$3^{\text {rd }}$ exercise sheet on Relativity and Cosmology II
 Summer term 2019

Release: Mon, Apr. $15^{\text {th }}$

Submit: Mon, Apr. $29^{\text {th }}$ in lecture
Discuss: Thu, May $2^{\text {nd }}$
Please note that you have two weeks for this exercise sheet. It gives twice the points as usual.

Exercise 44 (15 points): Differential forms

44.1 Consider an n-dimensional manifold with a metric. Let $\left\{\omega^{i}\right\}$ be an orthonormal co-basis of 1 -forms, and let ω be the preferred volume form $\omega=\omega^{1} \wedge \omega^{2} \wedge \ldots \wedge \omega^{n}$.
Show that, in an arbitrary coordinate system $\left\{x^{k}\right\}$, the following holds:

$$
\begin{equation*}
\omega=\sqrt{|g|} \mathrm{d} x^{1} \wedge \mathrm{~d} x^{2} \wedge \ldots \wedge \mathrm{~d} x^{n} \tag{1}
\end{equation*}
$$

where g denotes the determinant of the metric, whose components $g_{i j}$ are given in these coordinates.
44.2 The contraction of a p-form ω (with components $\omega_{i j \ldots k}$) with a vector v (with components v^{i}) is given by $[\omega(v)]_{j \ldots k}:=\omega_{i j \ldots k} v^{i}$. Consider the n-form $\omega=\mathrm{d} x^{1} \wedge \mathrm{~d} x^{2} \wedge \ldots \wedge \mathrm{~d} x^{n}$.
Show that, with a given vector field v, the following holds:

$$
\begin{equation*}
\mathrm{d}[\omega(v)]=v^{i},{ }_{i} \omega \tag{2}
\end{equation*}
$$

44.3 Define $\left(\operatorname{div}_{\omega} v\right) \omega:=\mathrm{d}[\omega(v)]$.

Show that, by using coordinates in which $\omega=f \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2} \wedge \ldots \wedge \mathrm{~d} x^{n}$, the following holds:

$$
\begin{equation*}
\operatorname{div}_{\omega} v=\frac{1}{f}\left(f v^{i}\right)_{, i} \tag{3}
\end{equation*}
$$

44.4 In three-dimensional Euclidean space, the preferred volume form is given by $\omega=\mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z$.

Show that, in spherical coordinates, this volume form is given by $\omega=r^{2} \sin \theta \mathrm{~d} r \wedge \mathrm{~d} \theta \wedge \mathrm{~d} \phi$.
Use the result of 44.3 to show that the divergence of a vector field

$$
\begin{equation*}
v=v^{r} \frac{\partial}{\partial r}+v^{\theta} \frac{\partial}{\partial \theta}+v^{\phi} \frac{\partial}{\partial \phi} \tag{4}
\end{equation*}
$$

is given by

$$
\begin{equation*}
\operatorname{div} v=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} v^{r}\right)+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta v^{\theta}\right)+\frac{\partial v^{\phi}}{\partial \phi} . \tag{5}
\end{equation*}
$$

Exercise 45 (25 points): Electrodynamics in flat space-time

Differential forms are a convenient tool for field theories, as we will show in this exercise on the example of Maxwell electrodynamics in Minkowski space-time. We know that the electromagnetic field strength is given by the Faraday antisymmetric tensor $F_{\mu \nu}$, and the current is given by j^{μ}. In the language of exterior calculus, the $F_{\mu v}$ are components of the Faraday 2-form \mathbf{F} describing an arbitrary electromagnetic field, given by

$$
\begin{equation*}
\mathbf{F}:=\frac{1}{2} F_{\mu \nu} \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}=-E_{x} \mathrm{~d} t \wedge \mathrm{~d} x-E_{y} \mathrm{~d} t \wedge \mathrm{~d} y-E_{z} \mathrm{~d} t \wedge \mathrm{~d} z+B_{x} \mathrm{~d} y \wedge \mathrm{~d} z+B_{y} \mathrm{~d} z \wedge \mathrm{~d} x+B_{z} \mathrm{~d} x \wedge \mathrm{~d} y \tag{6}
\end{equation*}
$$

while the j^{μ} are the components of the current 1 -form \mathbf{j}, which is given by

$$
\begin{equation*}
\mathbf{j}:=j_{\mu} \mathrm{d} x^{\mu}=-\rho \mathrm{d} t+j_{x} \mathrm{~d} x+j_{y} \mathrm{~d} y+j_{z} \mathrm{~d} z \tag{7}
\end{equation*}
$$

45.1 The Hodge star operator \star maps p-forms to $(4-p)$-forms. Therefore, 2-forms are mapped to 2 -forms by this operator. The 2-form dual to the Faraday 2-form is the Maxwell 2-form, defined by $\mathbf{G}:=\star \mathbf{F}$.

