ver. 1.03

Second exercise sheet on Relativity and Cosmology I

Winter term 2018/19

Release : Mon, Oct. 22 nd	Submit: Mon, Nov. 5 th in lecture	Discuss : Thu, Nov. 8 th
---	--	--

Note that exercises 3 – 7 are for two weeks, see above.

Exercise 3 (9 points): Inertial frames

A rocket with a rest length L_0 moves with constant velocity radially away from Earth. From Earth a light pulse is emitted, which is then reflected by mirrors at the front as well as at the rear of the rocket. The first signal is received after the time t_A , the second after the time t_B .

- **3.1** Calculate the velocity at which the rocket moves in terms of L_0 , t_A and t_B .
- **3.2** Determine at which distance from Earth the rocket is located when the first signal reaches Earth.

Exercise 4 (9 points): Addition of velocities

Consider a mass point moving with velocity \vec{w}' with respect to the inertial system \mathcal{I}' .

4.1 What is its velocity \vec{u} with respect to an inertial system \mathcal{I} if \mathcal{I}' moves with velocity \vec{v} against \mathcal{I} ? Show that the result can be written as (in units where c = 1)

$$\vec{u} = \frac{\vec{v} + \vec{w}_{\parallel}' + \frac{\vec{w}_{\perp}}{\gamma(v)}}{1 + \vec{v} \cdot \vec{w}'},$$

where \vec{w}'_{\parallel} and \vec{w}'_{\perp} denote the parallel and orthogonal components of \vec{w}' with respect to \vec{v} , respectively. Discuss the special cases $\vec{v} \parallel \vec{w}'$ and $\vec{v} \perp \vec{w}'$.

4.2 Show that

$$\vec{u}^2 = 1 - \frac{\left(1 - \vec{w}'^2\right)\left(1 - \vec{v}^2\right)}{\left(1 + \vec{v} \cdot \vec{w}'\right)^2} \le 1.$$

When does the equality hold? Discuss the limiting case $|\vec{w}'| \rightarrow 1^-$.

Exercise 5 (6 points): Aberration

Consider an inertial system \mathcal{I}' that moves with velocity \vec{v} against an inertial system \mathcal{I} . Consider a ray of light which arrives in \mathcal{I} at an angle θ with respect to \vec{v} (in units where c = 1). Under which angle θ' does this light ray arrive in \mathcal{I}' ? Show that this relation can be written in the form

$$an rac{ heta}{2} = \sqrt{rac{1+v}{1-v}} an rac{ heta'}{2}$$
 .

Hint: Draw a picture of the angle. Use the law for the addition of velocities from exercise 4.

See overleaf.

Exercise 6 (10 points): Covariant Maxwell equations

Recall from classical electromagnetism the Maxwell equations (in Gaussian units with c = 1):

$$\vec{\nabla} \cdot \vec{E} = 4\pi\rho, \quad \vec{\nabla} \times \vec{B} - \frac{\partial \vec{E}}{\partial t} = 4\pi \vec{J}; \qquad \vec{\nabla} \cdot \vec{B} = 0, \quad \vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0.$$
 (1)

In terms of the scalar (Φ) and vector (\vec{A}) potentials, the electric and magnetic fields are $\vec{E} = -\vec{\nabla}\Phi - \partial_t \vec{A}$ and $\vec{B} = \vec{\nabla} \times \vec{A}$. In components, eq. (1) reads

$$\sum_{i=1}^{3} \partial_i E^i \equiv \partial_i E^i = 4\pi\rho, \qquad \qquad \sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon^{ijk} \partial_j B_k - \partial_t E^i \equiv \epsilon^{ijk} \partial_j B_k - \partial_t E^i = 4\pi J^i; \qquad (2a)$$

$$\partial_i B^i = 0$$
, $\epsilon^{ijk} \partial_j E_k + \partial_t B^i = 0$, (2b)

where e^{ijk} is the Levi-Civita pseudo-tensor, $i, j, \ldots = 1, 2, 3$, and Einstein notation is assumed, as has been explained in eq. (2a). Let $A^{\mu} := (\Phi, \vec{A})$ be the four-potential, $j^{\mu} := (\rho, \vec{J})$ the four-current, $\mu, \nu, \ldots = 0, 1, 2, 3$, and define the field-strength tensor

$$F_{\mu\nu} := \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \,. \tag{3}$$

6.1 Show that the expressions

$$\sum_{\nu=0}^{4} \partial_{\nu} F^{\mu\nu} \equiv \partial_{\nu} F^{\mu\nu} = 4\pi j^{\mu} , \qquad (4a)$$

$$\partial_{\rho}F_{\mu\nu} + \partial_{\mu}F_{\nu\rho} + \partial_{\nu}F_{\rho\mu} = 0 \tag{4b}$$

correspond to eqs. (2a) and (2b) respectively. Hint: $\epsilon_{ijk}\epsilon^{ilm} = \delta_i^{\ l}\delta_k^{\ m} - \delta_j^{\ m}\delta_k^{\ l}$.

6.2 Show that eq. (4a) leads to continuity equation $0 = \partial_t \rho + \vec{\nabla} \cdot \vec{J} \equiv \partial_\mu j^\mu$. How does the continuity equation look like in a Lorentz-boosted reference frame?

Exercise 7 (6 points): Covariant Lorentz force

Let $p^{\mu} := mu^{\mu}$ be the kinematic four-momentum, u^{μ} the four-velocity, τ the proper time; $\vec{p} := m\vec{v}, \vec{v} := d\vec{x}/dt$, and t the coordinate time.

7.1 Show that the spatial components of the covariant Lorentz four-force

$$\frac{\mathrm{d}p_{\mu}}{\mathrm{d}\tau} = f_{\mu} = qF_{\mu\nu}u^{\nu} \tag{5}$$

give in the non-relativistic limit the Lorentz force

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{F} = q\left(\vec{E} + \vec{v} \times \vec{B}\right).$$

7.2 What is the physical meaning of the time component f^0 of the covariant four-force in eq. (5)?