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Exercise 35 (10 points): An exact plane-wave solution I
Consider the following exact metric given by Bondi, Pirani and Robinson (1959):
ds? = L2 (e“/g dx?+e % dyz) +dz? —dt* =12 (e*zﬁ dx?+e % dyz) —dudo,

where L = L(u), p = B(u) are the background and wave factors, and u = t —z, v = t + z the retarded and
advanced light-cone or null coordinates, respectively.

35.1 Show that

[Py = % (Lze“ﬁ) Iy = % (L2e—2ﬁ) ;
Ty = My = %%m(ﬁe“ﬁ) Ty =¥y = %%m(ﬁe—zﬁ) ,

whereas all the other Christoffel symbols of the second kind vanishes.

Hint. It might be quicker to apply the variational method directly, instead of using the definition.
35.2 Show that a co-moving particle, defined by * =y = z = 0 and { = 1, moves on a geodesic.

35.3 Derive the Ricci tensor.

Exercise 36 (6+7 points): An exact plane-wave solution II
The vacuum Einstein equation of the Bondi-Pirani-Robinson metric reduces to

"+ (g)YL=0, f:= %.

36.1 Solve the vacuum Einstein equation for /' =0, L(0) =1 and L’(0) = 0.

36.2 For simplicity, let § = 0, L(0) = 1 and L'(0) = —1. Solve the vacuum Einstein equation for these
conditions. Employ the transformation to the new coordinates

F=t——(1—-t+2) (x2+y2) ,

(1-t+2z2) (xz—i-yz) ,
(1-t+2)x, g=(1—-t+z2)y

Z

Z —

N = NI =

x

to show that this solution is in fact just the Minkowski space, although containing a singularity.

36.3 Consider the linearised theory. For that purpose let f and B’ be small and of the same order.

Show that the vacuum Einstein equations can be integrated, such that the result corresponds to a +-
polarised wave in the linearised theory.
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36.4 (bonus) Now go back to the full theory. Let L =1 for u < —a <0, and ' =0 for u < —a and u > 0.
In other words, B’ # 0 can only happen for —a < u < 0. Furthermore, assume that g’ is such that the
singularity appears at some u > 0.

Provide a qualitative discussion and a sketch of the solution for L(u).

Hint: It is sufficient to consider the convexity of L on [—4,0).

36.5 (bonus) Recall the configuration in the lecture, where a beam of plane gravitational wave meets a ring
of test particles, initially at rest in the z = 0 plane.

What happens to the ring after the wave has passed by, in the exact (36.4) and the linearised theories?

Exercise 37 (4+3 points): Polarisation

In a flat background spacetime, consider two Cartesian coordinate systems (¢, x,y,z) and (t,x’,/,z) that can
be transformed into each other by a rotation with the angle § around the z-axis.

37.1 Consider an electromagnetic wave that propagates in the z-direction. Let &, &,, &,/, and &, be the unit
polarisation vectors in the coordinate systems. Show that

&, = &, cos() + &, sin(0), &, = — & sin(0) + &, cos(0).

37.2 Analogously, consider a linearised gravitational wave propagating in the z-direction. Let e, ex, e/,
e be the polarisation tensors in the coordinate systems. Show that

e, =e; cos(26)+ex sin(20), e, = —ey sin(26) +ex cos(26).

37.3 (bonus) Let |—) and |«) be the quantum states of a spin—% particle, whose spin is aligned or anti-
aligned with respect to the x-direction, respectively, and analogously |-) and |«<) with respect to the
x’-direction. Show that

\—>/> =|-) cos(i) +i|—) sin(i) , |y =i|—) sin(i) + <> cos(i).

37.4 (bonus) Write down the generalisation for the basis states of linear polarisation for a radiation field of
arbitrary spin s.



