Eighth exercise sheet on Relativity and Cosmology I

Winter term 2018/19

Release: Mon, Dec. $10^{\text {th }}$
Submit: Mon, Dec. $17^{\text {th }}$ in lecture
Discuss: Thu, Dec. $20^{\text {th }}$

Exercise 24 (5 points): Geometry and topology

In Euclidean space \mathbb{R}^{3}, consider the cylindrical coordinates (ρ, φ, z). Define a surface of revolution \mathcal{A} via

$$
z^{2}=[f(\rho)]^{2}, \quad \rho^{2}=x^{2}+y^{2}
$$

where f is a strictly positive smooth function on $[0, a]$ with $f(a)=0, f^{\prime}\left(a^{-}\right) \rightarrow-\infty$ and $f^{\prime}\left(0^{+}\right)=0$.
24.1 Determine the induced metric $\mathrm{d} s^{2}=h_{i j} \mathrm{~d} y^{i} \mathrm{~d} y^{j}$ on \mathcal{A}.
24.2 Let R be the Ricci scalar of \mathcal{A}. Evaluate the following integral explicitly

$$
\int_{\mathcal{A}} \mathrm{d}^{2} y \sqrt{h} R .
$$

24.3 (bonus) Argue that in $(1+1)$ dimensions, the Einstein-Hilbert action does not give any dynamics.

Exercise 25 (3 points): Contracted Bianchi identity from action

Let $R_{\mu \nu}$ and R be the Ricci tensor and scalar, respectively. Derive the contracted Bianchi identity

$$
G^{\mu \nu} ;=\left(R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R\right)_{; \mu}=0
$$

by demanding the Einstein-Hilbert action be invariant under infinitesimal coordinate transformations.

In the following two exercises, the Hilbert or symmetric energy-momentum tensor is defined as

$$
T_{\mu \nu}:=-\frac{2}{\sqrt{|g|}} \frac{\delta S}{\delta g^{\mu \nu}}
$$

Exercise 26 (6 points): Klein-Gordon theory of scalar field

Consider the action of a neutral Klein-Gordon field $\phi=\phi(x)$ with mass parameter m and potential $V(\phi)$,

$$
S_{\mathrm{KG}}[\phi]:=\int \mathrm{d}^{4} x \sqrt{|g|}\left\{-\frac{1}{2} g^{\mu v} \phi_{, \mu} \phi_{, v}-\frac{m^{2}}{2} \phi^{2}-V(\phi)\right\} .
$$

26.1 Derive the Klein-Gordon field equation by the action principle.
26.2 Derive the Hilbert energy-momentum tensor and calculate its trace.

Exercise 27 (6 points): Maxwell theory of electromagnetic field

Consider the action of an electromagnetic field in vacuum (in Gaussian units),

$$
S_{\mathrm{M}}\left[A_{\mu}\right]:=\int \mathrm{d}^{4} x \sqrt{|g|}\left\{-\frac{1}{16 \pi} F_{\mu \nu} F^{\mu \nu}\right\} .
$$

28.1 Derive the covariant Maxwell field equations by the action principle.
28.2 Derive the Hilbert energy-momentum tensor and prove the continuity equations $\nabla_{\mu} T^{\mu \nu}=0$.

