Seventh exercise sheet on Relativity and Cosmology I
 Winter term 2018/19

Release: Mon, Dec. $3^{\text {rd }} \quad$ Submit: Mon, Dec. $10^{\text {th }}$ in lecture Discuss: Thu, Dec. 13 $3^{\text {th }}$

In the following four exercises, consider a (pseudo-)Riemannian space with the Levi-Civita connection ∇.

Exercise 20 (6 points): Killing equations

20.1 Show that $2 \nabla_{(\mu} v_{v)}=£_{\underline{v}} g_{\mu v}$. What does $£_{\underline{v}} g_{\mu v}=0$ mean from a geometrical point of view?
20.2 Consider a Minkowski space in Cardesian coordinates, $\mathrm{d} s^{2}=\eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}$. Find all Killing vector fields.
20.3 Consider a Poincaré half-plane $\mathrm{d} s^{2}=(l / z)^{2}\left(\mathrm{~d} x^{2}+\mathrm{d} z^{2}\right)$, where l is a constant length, $z>0$. Write down the Killing equations and (bonus) find all the Killing vector fields.

Exercise 21 (5 points): Killing vector fields

Let ξ^{μ} be a Killing vector field.
21.1 Let ξ^{μ} be time-like. Show that there exists a coordinate system (t, x, y, z), in which t is temporal, and the metric does not depend on time t, i.e. $\partial g_{\mu \nu} / \partial t=0$ holds.
21.2 Let $u^{\mu}=\mathrm{d} x^{\mu} / \mathrm{d} \tau$ be the tangent vector of an affine-parametrised geodesic. Show that $u^{\mu} \xi_{\mu}$ is constant along the geodesic. Interpret the physical meaning of the Killing vector fields from 20.2.
21.3 Let $T^{\mu v}$ be a symmetric tensor field with vanishing covariant divergence. Calculate $\left(\xi_{\mu} T^{\mu v}\right)_{; v}$.
21.4 (bonus) By using the first Bianchi identity and the Killing equations, prove

$$
\xi_{\lambda ; \kappa \nu}=-\xi_{\mu} R^{\mu}{ }_{\nu \lambda \kappa},
$$

where $R^{\mu}{ }_{\nu \lambda \kappa}$ is the Riemann tensor. Argue that the equation serves as an integrability condition.

Exercise 22 (6 points): Riemannian normal coordinates

Consider Riemannian normal coordinates y^{μ} at a point P, which is set as the coordinate origin $y^{\mu}=0$.
22.1 Let $R_{\mu \kappa \lambda \nu}$ be the Riemann tensor. Show that

$$
g_{\mu v}(y)=\eta_{\mu \nu}+\frac{1}{3} R_{\mu \kappa \lambda \nu}(0) y^{\kappa} y^{\lambda}+O\left(|y|^{3}\right)
$$

22.2 Give a physical interpretation of the equation.

Exercise 23 (3 points): Algebraic identities of the Riemann tensor

23.1 Let $R_{i j k l}$ be the Riemann tensor. Show that the following algebraic identities hold

$$
R_{i j(k l)}=0, \quad R_{(i j) k l}=0 ; \quad R_{i j k l}+R_{i k l j}+R_{i l j k}=0
$$

The last one is also called the first or the algebraic Bianchi identity.
23.2 (bonus) Give an interpretation of the first two identities in terms of parallel transport.

