University of Cologne Institute for Theoretical Physics Prof. Dr. Claus Kiefer Manuel Krämer and Thaisa Guio

www.thp.uni-koeln.de/gravitation/courses/rci13.html

7th exercise sheet on Relativity and Cosmology I

Winter term 2013/14

Deadline for delivery: Thursday, 5th December 2013 during the exercise class.

Exercise 20 (12 credit points): *Algebraic properties of the curvature tensor*

The first algebraic identity of the curvature tensor,

$$R_{\mu\nu\kappa\lambda} = -R_{\mu\nu\lambda\kappa}$$
 or $R_{\mu\nu(\kappa\lambda)} = 0$,

reflects the fact that the latter two indices of the curvature tensor can be associated with a surface element (*bi-vector*), which is always antisymmetric. This antisymmetry can be seen directly from the definition and also holds for arbitrary asymmetric connections.

The second algebraic identity,

$$R_{\mu\nu\kappa\lambda} = -R_{\nu\mu\kappa\lambda}$$
 or $R_{(\mu\nu)\kappa\lambda} = 0$,

can be verified rather quickly in the case of a symmetric connection (i. e. Christoffel symbol), but also holds in more general cases like in a *Riemann–Cartan space*, in which also torsion appears in addition to curvature. Can you give an illustrative interpretation of the second algebraic identity?

20.1 The third algebraic identity is a particularity of Riemannian space. Show that in the case that the connection is given by the Christoffel symbol, the following relation holds:

$$R^{\mu}_{[\nu\kappa\lambda]}=0$$
.

- **20.2** How many independent components does the curvature tensor have in *Riemann–Cartan space*, i. e. if one only considers the first and second algebraic identity? How can curvature be represented by a matrix in this case?
- **20.3** Show the following equivalence relation for an arbitrary tensor of rank 4:

$$\begin{array}{lll}
R_{\mu\nu(\kappa\lambda)} & = & 0 \\
R_{(\mu\nu)\kappa\lambda} & = & 0 \\
R_{\mu[\nu\kappa\lambda]} & = & 0
\end{array}
\right\} \iff
\begin{cases}
R_{\mu\nu(\kappa\lambda)} & = & 0 \\
R_{(\mu\nu)\kappa\lambda} & = & 0 \\
R_{\mu\nu\kappa\lambda} & = & R_{\kappa\lambda\mu\nu} \\
R_{[\mu\nu\kappa\lambda]} & = & 0
\end{cases}$$

Make yourself aware of the consistency by counting the number of conditional equations.

Hint: One example of how to prove this is by using the following formula, which holds for an arbitrary tensor *T* of rank 4 that obeys the first and second algebraic identity:

$$T_{\mu\nu\kappa\lambda} - T_{\kappa\lambda\mu\nu} = \frac{3}{2} \left(T_{\nu[\lambda\kappa\mu]} + T_{\kappa[\lambda\nu\mu]} + T_{\lambda[\nu\kappa\mu]} + T_{\mu[\kappa\lambda\nu]} \right).$$

Exercise 21 (8 credit points): Geodesic deviation equation

Consider two adjacent geodesics ("freely falling particles") with paths $x^{\mu}(\tau)$ and $x^{\mu}(\tau) + \xi^{\mu}(\tau)$. $\xi^{\mu}(\tau)$ is considered to be "small" in the sense that terms of quadratic and higher order can be neglected.

Show that

$$\frac{\mathrm{D}^2 \xi^{\mu}}{\mathrm{D} \tau^2} = R^{\mu}_{\ \nu\kappa\lambda} \, u^{\nu} \, u^{\kappa} \, \xi^{\lambda} \,,$$

where $u^{\mu} = dx^{\mu}/d\tau$.

Hints: At first, formulate the geodesic equations for $x^{\mu}(\tau)$ and $x^{\mu}(\tau) + \xi^{\mu}(\tau)$, then take the difference and expand up to the first order in $\xi^{\mu}(\tau)$; the result is an equation that contains $d^2\xi^{\mu}/d\tau^2$. Afterwards compute the general expression for $D^2\xi^{\mu}/D\tau^2$ and replace the term $d^2\xi^{\mu}/d\tau^2$ appearing therein by means of the equation found before.