ver. 1.01

Second exercise sheet on Relativity and Cosmology I

Winter term 2020/21

Release: Mon, Nov. 16 th S	Submit: Mon, Nov. 23 rd on ILIAS	Discuss: Thu, Nov. 26 th
---------------------------------------	---	-------------------------------------

Exercise 3 (9 points): *Inertial frames*

A rocket with a rest length L_0 moves with constant velocity radially away from Earth. From Earth a light pulse is emitted, which is then reflected by mirrors at the front as well as at the rear of the rocket. The first signal is received after the time t_A , the second after the time t_B .

- **3.1** Calculate the velocity at which the rocket moves in terms of L_0 , t_A and t_B .
- 3.2 Determine at which distance from Earth the rocket is located when the first signal reaches Earth.

Exercise 4 (9 points): Addition of velocities

Consider a mass point moving with velocity \vec{w}' with respect to the inertial system \mathcal{I}' .

4.1 What is its velocity \vec{u} with respect to an inertial system \mathcal{I} if \mathcal{I}' moves with velocity \vec{v} against \mathcal{I} ? Show that the result can be written as (in units where c = 1)

$$ec{u} = rac{ec{v} + ec{w}_{\parallel}' + rac{ec{w}_{\perp}'}{\gamma(v)}}{1 + ec{v} \cdot ec{w}'}$$
 ,

where \vec{w}'_{\parallel} and \vec{w}'_{\perp} denote the parallel and orthogonal components of \vec{w}' with respect to \vec{v} , respectively. Discuss the special cases $\vec{v} \parallel \vec{w}'$ and $\vec{v} \perp \vec{w}'$.

4.2 Show that

$$\vec{u}^2 = 1 - \frac{\left(1 - \vec{w}^{\prime 2}\right) \left(1 - \vec{v}^2\right)}{\left(1 + \vec{v} \cdot \vec{w}^{\prime}\right)^2} \le 1 \,.$$

When does the equality hold? Discuss the limiting case $|\vec{w}'| \rightarrow 1^-$.

Exercise 5 (6 points): Aberration

Consider an inertial system \mathcal{I}' that moves with velocity \vec{v} against an inertial system \mathcal{I} . Consider a ray of light which arrives in \mathcal{I} at an angle θ with respect to \vec{v} (in units where c = 1).

Under which angle θ' does this light ray arrive in \mathcal{I}' ? Show that this relation can be written in the form

$$\tan \frac{\theta}{2} = \sqrt{\frac{1+v}{1-v}} \tan \frac{\theta'}{2}.$$

Hint: Draw a picture of the angle. Use the law for the addition of velocities from exercise 4.