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Exercise 13: Scalar electrodynamics: first-class constraints

Consider the Lagrangian action for the electromagnetic field coupled to a charged scalar field

Sl
ScED

[
φ, φ˚, Aµ

]
=

ż

dd+1x
"

´ηµνφ˚;µφ;ν ´V(φ˚φ)´
1
4

ηξρηπσFξπ Fρσ

*

, (1a)

φ;µ := φ,µ ´ ieAµφ , φ˚;µ := φ˚,µ + ieAµφ˚ . (1b)

1. Show that

Πi :=
BLv

BVi
= δij(Vj ´ A0,j

)
= δij F0j

ˇ

ˇ

Ȧk=Vk
= δij Ej

ˇ

ˇ

Ȧk=Vk
, (2)

where Lv is the Lagrangian density with velocities, Ei = ´F0i = Fi0 is the electric field in (3 + 1)-
decomposition.

2. Show that the action with primary constraints reads

Sp
ScED

[
φ, φ˚, Aµ; π, π˚, Πν; V0

]
=

ż

dt
"
ż

ddx
(
Πµ Ȧµ + πφ̇ + φ̇˚π˚

)
´ Hp

*

=

ż

dt ddx
 

Πµ Ȧµ + πφ̇ + φ̇˚π˚ ´Hp( ,
(3a)

Hp = Hc ´ A0G+ V0F+
(

Πi A0

)
,i

, (3b)

F = Π0 , G = iq(φ˚π˚ ´ πφ) + Πi
,i , (3c)

Hc = π˚π +
1
2

δijΠ
iΠ j + δijφ˚;i φ;j + V(φ˚φ) +

1
4

δikδjl FijFkl , (3d)

where
(

Aµ, Πµ
)
, (φ, π), (φ˚, π˚) are conjugate pairs of canonical variables, F is the primary constraint.

3. In the literature, G is sometimes called the Gauss constraint. Show that it is a secondary constraint, and
there is no further constraint. Moreover, the constraint algebra is abelian,

[F,G]P = 0 , (4)

so that the constraints are first-class.

4. Use the Dirac quantisation rules to write down the equations for the quantum wave functional.

Remark. For a story of the Maxwellians, see e.g. [1]

See overleaf.
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Exercise 14: Scalar electrodynamics: gauge transformation in phase space

In the Hamiltonian formalism, infinitesimal gauge transformations are generated by the Poisson bracket with
a ‘gauge generator’ (see e.g. [2, ch. 5]), which is widely believed to be the fist-class constraints. The statement
is shown not to hold by the counterexample of electromagnetism [3].
In this exercise we recover the calculation and have a glimpse on gauge transformations in phase space. Consider
the Lagrangian action in eq. (1a) for the electromagnetic field coupled to a charged scalar field.

1. We first use the Lagrangian approach. Show that the action in eq. (1a) is invariant under the gauge
transformation in configuration space

φ Ñ e´ieΛφ , φ˚ Ñ e+ieΛφ˚ , Aµ ÞÑ Aµ ´Λ,µ , (5)

where the ‘gauge’ is also in the Yang(楊)–Mills sense.

2. The condition ηµν Aµ,ν = 0 is called the Lorenz gauge. Is there any remaining functional indeterminacy?
Does the Lorenz gauge render the initial value problem well-posed?

3. Now we go to the Hamiltonian formalism. Consider the generic gauge generator

rG(t) =
ż

ddx
!

F
(

xk
)

ξ
(

t, xk
)
+G

(
xi
)

ε
(

t, xk
))

, (6)

containing two independent gauge parameters ξ, ε.

