Second unofficial exercise sheet on Quantum Gravity
 Winter term 2019/20

Release: Fri, Oct. 25
Discuss: Fri, Nov. 8

Exercise 4: Relativistic charged particle as a regular system
Consider a charged massive point particle in special relativity of $(d+1)$-dimensions, described by [1, sec. 16]

$$
\begin{equation*}
S\left[x^{i}\right]=\int_{t_{A}}^{t_{B}} \mathrm{~d} t L\left(x^{i}, \dot{x}^{j}\right):=\int_{t_{A}}^{t_{B}} \mathrm{~d} t\left\{-m \sqrt{1-\delta_{i j} \dot{x}^{i} \dot{x} \dot{j}}-q \Phi\left(x^{j}\right)+q \dot{x}^{j} A_{i}\left(x^{k}\right)\right\}, \quad i, j, k=1, \ldots, d, \tag{1}
\end{equation*}
$$

where $\dot{x}^{i}:=\mathrm{d} x^{i} / \mathrm{d} t, m$ and q are the mass and electric charge, Φ and A_{i} the electric and vector potentials.

1. Show that the canonical d-momentum reads

$$
\begin{equation*}
P_{i}=P_{i}\left(x^{j}, \dot{x}^{k}\right):=\frac{\partial L}{\partial \dot{x}^{i}}=\delta_{i j} \frac{m \dot{x}^{j}}{\sqrt{1-\delta_{k l} \dot{x}^{k} \dot{x}^{l}}}+q A_{i} \tag{2}
\end{equation*}
$$

2. Show that the following partial inverse reads

$$
\begin{equation*}
\dot{x}^{i}=\bar{v}^{i}\left(x^{j}, P_{k}\right)=\delta^{i j} \frac{P_{j}-q A_{j}}{\sqrt{m^{2}+\delta^{k l}\left(P_{k}-q A_{k}\right)\left(P_{l}-q A_{l}\right)}} . \tag{3}
\end{equation*}
$$

Remark. Such a partial inverse exists because the Hessian $M_{i j}:=\frac{\partial P_{i}}{\partial \dot{x}^{j}} \equiv \frac{\partial^{2} L}{\partial \dot{x}^{\dot{j}} \partial \dot{x}^{i}}$ is a regular matrix, which is a condition for the implicit function theorem [2]; the system is regular because $M_{i j}$ is regular.
3. Show that the canonical Hamiltonian of the particle reads

$$
\begin{equation*}
H^{\mathrm{c}}=H^{\mathrm{c}}\left(x^{i}, P_{j}\right)=\left\{\dot{x}^{i} P_{i}-L\left(x^{i}, \dot{x}^{j}\right)\right\}_{\dot{x}^{i}=\bar{v}^{i}\left(x^{j}, P_{k}\right)}=\sqrt{m^{2}+\delta^{k l}\left(P_{k}-q A_{k}\right)\left(P_{l}-q A_{l}\right)}+q \Phi . \tag{4}
\end{equation*}
$$

4. Derive the Hamilton's equations of motion in terms of Poisson brackets [3, sec. 42]

$$
\begin{equation*}
\frac{\mathrm{d} \omega}{\mathrm{~d} t}=[\omega, H]_{\mathrm{P}}, \quad \text { where } \omega=x^{i}, P_{j}, \quad[f, g]_{\mathrm{P}}:=\frac{\partial f}{\partial x^{i}} \frac{\partial g}{\partial P_{i}}-\frac{\partial g}{\partial x^{i}} \frac{\partial f}{\partial P_{i}} \tag{5}
\end{equation*}
$$

Why are the equations for \dot{x}^{i} less interesting than those for \dot{P}_{i} ?

Exercise 5: Relativistic particle as a singular system: Lagrangian formalism

It is an experimental fact that a physical system obeys the Newton's principle of determinacy [4, sec. 1.1]:
The initial state of a mechanical system (the totality of positions and velocities of its points at some moment of time) uniquely determines all of its motion.

