Exercise 42 (14 points): Redshift in the Schwarzschild spacetime

Consider a stationary observer \(A \) at \(r = R, R \geq 2GM \) in the Schwarzschild spacetime of mass \(M \) and an observer \(B \) at infinity. The timelike Killing vector shall be denoted by \(\xi^\mu = (1,0,0,0) \). Furthermore, we define the quantity \(V^2 := -\xi_\mu \xi^\mu \). Observer \(A \) emits energy with frequency \(\omega_R \) (measured in her/his rest frame) which is measured by observer \(B \) as being \(\omega_\infty \).

42.1 Express the four-velocity \(u^\mu \) of observer \(A \) in terms of \(\xi^\mu \) and \(V \) and use this to derive the relation between the frequencies \(\omega_R \) and \(\omega_\infty \).

42.2 What does observer \(B \) measure when observer \(A \) reaches the Schwarzschild radius \(r = 2GM \)? What does this mean for the redshift?

Exercise 43 (6 points): Time dilation in the Schwarzschild spacetime

Show that the proper time \(d\tau \) on a circular geodesic in the Schwarzschild geometry of mass \(M \) obeys the relation:

\[
d\tau = \sqrt{1 - \frac{3GM}{r}} \, dt.
\]

Use this to give an estimate for the time dilation of a satellite flying in a low orbit around the Earth.

A stationary observer is an observer in a stationary spacetime whose 4-velocity \(u^\mu \) is proportional to the given timelike Killing vector.