ver. 1.0

Seventh exercise sheet on Relativity and Cosmology I

Winter term 2018/19

Release: Mon, Dec. 3 rd	Submit : Mon, Dec. 10 th in lecture	Discuss : Thu, Dec. 13 th
------------------------------------	---	---

In the following four exercises, consider a (pseudo-)Riemannian space with the Levi-Civita connection ∇ .

Exercise 20 (6 points): *Killing equations*

- **20.1** Show that $2\nabla_{(\mu} v_{\nu)} = \pounds_{\underline{v}} g_{\mu\nu}$. What does $\pounds_{\underline{v}} g_{\mu\nu} = 0$ mean from a geometrical point of view?
- **20.2** Consider a Minkowski space in Cardesian coordinates, $ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu}$. Find all Killing vector fields.
- **20.3** Consider a Poincaré half-plane $ds^2 = (l/z)^2 (dx^2 + dz^2)$, where *l* is a constant length, z > 0. Write down the Killing equations and (bonus) find all the Killing vector fields.

Exercise 21 (5 points): *Killing vector fields*

Let ξ^{μ} be a Killing vector field.

- **21.1** Let ξ^{μ} be time-like. Show that there exists a coordinate system (t, x, y, z), in which *t* is temporal, and the metric does not depend on time *t*, i.e. $\partial g_{\mu\nu}/\partial t = 0$ holds.
- **21.2** Let $u^{\mu} = dx^{\mu}/d\tau$ be the tangent vector of an affine-parametrised geodesic. Show that $u^{\mu}\xi_{\mu}$ is constant along the geodesic. Interpret the physical meaning of the Killing vector fields from **20.2**.
- **21.3** Let $T^{\mu\nu}$ be a symmetric tensor field with vanishing covariant divergence. Calculate $(\xi_{\mu} T^{\mu\nu})_{\nu}$.
- 21.4 (bonus) By using the first Bianchi identity and the Killing equations, prove

$$\xi_{\lambda;\kappa\nu} = -\xi_{\mu} R^{\mu}{}_{\nu\lambda\kappa},$$

where $R^{\mu}_{\nu\lambda\kappa}$ is the Riemann tensor. Argue that the equation serves as an integrability condition.

Exercise 22 (6 points): *Riemannian normal coordinates*

Consider Riemannian normal coordinates y^{μ} at a point *P*, which is set as the coordinate origin $y^{\mu} = 0$. **22.1** Let $R_{\mu\kappa\lambda\nu}$ be the Riemann tensor. Show that

$$g_{\mu\nu}(y) = \eta_{\mu\nu} + \frac{1}{3} R_{\mu\kappa\lambda\nu}(0) y^{\kappa} y^{\lambda} + O\left(|y|^3\right).$$

22.2 Give a physical interpretation of the equation.

Exercise 23 (3 points): Algebraic identities of the Riemann tensor

23.1 Let R_{ijkl} be the Riemann tensor. Show that the following algebraic identities hold

$$R_{ij(kl)} = 0$$
, $R_{(ij)kl} = 0$; $R_{ijkl} + R_{iklj} + R_{iljk} = 0$.

The last one is also called the *first* or the *algebraic Bianchi identity*.

23.2 (bonus) Give an interpretation of the first two identities in terms of parallel transport.