In other words, for a mechanical system with s generalised coordinates $\left\{q^{i}\right\}$, an initial data $\left(q_{0}^{i} ; \dot{q}_{0}^{i} ; t_{0}\right)$ of $(2 s+1)$ quantities uniquely determines the evolution of the system. We will show that the action for a point particle in eq. (6), as a singular system, violates this principle.
Consider a massive point particle in special relativity in $(1+1)$-dimensions, described by the action

$$
\begin{equation*}
S[t, x]=\int_{\lambda_{A}}^{\lambda_{B}} \mathrm{~d} \lambda L\left(x^{\mu}, \dot{x}^{v}\right):=\int_{\lambda_{A}}^{\lambda_{B}} \mathrm{~d} \lambda\left\{-m \sqrt{\dot{t}^{2}-\dot{x}^{2}}\right\}, \tag{6}
\end{equation*}
$$

where $\dot{x}^{\mu}:=\mathrm{d} x^{\mu} / \mathrm{d} \lambda$. The system is singular because $M_{\mu \nu}:=\frac{\partial^{2} L}{\partial \dot{x}^{\nu} \dot{x}^{\mu}}$ is singular.

1. Since $\left\{x^{\mu}\right\}$ are cyclic [3, sec. 14], the corresponding generalised momenta are integrals of motion and can serve as the velocity initial data. Show that these constants of motion can be chosen to be

$$
\begin{equation*}
E:=\frac{m \dot{t}}{\sqrt{\dot{t}^{2}-\dot{x}^{2}}}, \quad p:=\frac{m \dot{x}}{\sqrt{\dot{t}^{2}-\dot{x}^{2}}} \tag{7}
\end{equation*}
$$

For simplicity, we assume in the following $E>0$.
2. It is easy to check that (E, p) satisfies the relation

$$
\begin{equation*}
E=\sqrt{p^{2}+m^{2}}>0 \tag{8}
\end{equation*}
$$

We could use β and $\sigma(\lambda)$ to recognise this, which are defined as

$$
\begin{equation*}
\sinh \beta:=\frac{p}{m}, \quad \sigma(\lambda):=\sqrt{\dot{t}^{2}-\dot{x}^{2}}>0 . \tag{9}
\end{equation*}
$$

Show that eq. (7) can be integrated as

$$
\begin{equation*}
t(\lambda)-t_{0}=\cosh (\beta) \int_{\lambda_{a}}^{\lambda} \mathrm{d} \kappa \sigma(\kappa), \quad x(\lambda)-x_{0}=\sinh (\beta) \int_{\lambda_{a}}^{\lambda} \mathrm{d} \kappa \sigma(\kappa) \tag{10}
\end{equation*}
$$

Remark 1. The initial data $\left(t_{0}, x_{0} ; \beta ; \lambda_{0}\right)$ of 4 quantities, which is less than the expected number of 5 , is sufficient for the evolution of the system, and the initial data (E, p) cannot be arbitrarily chosen. This is a basic feature of all constrained systems in the Lagrangian formalism.
Remark 2. The evolution of the system is not uniquely determined: eq. (10) contains a functional indeterminacy $\sigma(\lambda)$. This is another feature for gauge systems.
Remark 3. The word gauge here is in a more general sense than it is in Yang(楊)-Mills theories!
3. In physics, one chooses $\sigma(\lambda)=\sigma \equiv$ const. for definiteness; in particular, $\sigma=1$ makes λ the proper time. This is an example of 'gauge fixing', which can already be imposed in eq. (7).
What happens if one fixes the gauge earlier, i.e. in eq. (6)?

Exercise 6: Relativistic charged particle as a singular system: vanishing Hamiltonian

Consider a charged massive point particle in special relativity of $(d+1)$-dimensions, described by the action

$$
\begin{equation*}
S\left[x^{\mu}\right]=\int_{\lambda_{A}}^{\lambda_{B}} \mathrm{~d} \lambda L\left(x^{\mu}, \dot{x}^{v}\right):=\int_{\lambda_{A}}^{\lambda_{B}} \mathrm{~d} \lambda\left\{-m \sqrt{-\eta_{\mu v} \dot{x}^{\mu} \dot{x}^{v}}+q \dot{x}^{\mu} A_{\mu}\right\}, \tag{11}
\end{equation*}
$$

where $\dot{x}^{\mu}:=\mathrm{d} x^{\mu} / \mathrm{d} \lambda, A_{\mu}$ is the four-potential.

