ver. 1.00

8th exercise sheet on Relativity and Cosmology II

Summer term 2019

Exercise 54 (20 credit points): *Kerr–Newman metric*

The most general solution for a stationary black hole is given by the *Kerr–Newman metric*, which describes a black hole with angular momentum J = Ma and charge q. The line element expressed in Boyer–Lindquist coordinates takes the following form:

$$\mathrm{d}s^{2} = -\frac{\Delta}{\rho^{2}}\left(\mathrm{d}t - a\sin^{2}(\theta)\,\mathrm{d}\phi\right)^{2} + \frac{\sin^{2}(\theta)}{\rho^{2}}\left[\left(r^{2} + a^{2}\right)\mathrm{d}\phi - a\,\mathrm{d}t\right]^{2} + \frac{\rho^{2}}{\Delta}\,\mathrm{d}r^{2} + \rho^{2}\,\mathrm{d}\theta^{2}\,,$$

where

$$\rho^2 = r^2 + a^2 \cos^2(\theta)$$
, $\Delta = r^2 - 2Mr + q^2 + a^2$, $q^2 + a^2 \le M^2$.

- **54.1** How can one obtain this line element from the Kerr metric by means of a simple substitution of certain parameters (without calculation)?
- **54.2** For $\Delta = 0$ the metric exhibits coordinate singularities. Determine their radial coordinates r_{\pm} .

The surface $r_+ = \text{const.}$ (with r_+ being the radial coordinate with a larger value) represents the event horizon. Calculate its surface area for t = const.

54.3 Analogously to the Kerr metric, consider an observer with r = const., $\theta = \pi/2$, whose tangent vector is parallel to the Killing field $\chi^{\mu} = \xi^{\mu} + \Omega \Psi^{\mu}$.

Which values can Ω take for given $r \ge r_+$? Show that at the horizon only one value Ω_H is possible and determine this value.

54.4 Consider the Killing field $\chi^{\mu} = \xi^{\mu} + \Omega \Psi^{\mu}$ evaluated at the event horizon.

Show that this Killing field is light-like on the entire horizon. Furthermore, show that the surface gravity κ defined by means of $\left[\nabla^{\mu}(\chi_{\nu}\chi^{\nu})\right]_{H} = -2\kappa\chi^{\mu}|_{H}$ is a well-defined quantity.

Calculate the Lie derivative of the defining equation for κ with respect to χ^{μ} and thereby show that κ is constant along the integral curves of χ .

Remark: After a rather long calculation one obtains $\kappa = (r_+ - M)/(r_+^2 + a^2)$. (Not to be shown here.)

54.5 Consider the null geodesics defined at the horizon, whose tangent vectors k^{μ} are proportional to χ^{μ} . Find the functional relationship between the affine parameter λ of these null geodesics and the Killing parameter v of the integral curves of χ^{μ} , i.e. $\chi^{\mu} = (\partial/\partial v)^{\mu}$.