ver. 1.01

Seventh exercise sheet on Relativity and Cosmology I

Winter term 2020/21

Release: Mon, Dec. 21th**Submit:** Mon, Jan. 11th 2021 on ILIAS**Discuss:** Thu, Jan. 14th 2021

Exercise 20 (6 points): Riemannian normal coordinates

Consider Riemannian normal coordinates y^{μ} at a point *P*, which is set as the coordinate origin $y^{\mu} = 0$.

22.1 Let $R_{\mu\kappa\lambda\nu}$ be the Riemann tensor. Show that

$$g_{\mu\nu}(y) = \eta_{\mu\nu} + \frac{1}{3} R_{\mu\kappa\lambda\nu}(0) y^{\kappa} y^{\lambda} + O\left(|y|^3\right).$$

Show to this end first that

 $\Gamma^{\mu}{}_{\rho\sigma,\kappa}(0) + \Gamma^{\mu}{}_{\sigma\kappa,\rho}(0) + \Gamma^{\mu}{}_{\kappa\rho,\sigma}(0) = 0.$

22.2 Give a physical interpretation of the equation.

Exercise 21 (4 points): Algebraic identities of the Riemann tensor

23.1 Let R_{ijkl} be the Riemann tensor. Show that the following algebraic identities hold

 $R_{ij(kl)} = 0$, $R_{(ij)kl} = 0$; $R_{ijkl} + R_{iklj} + R_{iljk} = 0$.

The last one is also called the first or algebraic Bianchi identity.

23.2 (bonus) Give interpretations of the first two identities in terms of parallel transport.

Exercise 22 (5 points): *Geometry and topology*

In Euclidean space \mathbb{R}^3 , consider the cylindrical coordinates (ρ , φ , z). Define a surface of revolution \mathcal{A} via

$$z^2 = [f(\rho)]^2$$
, $\rho^2 = x^2 + y^2$,

where *f* is a strictly positive smooth function on [0, a] with f(a) = 0, $f'(a^-) \to -\infty$ and $f'(0^+) = 0$. **24.1** Determine the induced metric $ds^2 = h_{ii} dy^i dy^j$ on \mathcal{A} .

24.2 Let *R* be the Ricci scalar of A. Evaluate the following integral explicitly

$$\int_{\mathcal{A}} \mathrm{d}^2 y \,\sqrt{h} \,R\,.$$

Exercise 23 (5 points): Geodesic deviation

Consider two neighbouring geodesics with worldlines $x^{\mu}(\tau)$ and $x^{\mu}(\tau) + \xi^{\mu}(\tau)$, where $\xi^{\mu}(\tau)$ is considered to be small, so that quadratic and higher-order terms can be neglected. Let $u^{\mu} = dx^{\mu}/d\tau$ be the velocity. Show that the relative acceleration satisfies

$$\frac{\mathrm{D}^{2}\xi^{\mu}}{\mathrm{D}\tau^{2}}=R^{\mu}_{\nu\kappa\lambda}u^{\nu}u^{\kappa}\xi^{\lambda}\,,$$

where $\frac{D}{D\tau} := u^{\nu} \nabla_{\nu}$, which is known as the *geodesic deviation equation*.