1. Show that the action is invariant under a non-degenerate reparametrisation of the integral variable

$$
\begin{equation*}
\lambda \mapsto \lambda_{f}=f(\lambda), \quad f^{\prime}(\lambda)>0 \tag{12}
\end{equation*}
$$

As a weaker consequence, $L\left(x^{\mu}, \dot{x}^{\nu}\right)$ is a homogeneous function of degree 1 with respect to \dot{x}^{v} [5],

$$
\begin{equation*}
L\left(x^{\mu}, k \dot{x}^{v}\right)=k L\left(x^{\mu}, \dot{x}^{v}\right), \quad k>0 . \tag{13}
\end{equation*}
$$

2. Show that the canonical $(d+1)$-momentum reads

$$
\begin{equation*}
P_{\mu}=P_{\mu}\left(x^{\nu}, \dot{x}^{\rho}\right):=\frac{\partial L}{\partial \dot{x}^{\mu}}=\eta_{\mu v} \frac{m \dot{x}^{v}}{\sqrt{-\eta_{\xi} \pi \dot{x}^{\xi} \dot{x}^{\pi}}}+q A_{\mu} . \tag{14}
\end{equation*}
$$

3. Show that

$$
\begin{align*}
M_{\mu \nu}:=\frac{\partial P_{\mu}}{\partial \dot{x}^{\nu}} \equiv \frac{\partial^{2} L}{\partial \dot{x}^{v} \dot{x}^{\mu}} & =\frac{-\eta_{\mu v} \eta_{\xi \pi}+\eta_{\mu \xi} \eta_{v \pi}}{\sqrt{-\eta_{\rho \sigma} \dot{x}^{\rho} \dot{x}^{\sigma}}} \dot{x}^{\xi} \dot{x}^{\pi} ; \tag{15a}\\
M_{\mu v} \dot{x}^{\nu} & =0 . \tag{15b}
\end{align*}
$$

Furthermore, use the implicit function theorem to argue that the partial inverse $\dot{x}^{\mu}=\bar{v}^{\mu}\left(x^{\nu}, P_{\xi}\right)$ does not exist.

Remark. The system is singular because the Hessian $M_{\mu \nu}$ is singular, which has just been proven.
4. Show that

$$
\begin{equation*}
\dot{x}^{\mu} P_{\mu}\left(x^{v}, \dot{x}^{\rho}\right)-L\left(x^{\mu}, \dot{x}^{\nu}\right)=0 . \tag{16}
\end{equation*}
$$

This holds for all systems, that has a Lagrangian $L\left(q^{i}, \dot{q}^{j}\right)$ homogeneous of degree 1 with respect to the generalised velicities \dot{q}^{i} [6, sec. 3.1.1], which is left as an exercise.

Since the Hamiltonian-to-be vanishes, it seems that there is no way to understood the dynamics of the system in the Hamiltonian approach. In the following we will follow [7, ch. 2] and find a way around. More popular references include [8].

Exercise 7: Extended analytical mechanics with velocity: kinematics

Consider a time-independent mechanical system described by the Lagrangian action

$$
\begin{equation*}
S^{1}\left[q^{i}\right]=\int_{t_{A}}^{t_{B}} \mathrm{~d} t L\left(q^{i}, \dot{q}^{j}\right), \quad i=1, \ldots, s>1 . \tag{17}
\end{equation*}
$$

The system is called regular (singular) if $M_{i j}:=\frac{\partial^{2} L}{\partial \dot{x}^{j} \partial \dot{x}^{i}}$ is regular (singular).
Define the following Lagrangian, Hamiltonian and action with velocity

$$
\begin{align*}
S^{\mathrm{v}}\left[q^{i}, p_{j}, v^{k}\right] & =\int_{t_{A}}^{t_{B}} \mathrm{~d} t\left\{L^{\mathrm{v}}+p_{i}\left(\dot{q}^{i}-v^{i}\right)\right\}, & L^{\mathrm{v}}:=L\left(q^{i}, v^{j}\right) ; \tag{18a}\\
& =\int_{t_{A}}^{t_{B}} \mathrm{~d} t\left\{p_{i} \dot{q}^{i}-H^{\mathrm{v}}\right\}, & H^{\mathrm{v}}=H^{\mathrm{v}}\left(q^{j}, p_{k}, v^{l}\right):=p_{i} v^{i}-L^{\mathrm{v}} . \tag{18b}
\end{align*}
$$

