.

Remark. The system is singular because the Hessian Mµν is singular, which has just been proven.
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4. Show that

ẋµPµ(xν, ẋρ)´ L(xµ, ẋν) = 0 . (16)

This holds for all systems, that has a Lagrangian L
(
qi, q̇j) homogeneous of degree 1 with respect to the

generalised velicities q̇i [6, sec. 3.1.1], which is left as an exercise.

Since the Hamiltonian-to-be vanishes, it seems that there is no way to understood the dynamics of the system
in the Hamiltonian approach. In the following we will follow [7, ch. 2] and find a way around. More popular
references include [8].

Exercise 7: Extended analytical mechanics with velocity: kinematics

Consider a time-independent mechanical system described by the Lagrangian action

Sl
[
qi
]
=

ż tB

tA

dt L
(

qi, q̇j
)

, i = 1, . . . , s ą 1 . (17)

The system is called regular (singular) if Mij := B2L
Bẋj Bẋi is regular (singular).

Define the following Lagrangian, Hamiltonian and action with velocity

Sv
[
qi, pj, vk

]
=

ż tB

tA

dt
!

Lv + pi

(
q̇i ´ vi

))
, Lv := L

(
qi, vj

)
; (18a)

=

ż tB

tA

dt
!

pi q̇i ´ Hv
)

, Hv = Hv
(

qj, pk, vl
)

:= pivi ´ Lv . (18b)

1. Apply the variational principle for tpiu to the integral in eq. (18a) and show that it leads to eq. (17).

2. Apply the variational principle for
!

qi, pj, vk
)

to the integral in eq. (18b) and show that

ω̇ = [ω, Hv]P , ω = qi, pj , [g, h]P :=
Bg
Bqi

Bh
Bpi

´
Bh
Bqi

Bg
Bpi

; (19a)

0 =
BHv

Bvi ” pi ´
BLv

Bvi . (19b)

3. For a regular system, eq. (19b) can be partially inverted to vi = vi(qj, pk
)

. Show that the integral in
eq. (18b) leads to the Hamiltonian action

Sh
[
qi, pj

]
=

ż tB

tA

dt
!

pi q̇i ´ Hc
)

, Hc = Hc
(

qi, pj

)
:= Hv|vi=vi(qj ,pk)

”

(
pi q̇i ´ L

)ˇ
ˇ

ˇ

q̇i=vi(qj ,pk)
. (20)

Do the Hamilton’s equations follow from this action?

4. For a singular system, rank Mij = r ă s. One can expect that there are (s´ r) velocities, tvuu, that cannot
be solved from eq. (19b) and are inexpressible in terms of

(
qi, pi; vi), whereas r velocities, tveu, can be

solved and are expressible in terms of
(
qi, pi; vi).

(Optional) Argue that the assert above can be more accurate such that

ve = ve
(

qi, pe; vu
)

, (21)

i.e. the expressible velocities are independent of tpu; veu, where tpuu are the conjugate momenta of the
generalised coordinates corresponding to the inexpressible velocities, and tveu the expressible velocities.

5. Inserting eq. (21) into Hv yields the Hamiltonian with primary constraint

Hp = Hs
(

qi, pe

)
+ vuFu , Fu = Fu

(
qi, pi

)
= pu ´ fu

(
qi, pe

)
. (22)

tFuu are called primary constraints [9, 10], which are linear in the canonical momenta pu in our formalism.

(Optional) Derive eq. (22).

Remark 1. The primary constraints originate from the definition of momenta and contain therefore no
knowledge concerning the dynamics of the system.

Remark 2. Because of the constraints (in general, tΦau), motions are confined in the submanifold Φa = 0
in the phase space. This is a character for all constrained systems in the Hamilton’s approach.
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Exercise 8: Linear action for a massive relativistic particle: primary constraints

Consider a charged massive point particle in special relativity, described by the Lagrangian action

Sl[xµ] =

ż λB

λA

dλ L(xµ, ẋν) :=
ż λB

λA

dλ
!

´m
b

´ηµν ẋµ ẋν + qẋµ Aµ

)

, m ą 0 . (23)

1. Show that the Hamiltonian with velocity reads

Hv = m
b

´ηµνvµvν + vν
(

Pµ ´ qAµ

)
. (24)

2. Take v0 as the inexpressible velocity. Show that the rest of the velocities,
 

vi(, are expressible such that

vi = vi
(

xµ, Pi; v0
)
= δij Pj ´ qAj

b

m2 + δkl(Pk ´ qAk)(Pl ´ qAl)
v0 . (25)

3. Insert eq. (25) into Sv and show that

Sp
[

xµ, Pν; v0
]

:= Sv
[

xµ, Pν; v0, vi = vi
(

xµ, Pi; v0
)]

=

ż λB

λA

dλ
 

Pµ ẋµ ´ Hp( , (26a)

Hp = Hp
(

xµ, Pµ; v0
)
= v0F0 , (26b)

F0 = P0 ´ f0(xµ, Pi), f0 = qA0 ´

b

m2 + δkl(Pk ´ qAk)(Pl ´ qAl) . (26c)

Exercise 9: Quadratic action for a relativistic particle: secondary constraints

The evolution of a phase-space function g
(
qi, pj

)
is determined by ġ = [g, Hp]P. Consistency requires that a

constrain Φ persists in time, so that

0 ” Φ̇ = [Φ, Hp]P = [Φ, Hs]P + vu[Φ, Fu]P , (27)

New generations of constraints can be produced in this way, which are collectively called secondary constraints.
Moreover, a Lie algebra of constraints [Φa, Φb]p emerges. If the algebra closes,

[Φa, Φb]p = Cc
abΦc , (28)

the constraints and the system are called first-class [9].
Consider a charged point particle in special relativity, described by the Lagrangian action [11, sec. 2.1]

Sl[xµ, N] =

ż

dλ
N
2

"

ηµν
ẋµ

N
ẋν

N
´m2 + q

ẋµ

N
Aµ

*

, N = N(t) ą 0 , m ě 0 . (29)

1. Derive the Euler–Lagrange equation for N. Furthermore, solve this equation for N and show that
eq. (29) gives eq. (23) for m ą 0.

2. Show that the Hamiltonian with velocity reads

Hv =
N
2

(
´ηµν

vµ

N
vν

N
+ m2 ´ q

vµ

N
Aµ

)
+ vνPν + vN PN . (30)

3. Show that the Hamiltonian with primary constraints reads

Hp = Hs + vN FN =: ´NHK + vN FN , (31a)

HK = ´
1
2

(
ηµν
(

Pµ ´ qAµ

)
(Pν ´ qAν) + m2

)
, FN = PN , (31b)

4. Show that HK is a secondary constraint. Furthermore, show that there are no further constraints, and
the system is first-class.

Remark 1. The secondary constraint is already contained in Hs in this example.

Remark 2. Confusingly, HK is often called the Hamiltonian constraint in the literature.
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5. In this case, the Dirac quantisation rules for first-class systems [6, sec. 3.1.2] read

pFNΨ = 0 , pHKΨ = 0 . (32)

Because Hp consists of constraints only and the canonical Hamiltonian Hc vanishes, there is no Schrö-
dinger-type of equation. Consequently, there is no time in the equations.

Show that eq. (32) leads to the Klein–Gordon equation

ηµν
(
}Bµ ´ iqAµ

)
(}Bν ´ iqAν)ψ´m2ψ = 0 , ψ = ψ(xµ) . (33)

In particular, the dependence of N drops out.
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