Show that rG(t) gives the following infinitesimal gauge transformations

δφ
(

xk
)
=
[
φ
(

xk
)

, rG(t)
]

P
= ´ieφε , δφ˚

(
xk
)
=
[
φ˚
(

xk
)

, rG(t)
]

P
= +ieφε ; (7a)

δA0

(
xk
)
=
[

A0

(
xk
)

, rG(t)
]

P
= ξ , δAi

(
xk
)
=
[

Ai

(
xk
)

, rG(t)
]

P
= ´ε,i , (7b)

δπ
(

xk
)
=
[
π
(

xk
)

, rG(t)
]

P
= +ieφε , δπ˚

(
xk
)
=
[
π˚
(

xk
)

, rG(t)
]

P
= ´ieφε . (7c)

δΠ0
(

xk
)
=
[
Π0
(

xk
)

, rG(t)
]

P
= 0 , δΠi

(
xk
)
=
[
Πi
(

xk
)

, rG(t)
]

P
= 0 , (7d)

4. How to recover the third expression in eq. (5) from eq. (7b)?

Remark 1. For a historical discussion of the gauge named after Ludvig Lorenz, see e.g. [4–6].
Remark 2. The variable A0, usually considered as non-dynamical, also changes under a gauge transformation.

Exercise 15: Scalar electrodynamics: the Kugo–Ojima terms for scalar electrodynamics

For quantised Yang(楊)–Mills gauge theories, one can use the Faddeev–Popov trick (see e.g. [7]) to fix a gauge
in the functional formalism. The trick can also be accommodated at the Lagrangian level by the Kugo(九後)–
Ojima(小嶋) terms [8], so that the gauge fixing can be studied at the classical level, and in the Hamiltonian
formalism as well.
For scalar electrodynamics, the Kugo(九後)–Ojima(小嶋) terms read

Sl
α

[
φ, φ˚, Aµ, B

]
= Sl

ScED + Sl
KO,α , Sl

KO,α :=
ż

dd+1x
!α

2
B2 + Bηµν Aµ,ν

)

. (8)

1. We first use the Lagrangian approach. Show that the variation of Sl
α gives

ηµν
δSl

α

δAν
= ie

(
φ˚φ;µ ´ φ˚;µφ

)
+ ηξπ

(
Aµ,π,ξ ´ Aπ,µ,ξ

)
´ B,µ , (9a)

δSl
α

δφ˚
= ´

dV
dΦ

ˇ

ˇ

ˇ

ˇ

Φ=φ˚φ

φ + φ;µ;ν ,
δSl

α

δφ
= ´

dV
dΦ

ˇ

ˇ

ˇ

ˇ

Φ=φ˚φ

φ˚ + φ˚;µ;ν , (9b)

δSl
α

δB
= αB + ηµν Aµ,ν . (9c)

2. In the literature, α Ñ 0+ leads to the Landau gauge, which is said to be classically equivalent to the
Lorenz gauge. What happens if one inserts α Ñ 0+ in the equations of motion?
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3. Solve 0 = δSl
α/δB for α = 1 for B, which is called the Feynman–’t Hooft gauge. Insert the solution to

eq. (9a) in order to eliminate B.

4. Now we go to the Hamiltonian formalism. Show that the Hamiltonian density with primary constraints
reads

Hp = Hs + V0F+ VBC , (10a)

Hs = π˚π +
1
2

δijΠ
iΠ j ´ iqA0(π

˚ ´ π) + Πi A0,i

+ δijφ˚;i φ;j + V(φ˚φ) +
1
4

δikδjl FijFkl ´
α

2
B2 ´ Bδij Ai,j ,

(10b)

F = Π0 + B , C = πB , (10c)

where tF,Cu are primary constraints, satisfying[
F,C1

]
P = ´δd

(
xk ´ yk

)
. (11)

5. Show that

[F, Hp]P = G+ VB , G := iq(π˚ ´ π) + Πi
,i ; (12a)

[C, Hp]P = R´V0, R := αB + δij Ai,j , (12b)

and the Hamiltonian density with primary constraints can be written as

Hp = Hc ´ A0G´ BR+ V0F+ VBC+
(

Πi A0

)
,i

, (13a)

Hc = π˚π +
1
2

δijΠ
iΠ j + δijφ˚;i φ;j + V(φ˚φ) +

1
4

δikδjl FijFkl +
α

2
B2 . (13b)

6. Persistence of the primary constraints requires Φ̇ =
[
Φ, HP]

P « 0, Φ = F,C, which holds if one chooses
VB = ´G, V0 = R. According to different sources [2, sec. 3.4, 9, sec. 4.2.2], the algorithm to find
constraints might terminate already at the primary stage.

How would you proceed to arrive at a canonical description of the system that is ready to be quantised?
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