1. Apply the variational principle for $\left\{p_{i}\right\}$ to the integral in eq. (18a) and show that it leads to eq. (17).
2. Apply the variational principle for $\left\{q^{i}, p_{j}, v^{k}\right\}$ to the integral in eq. (18b) and show that

$$
\begin{align*}
\dot{\omega} & =\left[\omega, H^{\mathrm{V}}\right]_{\mathrm{P}}, \quad \omega=q^{i}, p_{j}, \quad[g, h]_{\mathrm{P}}:=\frac{\partial g}{\partial q^{i}} \frac{\partial h}{\partial p_{i}}-\frac{\partial h}{\partial q^{i}} \frac{\partial g}{\partial p_{i}} \tag{19a}\\
0 & =\frac{\partial H^{\mathrm{V}}}{\partial v^{i}} \equiv p_{i}-\frac{\partial L^{\mathrm{v}}}{\partial v^{i}} . \tag{19b}
\end{align*}
$$

3. For a regular system, eq. (19b) can be partially inverted to $v^{i}=\bar{v}^{i}\left(q^{j}, p_{k}\right)$. Show that the integral in eq. (18b) leads to the Hamiltonian action

$$
\begin{equation*}
S^{\mathrm{h}}\left[q^{i}, p_{j}\right]=\int_{t_{A}}^{t_{B}} \mathrm{~d} t\left\{p_{i} \dot{q}^{i}-H^{\mathrm{c}}\right\}, \quad H^{\mathrm{c}}=H^{\mathrm{c}}\left(q^{i}, p_{j}\right):=\left.\left.H^{\mathrm{v}}\right|_{v^{i}=\bar{v}^{i}\left(q^{j}, p_{k}\right)} \equiv\left(p_{i} \dot{q}^{i}-L\right)\right|_{\dot{q}^{i}=\bar{v}^{i}\left(q^{j}, p_{k}\right)} \tag{20}
\end{equation*}
$$

Do the Hamilton's equations follow from this action?
4. For a singular system, rank $M_{i j}=r<s$. One can expect that there are $(s-r)$ velocities, $\left\{v^{u}\right\}$, that cannot be solved from eq. (19b) and are inexpressible in terms of $\left(q^{i}, p_{i} ; v^{i}\right)$, whereas r velocities, $\left\{v^{e}\right\}$, can be solved and are expressible in terms of $\left(q^{i}, p_{i} ; v^{i}\right)$.
(Optional) Argue that the assert above can be more accurate such that

$$
\begin{equation*}
v^{e}=\bar{v}^{e}\left(q^{i}, p_{e} ; v^{u}\right), \tag{21}
\end{equation*}
$$

i.e. the expressible velocities are independent of $\left\{p_{u} ; v^{e}\right\}$, where $\left\{p_{u}\right\}$ are the conjugate momenta of the generalised coordinates corresponding to the inexpressible velocities, and $\left\{v^{e}\right\}$ the expressible velocities.
5. Inserting eq. (21) into H^{v} yields the Hamiltonian with primary constraint

$$
\begin{equation*}
H^{\mathrm{p}}=H^{\mathrm{s}}\left(q^{i}, p_{e}\right)+v^{u} F_{u}, \quad F_{u}=F_{u}\left(q^{i}, p_{i}\right)=p_{u}-f_{u}\left(q^{i}, p_{e}\right) . \tag{22}
\end{equation*}
$$

$\left\{F_{u}\right\}$ are called primary constraints $[9,10]$, which are linear in the canonical momenta p_{u} in our formalism. (Optional) Derive eq. (22).
Remark 1. The primary constraints originate from the definition of momenta and contain therefore no knowledge concerning the dynamics of the system.
Remark 2. Because of the constraints (in general, $\left\{\Phi_{a}\right\}$), motions are confined in the submanifold $\Phi_{a}=0$ in the phase space. This is a character for all constrained systems in the Hamilton's approach.

