Eighth exercise sheet on Relativity and Cosmology I

Winter term 2020/21

Release: Mon, Jan. $11^{\text {th }}$
Submit: Mon, Jan. $18^{\text {th }}$ on ILIAS
Discuss: Thu, Jan. $21^{\text {th }}$

In the following exercises, consider a (pseudo-)Riemannian space with the Levi-Civita connection ∇.

Exercise 24 (6 points): Killing equations

24.1 Show that $2 \nabla_{(\mu} v_{v)}=£_{\underline{v}} g_{\mu v}$. What does $£_{\underline{v}} g_{\mu \nu}=0$ mean from a geometrical point of view?
24.2 Consider a Minkowski space in Cardesian coordinates, $\mathrm{d} s^{2}=\eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}$. Find all Killing vector fields.
24.3 Consider a Poincaré half-plane $\mathrm{d} s^{2}=(l / z)^{2}\left(\mathrm{~d} x^{2}+\mathrm{d} z^{2}\right)$, where l is a constant length, $z>0$. Write down the Killing equations and (bonus) find all the Killing vector fields.

Exercise 25 (8 points): Killing vector fields

Let ξ^{μ} be a Killing vector field.
25.1 Let ξ^{μ} be time-like. Show that there exists a coordinate system (t, x, y, z), in which t is temporal, and the metric does not depend on time t, i.e. $\partial g_{\mu \nu} / \partial t=0$ holds.
25.2 Let $u^{\mu}=\mathrm{d} x^{\mu} / \mathrm{d} \tau$ be the tangent vector of an affine-parametrised geodesic. Show that $u^{\mu} \xi_{\mu}$ is constant along the geodesic. Interpret the physical meaning of the Killing vector fields from 24.2, and compute their associated conserved quantities.
25.3 Let $T^{\mu \nu}$ be a symmetric tensor field with vanishing covariant divergence. Calculate $\left(\xi_{\mu} T^{\mu v}\right)_{; v}$.
25.4 (bonus) By using the first Bianchi identity and the Killing equations, prove

$$
\xi_{\lambda ; \kappa \nu}=-\xi_{\mu} R_{\nu \lambda \kappa}^{\mu},
$$

where $R^{\mu}{ }_{\nu \lambda \kappa}$ is the Riemann tensor. Argue that the equation serves as an integrability condition.

Exercise 26 (6 points): Fermi-Walker transport

Let $x^{i}=x^{i}(s)$ be a curve, s its arc-length, and $u^{i}=\mathrm{d} x^{i} / \mathrm{d} s$ its tangent vector field. A vector v^{i} is called Fermi-Walker transported along the curve iff

$$
\frac{\mathrm{D} v^{i}}{\mathrm{D} s}+v_{k}\left(u^{k} \frac{\mathrm{D} u^{i}}{\mathrm{D} s}-\frac{\mathrm{D} u^{k}}{\mathrm{D} s} u^{i}\right)=0
$$

26.1 If the curve is a geodesic, show that the Fermi-Walker transport is identical to the parallel transport.
26.2 Show that the tangent vector u^{i} is Fermi-Walker transported.
26.3 If v^{i} and w^{i} are Fermi-Walker transported, show that $v^{i} w_{i}$ is constant along the curve.

Remark. In practice, one may want to describe the motion of objects, which are more than simple point particles. The Fermi-Walker transport is convenient for describing non-rotating motions in the 3-dimensional sense. For instance, if spatial basis vectors were attached to a free gyroscope, they would be Fermi-Walker transported. This will later be employed in the discussion of geodetic precession and the so-called Thirring-Lense effect.

