ver. 1.00

9th exercise sheet on Relativity and Cosmology II

Summer term 2019

Release : Mon, June 3 rd	Submit: Mon, June 17 th in lecture	Discuss : June 27 th /21 st
--	---	--

Exercise 55 (7 credit points): *Hawking temperature*

In the lecture it was mentioned that a Schwarzschild black hole radiates with the so-called Hawking temperature

$$T_{\rm H} = \frac{\hbar c^3}{8\pi k_{\rm B} G M} \,.$$

Assume that only photons are emitted and that they have a perfect Planck spectrum. Find a relation between the initial mass of the black hole and its lifetime and analyse this relation for several interesting masses and time intervals.

Exercise 56 (6 credit points): Accretion disks

Give an estimate for the characteristic energy that is emitted by an accretion disk with radius *R* around a compact spherically symmetric object. For simplicity (even though this is not totally realistic), assume that the luminosity is that of a black body of radius *R* and temperature *T* and that it amounts to a given fraction ε of the Eddington luminosity. (At the end, use $\varepsilon \approx 0.5$.)

Exercise 57 (7 credit points): *Redshift in case of a gravitational collapse*

Consider an observer on the surface of a collapsing spherical star who emits radial light signals in short proper time intervals Δs , i.e. with a constant frequency $\omega_* = 2\pi/\Delta s$. These signals are received by a stationary observer at large distance $r = r_R$, i.e. with a frequency $\omega_R = 2\pi/\Delta t_R$, where Δt_R refers to the Schwarzschild time.

Calculate the dependence of the frequency ratio ω_R/ω_* on t_R . Indicate the time scale of the redshift in terms of seconds if you measure *M* in solar masses.

Hint: Use Eddington–Finkelstein coordinates (as discussed in the lecture) and assume that the emitting observer is already located near the Schwarzschild radius.