Exercise 8: Linear action for a massive relativistic particle: primary constraints

Consider a charged massive point particle in special relativity, described by the Lagrangian action

$$
\begin{equation*}
S^{1}\left[x^{\mu}\right]=\int_{\lambda_{A}}^{\lambda_{B}} \mathrm{~d} \lambda L\left(x^{\mu}, \dot{x}^{v}\right):=\int_{\lambda_{A}}^{\lambda_{B}} \mathrm{~d} \lambda\left\{-m \sqrt{-\eta_{\mu \nu} \dot{x}^{\mu} \dot{x}^{v}}+q \dot{x}^{\mu} A_{\mu}\right\}, \quad m>0 . \tag{23}
\end{equation*}
$$

1. Show that the Hamiltonian with velocity reads

$$
\begin{equation*}
H^{\mathrm{v}}=m \sqrt{-\eta_{\mu \nu} v^{\mu} v^{v}}+v^{v}\left(P_{\mu}-q A_{\mu}\right) . \tag{24}
\end{equation*}
$$

2. Take v^{0} as the inexpressible velocity. Show that the rest of the velocities, $\left\{v^{i}\right\}$, are expressible such that

$$
\begin{equation*}
v^{i}=\bar{v}^{i}\left(x^{\mu}, P_{i} ; v^{0}\right)=\delta^{i j} \frac{P_{j}-q A_{j}}{\sqrt{m^{2}+\delta^{k l}\left(P_{k}-q A_{k}\right)\left(P_{l}-q A_{l}\right)}} v^{0} . \tag{25}
\end{equation*}
$$

3. Insert eq. (25) into S^{v} and show that

$$
\begin{align*}
S^{\mathrm{p}}\left[x^{\mu}, P_{v} ; v^{0}\right]:=S^{\mathrm{v}}\left[x^{\mu}, P_{v} ; v^{0}, v^{i}=\bar{v}^{i}\left(x^{\mu}, P_{i} ; v^{0}\right)\right] & =\int_{\lambda_{A}}^{\lambda_{B}} \mathrm{~d} \lambda\left\{P_{\mu} \dot{x}^{\mu}-H^{\mathrm{p}}\right\}, \tag{26a}\\
H^{\mathrm{p}}=H^{\mathrm{p}}\left(x^{\mu}, P_{\mu} ; v^{0}\right) & =v^{0} F_{0}, \tag{26b}\\
F_{0}=P_{0}-f_{0}\left(x^{\mu}, P_{i}\right), \quad f_{0} & =q A_{0}-\sqrt{m^{2}+\delta^{k l}\left(P_{k}-q A_{k}\right)\left(P_{l}-q A_{l}\right)} . \tag{26c}
\end{align*}
$$

Exercise 9: Quadratic action for a relativistic particle: secondary constraints

The evolution of a phase-space function $g\left(q^{i}, p_{j}\right)$ is determined by $\dot{g}=\left[g, H^{\mathrm{p}}\right]_{\mathrm{P}}$. Consistency requires that a constrain Φ persists in time, so that

$$
\begin{equation*}
0 \equiv \dot{\Phi}=\left[\Phi, H^{\mathrm{p}}\right]_{\mathrm{P}}=\left[\Phi, H^{\mathrm{s}}\right]_{\mathrm{P}}+v^{u}\left[\Phi, F_{u}\right]_{\mathrm{P}} \tag{27}
\end{equation*}
$$

New generations of constraints can be produced in this way, which are collectively called secondary constraints. Moreover, a Lie algebra of constraints $\left[\Phi_{a}, \Phi_{b}\right]_{p}$ emerges. If the algebra closes,

$$
\begin{equation*}
\left[\Phi_{a}, \Phi_{b}\right]_{\mathrm{p}}=C_{a b}^{c} \Phi_{c} \tag{28}
\end{equation*}
$$

the constraints and the system are called first-class [9].
Consider a charged point particle in special relativity, described by the Lagrangian action [11, sec. 2.1]

$$
\begin{equation*}
S^{1}\left[x^{\mu}, N\right]=\int \mathrm{d} \lambda \frac{N}{2}\left\{\eta_{\mu \nu} \frac{\dot{x}^{\mu}}{N} \frac{\dot{x}^{\nu}}{N}-m^{2}+q \frac{\dot{x}^{\mu}}{N} A_{\mu}\right\}, \quad N=N(t)>0, \quad m \geqslant 0 \tag{29}
\end{equation*}
$$

1. Derive the Euler-Lagrange equation for N. Furthermore, solve this equation for N and show that eq. (29) gives eq. (23) for $m>0$.
2. Show that the Hamiltonian with velocity reads

$$
\begin{equation*}
H^{\mathrm{v}}=\frac{N}{2}\left(-\eta_{\mu v} \frac{v^{\mu}}{N} \frac{v^{v}}{N}+m^{2}-q \frac{v^{\mu}}{N} A_{\mu}\right)+v^{v} P_{v}+v^{N} P_{N} . \tag{30}
\end{equation*}
$$

