Second exercise sheet on Relativity and Cosmology I
 Winter term 2018/19

Release: Mon, Oct. $22^{\text {nd }}$
Submit: Mon, Nov. $5^{\text {th }}$ in lecture
Discuss: Thu, Nov. $8^{\text {th }}$

Note that exercises $3-7$ are for two weeks, see above.

Exercise 3 (9 points): Inertial frames

A rocket with a rest length L_{0} moves with constant velocity radially away from Earth. From Earth a light pulse is emitted, which is then reflected by mirrors at the front as well as at the rear of the rocket. The first signal is received after the time t_{A}, the second after the time t_{B}.
3.1 Calculate the velocity at which the rocket moves in terms of L_{0}, t_{A} and t_{B}.
3.2 Determine at which distance from Earth the rocket is located when the first signal reaches Earth.

Exercise 4 (9 points): Addition of velocities

Consider a mass point moving with velocity \vec{w}^{\prime} with respect to the inertial system \mathcal{I}^{\prime}.
4.1 What is its velocity \vec{u} with respect to an inertial system \mathcal{I} if \mathcal{I}^{\prime} moves with velocity \vec{v} against \mathcal{I} ? Show that the result can be written as (in units where $c=1$)

$$
\vec{u}=\frac{\vec{v}+\vec{w}_{\|}^{\prime}+\frac{\vec{w}_{\perp}^{\prime}}{\gamma(v)}}{1+\vec{v} \cdot \vec{w}^{\prime}},
$$

where $\vec{w}_{\|}^{\prime}$ and \vec{w}_{\perp}^{\prime} denote the parallel and orthogonal components of \vec{w}^{\prime} with respect to \vec{v}, respectively. Discuss the special cases $\vec{v} \| \vec{w}^{\prime}$ and $\vec{v} \perp \vec{w}^{\prime}$.
4.2 Show that

$$
\vec{u}^{2}=1-\frac{\left(1-\vec{w}^{\prime 2}\right)\left(1-\vec{v}^{2}\right)}{\left(1+\vec{v} \cdot \vec{w}^{\prime}\right)^{2}} \leq 1
$$

When does the equality hold? Discuss the limiting case $\left|\vec{w}^{\prime}\right| \rightarrow 1^{-}$.

Exercise 5 (6 points): Aberration

Consider an inertial system \mathcal{I}^{\prime} that moves with velocity \vec{v} against an inertial system \mathcal{I}. Consider a ray of light which arrives in \mathcal{I} at an angle θ with respect to \vec{v} (in units where $c=1$).
Under which angle θ^{\prime} does this light ray arrive in \mathcal{I}^{\prime} ? Show that this relation can be written in the form

$$
\tan \frac{\theta}{2}=\sqrt{\frac{1+v}{1-v}} \tan \frac{\theta^{\prime}}{2}
$$

Hint: Draw a picture of the angle. Use the law for the addition of velocities from exercise 4.

See overleaf.

Exercise 6 (10 points): Covariant Maxwell equations

Recall from classical electromagnetism the Maxwell equations (in Gaussian units with $c=1$):

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{E}=4 \pi \rho, \quad \vec{\nabla} \times \vec{B}-\frac{\partial \vec{E}}{\partial t}=4 \pi \vec{J} ; \quad \vec{\nabla} \cdot \vec{B}=0, \quad \vec{\nabla} \times \vec{E}+\frac{\partial \vec{B}}{\partial t}=0 \tag{1}
\end{equation*}
$$

In terms of the scalar (Φ) and vector (\vec{A}) potentials, the electric and magnetic fields are $\vec{E}=-\vec{\nabla} \Phi-\partial_{t} \vec{A}$ and $\vec{B}=\vec{\nabla} \times \vec{A}$. In components, eq. 11 reads

$$
\begin{align*}
\sum_{i=1}^{3} \partial_{i} E^{i} \equiv \partial_{i} E^{i} & =4 \pi \rho, & \sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon^{i j k} \partial_{j} B_{k}-\partial_{t} E^{i} \equiv \epsilon^{i j k} \partial_{j} B_{k}-\partial_{t} E^{i}=4 \pi j^{i} ; \tag{2a}\\
\partial_{i} B^{i} & =0, & \epsilon^{i j k} \partial_{j} E_{k}+\partial_{t} B^{i}=0 \tag{2b}
\end{align*}
$$

where $\epsilon^{i j k}$ is the Levi-Civita pseudo-tensor, $i, j, \ldots=1,2,3$, and Einstein notation is assumed, as has been explained in eq. 2a. Let $A^{\mu}:=(\Phi, \vec{A})$ be the four-potential, $j^{\mu}:=(\rho, \vec{J})$ the four-current, $\mu, v, \ldots=0,1,2,3$, and define the field-strength tensor

$$
\begin{equation*}
F_{\mu \nu}:=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{3}
\end{equation*}
$$

6.1 Show that the expressions

$$
\begin{align*}
\sum_{v=0}^{4} \partial_{\nu} F^{\mu v} \equiv \partial_{\nu} F^{\mu v} & =4 \pi j^{\mu}, \tag{4a}\\
\partial_{\rho} F_{\mu \nu}+\partial_{\mu} F_{v \rho}+\partial_{\nu} F_{\rho \mu} & =0 \tag{4b}
\end{align*}
$$

correspond to eqs. 2a and 2b) respectively.
Hint: $\epsilon_{i j k} \epsilon^{i l m}=\delta_{j}{ }^{l} \delta_{k}{ }^{m}-\delta_{j}{ }^{m} \delta_{k}{ }^{l}$.
6.2 Show that eq. 4a leads to continuity equation $0=\partial_{t} \rho+\vec{\nabla} \cdot \vec{J} \equiv \partial_{\mu} j^{\mu}$. How does the continuity equation look like in a Lorentz-boosted reference frame?

Exercise 7 (6 points): Covariant Lorentz force

Let $p^{\mu}:=m u^{\mu}$ be the kinematic four-momentum, u^{μ} the four-velocity, τ the proper time; $\vec{p}:=m \vec{v}, \vec{v}:=\mathrm{d} \vec{x} / \mathrm{d} t$, and t the coordinate time.
7.1 Show that the spatial components of the covariant Lorentz four-force

$$
\begin{equation*}
\frac{\mathrm{d} p_{\mu}}{\mathrm{d} \tau}=f_{\mu}=q F_{\mu \nu} u^{\nu} \tag{5}
\end{equation*}
$$

give in the non-relativistic limit the Lorentz force

$$
\frac{\mathrm{d} \vec{p}}{\mathrm{~d} t}=\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})
$$

7.2 What is the physical meaning of the time component f^{0} of the covariant four-force in eq. 5p?

