Prof. Dr. Claus Kiefer

Nick Kwidzinski, Leonardo Chataignier and Yi-Fan Wang

ver. 1.00

1st exercise sheet on Relativity and Cosmology II

Summer term 2019

Release: Mon, Apr. 1st Submit: Mon, Apr. 8th in lecture Discuss: Thu, Apr. 11th

Exercise 41 (20 = 10 + 6 + 4 points): *Effective Schwarzschild potential*

The aim of this exercise is to analyse certain properties of the movement of massive test particles in the Schwarzschild space-time.

For this purpose, consider the equation of motion on the equatorial plane $\theta = \pi/2$ with an effective potential $V_{\rm eff}$ that results from the geodesic equation

$$\frac{\dot{r}^2}{2} + V_{\rm eff}(r) = E$$
, $V_{\rm eff}(r) = -\frac{GM}{r} + \frac{\ell^2}{2r^2} - \frac{GM\ell^2}{r^3}$.

Here ℓ and E indicate constants of motion.

In the following, express radial distances in terms of the Schwarzschild radius $r_S = 2GM$.

- **41.1 a)** Analyse and sketch the potential $V_{\rm eff}(r)$ for all relevant cases (characterised by the values of M and ℓ).
 - **b)** In which cases do bound particle orbits exist? Analyse the stability of all orbits.
 - **c)** Which conditions does a test particle approaching from infinity $(r \to +\infty)$ have to fulfil in order to fall into the centre of the effective potential?

Under which circumstances does a particle that starts from rest at infinity fall into the centre?

- **d)** Compare the results obtained so far to the situation in Newtonian gravity.
- **e)** Show the following statements:
 - i. For $\ell/GM < 2\sqrt{3}$ every in-falling particle falls towards the event horizon r = 2GM.
 - ii. The most strongly bound orbit is located at r = 6GM with $\ell/GM = 2\sqrt{3}$ and it possesses a relative binding energy of $1 \sqrt{8/9}$.
- **41.2** Consider a massive test particle initially being at rest at the radial coordinate $R > r_S$ that falls radially $(\ell = 0)$ into the centre.
 - **a)** Find the solution of the resulting initial value problem.

Hint: The solution can be given in a parametrised form $r(\eta)$, $\tau(\eta)$ (where τ is the proper time of the particle) which describes a *cycloid* orbit.

At which proper time τ_0 does the particle reach the centre of the potential?

- **b)** How long does it take for this particle to reach the Schwarzschild radius as measured by an observer at infinity?
- 41.3 In the lecture it was mentioned that Kepler's Third Law

$$GM = \omega^2 r^3$$
, where $\omega = d\phi/dt$,

holds for circular orbits in the Schwarzschild space-time. Prove this statement.