3. Show that the Hamiltonian with primary constraints reads

$$
\begin{align*}
H^{\mathrm{p}}=H^{\mathrm{s}}+v^{N} F_{N} & =:-N H_{\perp}+v^{N} F_{N} \tag{31a}\\
H_{\perp} & =-\frac{1}{2}\left(\eta^{\mu v}\left(P_{\mu}-q A_{\mu}\right)\left(P_{v}-q A_{v}\right)+m^{2}\right), \quad F_{N}=P_{N} \tag{31b}
\end{align*}
$$

4. Show that H_{\perp} is a secondary constraint. Furthermore, show that there are no further constraints, and the system is first-class.
Remark 1. The secondary constraint is already contained in H^{s} in this example.
Remark 2. Confusingly, H_{\perp} is often called the Hamiltonian constraint in the literature.
5. In this case, the Dirac quantisation rules for first-class systems [6, sec. 3.1.2] read

$$
\begin{equation*}
\hat{F}_{N} \Psi=0, \quad \hat{H}_{\perp} \Psi=0 \tag{32}
\end{equation*}
$$

Because H^{P} consists of constraints only and the canonical Hamiltonian H^{c} vanishes, there is no Schrö-dinger-type of equation. Consequently, there is no time in the equations.
Show that eq. (32) leads to the Klein-Gordon equation

$$
\begin{equation*}
\eta^{\mu v}\left(\hbar \partial_{\mu}-\mathrm{i} q A_{\mu}\right)\left(\hbar \partial_{v}-\mathrm{i} q A_{\nu}\right) \psi-m^{2} \psi=0, \quad \psi=\psi\left(x^{\mu}\right) \tag{33}
\end{equation*}
$$

In particular, the dependence of N drops out.

References:

[1] L. D. Landau and E. M. Lifshitz, The classical theory of fields, trans. from the Russian by M. Hamermesh, 4th ed., Vol. 2, Course of Theoretical Physics (Pergamon, 1975), isbn: 0080181767, 10.1016/c2009-0-14608-1.
[2] S. G. Krantz and H. R. Parks, The implicit function theorem, History, theory, and applications (Birkhäuser, Boston, 2003), ISBN: 0817642854, 10.1007/978-1-4614-5981-1.
[3] L. D. Landau and E. M. Lifshitz, Mechanics, trans. from the Russian by J. B. Sykes and J. S. Bell, 3rd ed., Vol. 1, Course of Theoretical Physics (Butterworth-Heinemann, 1976), 224 pp., IsbN: 9780750628969, 10.1016/c2009-0-25569-3.
[4] V. I. Arnold, Mathematical methods of classical mechanics, trans. from the Russian by A. Weinstein and K. Vogtmann, 2nd ed., Vol. 60, Graduate Texts in Mathematics (Springer, New York, 1989), 10.1007/978-1-4757-2063-1.
[5] K. C. Border, Euler's theorem for homogeneous functions, (2010) http://www.hss. caltech. edu/~kcb / Notes/EulerHomogeneity.pdf.
[6] C. Kiefer, Quantum gravity, 3rd ed., Vol. 136, International Series of Monographs on Physics (Oxford University, 2012), ISBN: 9780199212521, 10.1093/acprof: oso/9780199212521.001.0001.
[7] D. M. Gitman and I. V. Tyutin, Quantization of fields with constraints (Springer, 1990), ISBN: 9783642839405, 10.1007/978-3-642-83938-2.
[8] K. Sundermeyer, Constrained dynamics, With applications to Yang-Mills theory, general relativity, classical spin, dual string model, Vol. 169, Lecture Notes in Physics (Springer, 1982), ISbN: 9783540119470, 10. 1007/BFb0036225.
[9] P. A. M. Dirac, 'Generalized Hamiltonian dynamics', Canadian Journal of Mathematics 2, 129-148 (1950) 10.4153/cjm-1950-012-1.
[10] J. L. Anderson and P. G. Bergmann, 'Constraints in covariant field theories', Physical Review 83, 10181025 (1951) 10.1103/PhysRev.83. 1018.
[11] R. Blumenhagen, D. Lüst and S. Theisen, Basic concepts of string theory, Theoretical and Mathematical Physics (Springer, 2013), ISBN: 9783642294976, 10.1007/978-3-642-29497-6.

