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In the following two exercises, consider linearised general relativity in a flat background with the ansatz

gµν(x) = ηµν + 2 ψµν(x) ,

where ψµν, ψµν,ρ and ψµν,ρ,σ are small perturbations of the same order.

Exercise 32 (9 points): Linearised general relativity I: redundancy transformation

Consider the infinitesimal coordinate transformation

x1µ = xµ ´ 2 f µ(x) ,

where f µ and f µ
,ν are of the same order as ψ.

32.1 Show that ψµν transform as ψ1
µν(x1) = ψµν(x) + fµ,ν(x) + fν,µ(x).

32.2 The de Donder or harmonic condition reads

ψµν,
ν =

1
2

ψν
ν,µ .

Show that it can be realised by applying such a transformation.

32.3 Show that the linearised Riemann tensor is invariant under this transformation.

Exercise 33 (5+4 points): Linearised general relativity II: Fierz–Pauli action

Linearised general relativity can also be derived from an action, which has been given by Fierz and Pauli,

SFP
[
ψµν

]
:=

ż

d4x
"

1
2κ
(
´ψµν, σ ψµν, σ + 2 ψµν, σ ψσν, µ + ψµ

µ, ν ψρ
ρ,

ν ´ 2 ψρν
, ν ψσ

σ, ρ

)
´ Tµν ψµν

*

=:
ż

d4x
 

LFP ´ Tµν ψµν
(

,

where κ := 8πG; Tµν is the symmetric energy-momentum tensor of matter, here playing the role of source,
and is of the same order as ψµν.

33.1 Derive the equations of motion for ψµν from SFP, and show that they are equivalent to the linearised
Einstein equations given in the lecture.

Hint. It might be quicker to apply the variational method directly, instead of using the Euler–Lagrange
equations.

33.2 (bonus) Discard the source term. Calculate the canonical energy-momentum tensor of ψµν, defined by

tµν :=
δSFP

δψρσ,ν
ψρσ, µ ´ ηµν LFP .

Remark. SFP can be derived by expanding the Einstein–Hilbert action to the quadratic order, but the calculation
is tedious by hand.

See overleaf.
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Exercise 34 (6 points): Fermi–Walker transport

Let xi = xi(s) be a curve, s its arc-length, and ui = dxi/ds its tangent vector field. A vector vi is called
Fermi–Walker transported along the curve iff

Dvi

Ds
= vk

(
uk Dui

Ds
´

Duk

Ds
ui

)
.

34.1 If the curve is a geodesic, show that the Fermi–Walker transport is identical to the parallel transport.

34.2 Show that the tangent vector ui is Fermi–Walker transported.

34.3 If vi and wi are Fermi–Walker transported, show that viwi is constant along the curve.

Remark. In practice, one might desire to describe the motion of objects, which are more than simple point
particles. The Fermi–Walker transport is convenient for describing non-rotating motions in the 3-dimensional
sense. For instance, if spatial basis vectors were attached to a free gyroscope, they would be Fermi–Walker
transported. This will later be employed in the discussion of geodetic precession and the so-called Thirring–Lense
effect.


