6th exercise sheet on Relativity and Cosmology I
Winter term 2015/16

Deadline for delivery: Thursday, 3rd December 2015 during the exercise class.

Exercise 15 (5 credit points): Curvature II

Consider a family of Gaussian curves \(z = \exp(-a^2 r^2) \) with \(r^2 = x^2 + y^2 \), embedded into a flat 3-dimensional space. Determine the metric on the surface formed by these Gaussian curves using polar coordinates \((r, \varphi)\) and calculate the curvature at the apex using three different methods:

15.1 Use the two formulae given in the lecture: a) comparison of circumference and b) comparison of area.
15.2 Find the spherical shell with radius \(R \) that approximates the given surface best around the apex and use the known curvature of a sphere with radius \(R \).

Exercise 16 (6 credit points): Christoffel symbols

Derive the transformation properties of the Christoffel symbols \(\Gamma_{\mu\nu\lambda} = \frac{1}{2} (g_{\mu\nu,\lambda} + g_{\lambda\mu,\nu} - g_{\nu\lambda,\mu}) \) under a coordinate transformation \(x^\mu \to x'^\nu(x^\alpha) \).
(The result shows that the Christoffel symbols do not form a tensor.)

Exercise 17 (9 credit points): Metricity

It was stated in the lecture that the metric is covariantly constant for Riemannian spaces, meaning that its covariant derivative vanishes,
\[\nabla_\alpha g_{\mu\nu} = 0 \quad \text{and} \quad \nabla_\alpha g^{\mu\nu} = 0. \]

17.1 Prove the above two statements.
17.2 How does \(\nabla_\alpha g_{\mu\nu} = 0 \) transform under a coordinate transformation \(x^\mu \to x'^\mu(x^\alpha) \)?