Prof. Dr. Claus Kiefer

Branislav Nikolic, Nick Kwidzinski, YiFan Wang and Leonardo Chataignier

10th January 2018

11th exercise sheet on Relativity and Cosmology I

Winter term 2017/18

Deadline for delivery: Thursday, 11th January 2018 during the exercise class.

Exercise 29: Polarisation

Consider two coordinate systems (t, x, y, z) and (t, x', y', z) that can be transformed into each other by a rotation with the angle θ around the *z*-axis.

29.1 Let $\hat{\mathbf{e}}_x$, $\hat{\mathbf{e}}_y$, $\hat{\mathbf{e}}_{x'}$, and $\hat{\mathbf{e}}_{y'}$ be the unit polarization vectors in both coordinate systems for an electromagnetic wave that propagates in the *z*-direction. Show that

$$\hat{\mathbf{e}}_{x'} = \hat{\mathbf{e}}_x \cos(\theta) + \hat{\mathbf{e}}_{y} \sin(\theta), \qquad \hat{\mathbf{e}}_{y'} = -\hat{\mathbf{e}}_x \sin(\theta) + \hat{\mathbf{e}}_y \cos(\theta).$$

29.2 Analogously, let \mathbf{e}_+ , \mathbf{e}_\times , $\mathbf{e}_{+'}$, $\mathbf{e}_{\times'}$ be the polarization tensors for a gravitational wave in the linearized theory. Show that

$$\mathbf{e}_{+'} = \mathbf{e}_+ \cos(2\theta) + \mathbf{e}_\times \sin(2\theta)$$
, $\mathbf{e}_{\times'} = -\mathbf{e}_+ \sin(2\theta) + \mathbf{e}_\times \cos(2\theta)$.

29.3 Let $|\uparrow\rangle$ and $|\downarrow\rangle$ be the quantum-mechanical states of a neutrino whose spin is aligned parallelly or antiparallelly with respect to the *x*-direction, respectively, and analogously $|\uparrow'\rangle$ and $|\downarrow'\rangle$ with respect to the x'-direction. Show that

$$\left|\uparrow'\right\rangle = \left|\uparrow\right\rangle \, \cos\!\left(\frac{\theta}{2}\right) + i \left|\downarrow\right\rangle \, \sin\!\left(\frac{\theta}{2}\right) \, , \qquad \left|\downarrow'\right\rangle = i \left|\uparrow\right\rangle \, \sin\!\left(\frac{\theta}{2}\right) + \left|\downarrow\right\rangle \, \cos\!\left(\frac{\theta}{2}\right) .$$

29.4 Determine the generalization for the basis states of linear polarization for a radiation field of arbitrary spin *s*.

Exercise 30: Gauge transformation

In the linear approximation to general relativity, we make the ansatz

$$g_{\mu\nu}(x) = \eta_{\mu\nu} + 2\,\psi_{\mu\nu}(x)\,,$$

where $\psi_{\mu\nu}$ is 'small'.

30.1 Show that under the infinitesimal transformation

$$x'^{\mu} = x^{\mu} - 2 f^{\mu}(x^{\nu})$$

one arrives at the following 'gauge' transformation law for $\psi_{\mu\nu}$:

$$\psi'_{\mu\nu}(x') = \psi_{\mu\nu}(x) + f_{\mu,\nu}(x) + f_{\nu,\mu}(x)$$
.

30.2 Show that the Riemann tensor at the linearized level is invariant under this gauge transformation.