The Hodge star operator acts on the 2-form basis as follows

$$
\begin{equation*}
\star\left(\mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}\right)=\frac{1}{2} \eta^{\mu \alpha} \eta^{\nu \beta} \varepsilon_{\sim \alpha \beta \gamma \delta} \mathrm{d} x^{\gamma} \wedge \mathrm{d} x^{\delta}, \tag{8}
\end{equation*}
$$

where $\eta^{\mu \nu}=\operatorname{diag}(-1,+1,+1,+1)$ is the inverse Minkowski metric and $\varepsilon_{\alpha \beta \gamma \delta}$ the totally anti-symmetric Levi-Civita tensor density $\left(\varepsilon_{0123}=+1\right)$. For example,

$$
\begin{equation*}
\star(\mathrm{d} t \wedge \mathrm{~d} x)=-\mathrm{d} y \wedge \mathrm{~d} z, \quad \text { etc. } \tag{9}
\end{equation*}
$$

Show that the Maxwell 2-form is given by

$$
\begin{equation*}
\mathbf{G}=B_{x} \mathrm{~d} t \wedge \mathrm{~d} x+B_{y} \mathrm{~d} t \wedge \mathrm{~d} y+B_{z} \mathrm{~d} t \wedge \mathrm{~d} z+E_{x} \mathrm{~d} y \wedge \mathrm{~d} z+E_{y} \mathrm{~d} z \wedge \mathrm{~d} x+E_{z} \mathrm{~d} x \wedge \mathrm{~d} y \tag{10}
\end{equation*}
$$

Which formal relation between the components of \mathbf{F} and \mathbf{G} holds?
45.2 With these definitions, the Maxwell equations (in Gaussian units) can be written in a compact form: $\mathrm{dF}=0$ and $\mathrm{d} \mathbf{G}=4 \pi \star \mathbf{j}$.
a) Show that the equation $\mathrm{dF}=0$ corresponds to the two homogeneous Maxwell equations

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{B}=0 \quad \text { and } \quad \vec{\nabla} \times \vec{E}+\partial_{t} \vec{B}=0 . \tag{11}
\end{equation*}
$$

b) Calculate $\star \mathbf{j}$ (a 3-form), which is the dual of the current 1-form \mathbf{j}. For that purpose use the following relations

$$
\begin{equation*}
\star \mathrm{d} x^{\mu}=\frac{1}{3!} \eta^{\mu \alpha}{\underset{\sim}{\alpha} \alpha \beta \gamma \delta} \mathrm{d} x^{\beta} \wedge \mathrm{d} x^{\gamma} \wedge \mathrm{d} x^{\delta}, \tag{12}
\end{equation*}
$$

for example

$$
\begin{equation*}
\star \mathrm{d} t=-\mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z, \quad \text { etc. } \tag{13}
\end{equation*}
$$

c) Show that the equation $\mathrm{dG}=4 \pi \star \mathbf{j}$ corresponds to the two inhomogeneous Maxwell equations

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{E}=4 \pi \rho \quad \text { and } \quad \vec{\nabla} \times \vec{B}-\partial_{t} \vec{E}=4 \pi \vec{j} . \tag{14}
\end{equation*}
$$

d) Which formal manipulations can you perform to turn eq. (11) into eq. (14) in the vacuum case?
45.3 The exterior derivative is nilpotent, i.e. the relation $\mathrm{d}(\mathrm{d} \boldsymbol{\omega})=0$ holds for any p-form $\boldsymbol{\omega}$.

Choosing $\omega=\star \mathbf{j}$, show that this yields the continuity equation $\partial_{t} \rho-\vec{\nabla} \cdot \vec{j}=0$.
45.5 Derive the inhomogeneous Maxwell equations from a variational principle. The action is given by

$$
\begin{equation*}
S[\mathbf{A}]=\int\left(\frac{1}{8 \pi} \star \mathbf{F} \wedge \mathbf{F}+\mathbf{A} \wedge \star \mathbf{j}\right), \tag{15}
\end{equation*}
$$

where $\mathbf{F}=\mathrm{d} \mathbf{A}$ and $\mathbf{A}=A_{\mu} \mathrm{d} x^{\mu}$ is the electromagnetic 1-form potential.
Show in addition that the continuity equation implies that the action is invariant under the gauge transformation $\mathbf{A} \rightarrow \mathbf{A}^{\prime}=\mathbf{A}+\mathrm{d} f$, where f is a 0 -form.

Hint: You can make use of the fact that $\star \alpha \wedge \beta=\alpha \wedge \star \beta$, where α and β are both k-forms.
45.6 Bonus exercise. Let ω be a k-form. We define the codifferential δ via

$$
\begin{equation*}
\delta \omega:=(-1)^{k} \star \mathrm{~d} \star \omega . \tag{16}
\end{equation*}
$$

This allows us to define the d^{\prime} Alembert operator

$$
\begin{equation*}
\square:=\mathrm{d} \delta+\delta \mathrm{d} \tag{17}
\end{equation*}
$$

Show the following statements:

- $\delta A=0$ is the well-known Lorenz gauge condition $\partial_{\mu} A^{\mu}=0$
- The Lorenz gauge can always be realized by a suitable gauge transformation.
- In the Lorenz gauge the inhomogeneous Maxwell equation can be written as $\square A=4 \pi \mathbf{j}$.
45.7 Bonus exercise. Explain in your own words why a covariant derivative is needed on a curved background, and give special attention to the connection. What is the intuitive interpretation of the connection? Why can it be chosen to be zero in Minkowski space-time?

