$8^{\text {th }}$ exercise sheet on Relativity and Cosmology II

Summer term 2019

Release: Mon, May 27 ${ }^{\text {th }}$
Submit: Mon, June $3^{\text {rd }}$ in lecture
Discuss: June $6^{\text {th }} / 7^{\text {th }}$

Exercise 54 (20 credit points): Kerr-Newman metric

The most general solution for a stationary black hole is given by the Kerr-Newman metric, which describes a black hole with angular momentum $J=M a$ and charge q. The line element expressed in Boyer-Lindquist coordinates takes the following form:

$$
\mathrm{d} s^{2}=-\frac{\Delta}{\rho^{2}}\left(\mathrm{~d} t-a \sin ^{2}(\theta) \mathrm{d} \phi\right)^{2}+\frac{\sin ^{2}(\theta)}{\rho^{2}}\left[\left(r^{2}+a^{2}\right) \mathrm{d} \phi-a \mathrm{~d} t\right]^{2}+\frac{\rho^{2}}{\Delta} \mathrm{~d} r^{2}+\rho^{2} \mathrm{~d} \theta^{2}
$$

where

$$
\rho^{2}=r^{2}+a^{2} \cos ^{2}(\theta), \quad \Delta=r^{2}-2 M r+q^{2}+a^{2}, \quad q^{2}+a^{2} \leqslant M^{2}
$$

54.1 How can one obtain this line element from the Kerr metric by means of a simple substitution of certain parameters (without calculation)?
54.2 For $\Delta=0$ the metric exhibits coordinate singularities. Determine their radial coordinates $r_{ \pm}$.

The surface $r_{+}=$const. (with r_{+}being the radial coordinate with a larger value) represents the event horizon. Calculate its surface area for $t=$ const.
54.3 Analogously to the Kerr metric, consider an observer with $r=$ const., $\theta=\pi / 2$, whose tangent vector is parallel to the Killing field $\chi^{\mu}=\xi^{\mu}+\Omega \Psi^{\mu}$.
Which values can Ω take for given $r \geqslant r_{+}$? Show that at the horizon only one value Ω_{H} is possible and determine this value.
54.4 Consider the Killing field $\chi^{\mu}=\xi^{\mu}+\Omega \Psi^{\mu}$ evaluated at the event horizon.

Show that this Killing field is light-like on the entire horizon. Furthermore, show that the surface gravity κ defined by means of $\left[\nabla^{\mu}\left(\chi_{\nu} \chi^{\nu}\right)\right]_{H}=-\left.2 \kappa \chi^{\mu}\right|_{H}$ is a well-defined quantity.
Calculate the Lie derivative of the defining equation for κ with respect to χ^{μ} and thereby show that κ is constant along the integral curves of χ.
Remark: After a rather long calculation one obtains $\kappa=\left(r_{+}-M\right) /\left(r_{+}^{2}+a^{2}\right)$. (Not to be shown here.)
54.5 Consider the null geodesics defined at the horizon, whose tangent vectors k^{μ} are proportional to χ^{μ}. Find the functional relationship between the affine parameter λ of these null geodesics and the Killing parameter v of the integral curves of χ^{μ}, i.e. $\chi^{\mu}=(\partial / \partial v)^{\mu}$.

