Prof. Dr. Claus Kiefer

Yi-Fan Wang, Leonardo Chataignier and Tim Schmitz

ver. 1.00

Eleventh exercise sheet on Relativity and Cosmology I

Winter term 2020/21

Release: Feb, Jan. 1st

Submit: Feb, Feb. 8th on ILIAS

Discuss: Thu, Feb. 11th

Exercise 34 (10 points): An exact plane-wave solution I

Consider the following exact metric given by Bondi, Pirani and Robinson (1959):

$$ds^2 = L^2 \left(e^{+2\beta} dx^2 + e^{-2\beta} dy^2 \right) + dz^2 - dt^2 = L^2 \left(e^{+2\beta} dx^2 + e^{-2\beta} dy^2 \right) - du dv,$$

where L = L(u), $\beta = \beta(u)$ are the *background* and *wave factors*, and u = t - z, v = t + z the *retarded* and *advanced light-cone* or *null coordinates*, respectively.

34.1 Show that

$$\Gamma^{v}_{xx} = \frac{\mathrm{d}}{\mathrm{d}u} \left(L^{2} \mathrm{e}^{+2\beta} \right) \qquad \qquad \Gamma^{v}_{yy} = \frac{\mathrm{d}}{\mathrm{d}u} \left(L^{2} \mathrm{e}^{-2\beta} \right);$$

$$\Gamma^{x}_{ux} = \Gamma^{x}_{xu} = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}u} \mathrm{ln} \left(L^{2} \mathrm{e}^{+2\beta} \right) \qquad \qquad \Gamma^{y}_{uy} = \Gamma^{y}_{yu} = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}u} \mathrm{ln} \left(L^{2} \mathrm{e}^{-2\beta} \right),$$

whereas all the other Christoffel symbols of the second kind vanish.

Hint. It might be quicker to apply the variational method directly, instead of using the definition.

- **34.2** Show that a *co-moving* particle, defined by $\dot{x} = \dot{y} = \dot{z} = 0$ and $\dot{t} = 1$, moves on a geodesic.
- **34.3** Derive the Ricci tensor.

Exercise 35 (6 points): An exact plane-wave solution II

The vacuum Einstein equation of the Bondi-Pirani-Robinson metric reduces to

$$L'' + (\beta')^2 L = 0$$
, $f' := \frac{\mathrm{d}f}{\mathrm{d}u}$.

- **35.1** Solve the vacuum Einstein equation for $\beta' \equiv 0$, L(0) = 1 and L'(0) = 0.
- **35.2** For simplicity, let $\beta \equiv 0$, L(0) = 1 and L'(0) = -1. Solve the vacuum Einstein equation for these conditions. Employ the transformation to the new coordinates

$$ar{t} = t - rac{1}{2}(1 - t + z) \left(x^2 + y^2\right),$$
 $ar{z} = z - rac{1}{2}(1 - t + z) \left(x^2 + y^2\right),$
 $ar{x} = (1 - t + z)x, \quad ar{y} = (1 - t + z)y$

to show that this solution is in fact just the Minkowski space, although containing a singularity.

35.3 Consider the linearised theory. For that purpose let β and β' be small and of the same order, and $L=1+\gamma$ where $\gamma(u)$ is of the same order as β^2 . Show that the Bondi–Pirani–Robinson metric then takes a form that corresponds to a +-polarised wave in the linearised theory.

35.4 (bonus) Now go back to the full theory. Let $L \equiv 1$ for $u \le -a < 0$, and $\beta' \equiv 0$ for u < -a and $u \ge 0$. In other words, $\beta' \ne 0$ can only happen for $-a \le u < 0$. Furthermore, assume that β' is such that the *singularity* appears at some u > 0.

Provide a *qualitative* discussion and a sketch of the solution for L(u).

Hint: It is sufficient to consider the convexity of L on [-a,0).

35.5 (bonus) Recall the configuration in the lecture, where a beam of plane gravitational wave meets a ring of test particles, initially at rest in the z = 0 plane.

What happens to the ring after the wave has passed by, in the exact (35.4) and the linearised theories?

Exercise 36 (4 points): Polarisation

In a flat background spacetime, consider two Cartesian coordinate systems (t, x, y, z) and (t, x', y', z) that can be transformed into each other by a rotation with the angle θ around the *z*-axis.

36.1 Consider an electromagnetic wave that propagates in the *z*-direction. Let $\hat{\mathbf{e}}_x$, $\hat{\mathbf{e}}_y$, $\hat{\mathbf{e}}_{x'}$, and $\hat{\mathbf{e}}_{y'}$ be the unit polarisation vectors in the coordinate systems. Show that

$$\hat{\mathbf{e}}_{x'} = \hat{\mathbf{e}}_x \cos(\theta) + \hat{\mathbf{e}}_y \sin(\theta), \qquad \hat{\mathbf{e}}_{y'} = -\hat{\mathbf{e}}_x \sin(\theta) + \hat{\mathbf{e}}_y \cos(\theta).$$

36.2 Analogously, consider a linearised gravitational wave propagating in the *z*-direction. Let \mathbf{e}_+ , \mathbf{e}_\times , $\mathbf{e}_{+'}$, $\mathbf{e}_{\times'}$ be the polarisation tensors in the coordinate systems. Show that

$$\mathbf{e}_{+'} = \mathbf{e}_+ \cos(2\theta) + \mathbf{e}_\times \sin(2\theta)$$
, $\mathbf{e}_{\times'} = -\mathbf{e}_+ \sin(2\theta) + \mathbf{e}_\times \cos(2\theta)$.

36.3 (bonus) Let $|\rightarrow\rangle$ and $|\leftarrow\rangle$ be the quantum states of a spin- $\frac{1}{2}$ particle, whose spin is aligned or antialigned with respect to the *x*-direction, respectively, and analogously $|\rightarrow'\rangle$ and $|\leftarrow\rangle$ with respect to the x'-direction. Show that

$$\left|\rightarrow'\right> = \left|\rightarrow\right> \cos\left(\frac{\theta}{2}\right) + i\left|\leftarrow\right> \sin\left(\frac{\theta}{2}\right), \qquad \left|\leftarrow'\right> = i\left|\rightarrow\right> \sin\left(\frac{\theta}{2}\right) + \left|\leftarrow\right> \cos\left(\frac{\theta}{2}\right).$$

37.4 (bonus) Write down the generalisation for the basis states of linear polarisation for a radiation field of arbitrary spin *s*.