Institute for Theoretical Physics

Prof. Dr. Claus Kiefer

Nick Kwidzinski, Leonardo Chataignier and Yi-Fan Wang

ver. 1.00

2nd exercise sheet on Relativity and Cosmology II

Summer term 2019

Release: Mon, Apr. 8th Submit: Mon, Apr. 15th in lecture Discuss: Thu, Apr. 18th

Exercise 42 (14 points): Redshift in the Schwarzschild spacetime

Consider a stationary* observer \mathcal{A} at r=R, $R\geqslant 2GM$ in the Schwarzschild spacetime of mass M and an observer \mathcal{B} at infinity. The timelike Killing vector shall be denoted by $\xi^{\mu}=(1,0,0,0)$. Furthermore, we define the quantity $V^2:=-\xi_{\mu}\xi^{\mu}$. Observer \mathcal{A} emits energy with frequency ω_R (measured in her/his rest frame) which is measured by observer \mathcal{B} as being ω_{∞} .

- **42.1** Express the four-velocity u^{μ} of observer \mathcal{A} in terms of ξ^{μ} and V and use this to derive the relation between the frequencies ω_R and ω_{∞} .
- **42.2** What does observer \mathcal{B} measure when observer \mathcal{A} reaches the Schwarzschild radius r = 2GM? What does this mean for the redshift?

Exercise 43 (6 points): Time dilation in the Schwarzschild spacetime

Show that the proper time $d\tau$ on a circular geodesic in the Schwarzschild geometry of mass M obeys the relation:

 $d\tau = \sqrt{1 - \frac{3GM}{r}} dt .$

Use this to give an estimate for the time dilation of a satellite flying in a low orbit around the Earth.

^{*}A stationary observer is an observer in a stationary spacetime whose 4-velocity u^{μ} is proportional to the given timelike Killing vector.