ver. 1.1

Third exercise sheet on Relativity and Cosmology I

Winter term 2018/19

Release : Mon, Nov. 5 th	Submit : Mon, Nov. 12 th in lecture	Discuss : Thu, Nov. 15 th
--	---	---

Exercise 8 (6 points): Energy-momentum tensor for electromagnetic field

The energy-momentum tensor for the electromagnetic field reads (in Gaussian units with c = 1)

$$T^{\mu\nu} := \frac{1}{4\pi} \left(F^{\mu\lambda} F^{\nu}{}_{\lambda} - \frac{1}{4} \eta^{\mu\nu} F^{\lambda\rho} F_{\lambda\rho} \right) \,.$$

- **8.1** Express T^{00} , T^{0i} and T^{ij} in terms of \vec{E} and \vec{B} . What is the physical meaning of T^{00} and T^{0i} ?
- **8.2** Interpret the four conservation equations for $T^{\mu\nu}$ as well as the components T^{ij} . Use the results in **8.1**.

Exercise 9 (6 points): *Kottler–Møller coordinates*

Let *g* be a constant acceleration, (t, x, y, z) Cartesian coordinates in 4-dimensional Minkowski space. Consider the transformation (c = 1)

$$t = \left(\frac{1}{g} + x'\right) \sinh gt',$$

$$x = \left(\frac{1}{g} + x'\right) \cosh gt' - \frac{1}{g},$$

$$y = y', \qquad z = z'.$$

9.1 Show that the transformation gives accelerated frames of reference.

9.2 Calculate the components of the metric with respect to the coordinates (t', x', y', z').

Exercise 10 (8 points): *Rindler coordinates*

Let *a* be a constant acceleration. Consider the 2-dimensional metric (c = 1)

$$ds^2 = -(ax')^2 dt'^2 + dx'^2$$

- **10.1** At which point in space do the components of the metric tensor exhibit a singularity?
- **10.2** Find a coordinate transformation which shows that this so-called Rindler space is only a part of the 2-dimensional Minkowski space, which in Cartesian coordinates reads $ds^2 = -dt^2 + dx^2$.
- **10.3** Compare the Rindler coordinates with the Kottler–Møller coordinates.
- **10.4** Give an illustrative interpretation of the Rindler coordinates (consider t' = const. and x' = const.).
- **10.5** Determine the proper acceleration along the curve x' = const.